Next Article in Journal
The Roles of DNA Demethylases in Triple-Negative Breast Cancer
Next Article in Special Issue
Ac-EAZY! Towards GMP-Compliant Module Syntheses of 225Ac-Labeled Peptides for Clinical Application
Previous Article in Journal
Zebrafish as a Model for Anticancer Nanomedicine Studies
Previous Article in Special Issue
Fully Automated GMP-Compliant Synthesis of [18F]FE-PE2I
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma

by
Julie Bolcaen
1,*,
Shankari Nair
1,
Cathryn H. S. Driver
2,3,
Tebatso M. G. Boshomane
4,
Thomas Ebenhan
3,4,5 and
Charlot Vandevoorde
1,*
1
Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa
2
Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa
3
Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa
4
Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa
5
Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
*
Authors to whom correspondence should be addressed.
Pharmaceuticals 2021, 14(7), 626; https://doi.org/10.3390/ph14070626
Submission received: 28 May 2021 / Revised: 18 June 2021 / Accepted: 21 June 2021 / Published: 29 June 2021

Abstract

:
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.

Graphical Abstract

1. Introduction

Gliomas represent 80% of all primary brain tumors and form a heterogeneous group of tumors of the central nervous system (CNS). Glioblastoma (GB, WHO grade 4) is the most frequently occurring malignant CNS tumor with a global incidence of 0.59–3.69 per 100,000 [1,2]. Nowadays, the WHO classification no longer relies solely on histological criteria but has also implemented additional molecular biomarkers for classification, including isocitrate dehydrogenase (IDH) mutation, 1p/19q co-deletion, H3-K27M mutation and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation [3]. The current standard of care consists of maximum safe surgical resection followed by external beam radiation therapy (EBRT) plus concomitant and adjuvant temozolomide (TMZ). However, GB has a poor prognosis with a median survival of approximately 14 months and less than 10% of patients living longer than 5 years from diagnosis. At recurrence, there is no consensus on the standard of care as no therapeutic options thus far could demonstrate a substantial survival benefit [4,5,6]. IDH mutation and 1p/19q co-deletion are the most prognostically favorable molecular markers, but regrettably, most GBs are IDH wild-type and the benefit from TMZ is most prominent in patients with MGMT promoter-methylated GB [3,7,8].
Treatment challenges posed by malignant gliomas include molecular and cellular heterogeneity, innate and acquired therapy resistance and the obstacle of effective drug delivery posed by the blood–brain barrier (BBB) [9,10,11]. An improved understanding of the underlying disease pathology and the causes for these treatment challenges might aid the development of new GB therapy strategies. One particular strategy is the development of theranostic agents that combine diagnostic molecular imaging with therapy using the same agent. The theranostic agent thereby investigates the presence of a certain target on the tumor cells of the patient while the therapeutic version of the agent (commonly a radioactive derivative) binds to the same target and induces tumor cell death by emitting radiation, while sparing healthy normal tissues. The latter approach is called targeted radionuclide therapy (TRT) [12,13]. Our group recently published a perspective on the requirements for a successful TRT agent for GB treatment and the existing TRT strategies for GB were recently reviewed by others [14,15,16,17].
In this review, the option to use the tyrosine kinase (TK) pathway as a target for GB radiopharmaceutical development, and specifically for TRT, will be explored. RTKs are a family of cell surface receptors that contain a ligand-binding region in the extracellular domain, a single trans-membrane helix, and a cytoplasmic region that contains the protein TK domain plus additional carboxy (C-) terminal and juxtamembrane regulatory regions [18]. Their extracellular ligand-binding domain acts as a receptor for growth factors, hormones, cytokines, neurotrophic factors and other extracellular signaling molecules [1]. Upon binding, RTKs mediate cell-to-cell communication, cell growth, motility, differentiation, cell cycle control and metabolism [19]. Mutations in RTKs and aberrant activation of their intracellular signaling pathways have been linked to malignant transformation and have driven the development of a new generation of drugs that block or attenuate RTK activity [18,19]. There are 62 Food and Drug Administration (FDA)-approved therapeutic agents that target about two dozen different protein kinases, most of which are classified as receptor tyrosine kinase inhibitors (RTKI) [20]. RTKIs consist of mainly two categories, monoclonal antibody-based drugs (mAbs) that bind to the extracellular domain of the receptor and small molecule inhibitors (SMIs) acting intracellularly, both of which result in blocking the downstream signal transduction cascade [21,22,23]. Aberrant RTK activation is a well-studied therapeutic target in GB, but despite the tremendous effort in TKI development, results are variable and complicated by treatment resistance [24,25].
Personalized medicine strategies, such as the use of theranostic agents, could assist in improving the effectiveness of TKI treatment strategies by improving patient selection, providing a more complete pathway inhibition, improving tumor radiosensitization and the prediction of the treatment response [23,26,27]. Therefore, this review will give an overview of the current status of TKIs and TKI radiopharmaceuticals for GB applications. By way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, this review will suggest suitable candidates that are most promising to become radiopharmaceuticals for TRT of GB.

2. Nuclear Molecular Imaging and TRT Using TKIs

Due to limited target expression/engagement, mutation status and unfavorable pharmacokinetic (PK) parameters of TKIs, only a minority of patients will ultimately benefit from TK targeted therapy [28]. Moreover, the initial response rates are hampered by drug resistance that occurs over the course of treatment. As such, the identification of treatment-responsive patients constitutes one of the key challenges associated with the clinical use of TKIs. Traditionally, biopsy and immunohistochemistry are performed to determine the RTK status of cancer tissues and to guide subsequent treatment plans. However, spatial expression levels of RTKs can vary over time and amongst lesions [27]. Nuclear imaging of TK expression using Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could therefore play an important role for subsequent TKI therapy [27,28]. Hence, non-invasive PET/SPECT imaging may be utilized to measure TK activity distribution in vivo, which in turn can be used to determine patient-specific treatment plans with calculated dosages to target and non-target organs (image-based dosimetry) [29]. Additionally, it can add a better understanding of the spatial RTK patterning in the very heterogeneous GB tumor microenvironment and allow for the longitudinal behavior of drugs (FDA-approved) to be studied in vivo [23,27,28]. Commonly used PET and SPECT radionuclides are listed below and can be divided into either organic (Table 1) or metallic (Table 2) radionuclides. The application of organic radionuclides for diagnostic purposes has been centered around the use of fluorine-18 with its favorable half-life and positron emission, while therapy has successfully been completed using iodine-131 with its suitable beta emissions. However, the widespread application and development of new radiopharmaceuticals using these organic radionuclides has been limited by their availability and the need for long and complicated radiosynthesis to incorporate these nuclides covalently into the molecules of choice [30]. The list of radiometals being used is extensive across both diagnostic and therapeutic areas. Radiometals are bound to the desired compounds through coordination with chelating donor-ligands to form inert metal-chelate complexes, most often in one-pot reactions. This process is therefore much simpler than the complex syntheses required for organic radiolabeling and is resulting in radiometals being favored for use in diagnostic and therapeutic applications and increasingly researched for new product developments. In 2020, the FDA had approved 51 radiopharmaceuticals for the market of which only 19 (37%) were non-metallic isotopes [31].
FDA-approved RTKIs generally fall into the category of either mAbs/proteins (>1 kDa) or small molecules (SM) (<1 kDa). Strategies for radiolabeling these inhibitors are dependent on the desired usage (imaging and/or therapy) and therefore the combination with adequate radionuclide(s), and particular characteristics of the inhibitor itself. The radionuclide properties to be considered include the type of radiation and emission properties (including the linear energy transfer), the radionuclide half-life, chemical purity, specific activity and most importantly, availability and production cost of the radionuclide [17,34,35]. Characteristics of the inhibitor to be factored in include the biological half-life and blood clearance of the targeting ligand, the affinity of the inhibitor for its target, the available positions for radiolabeling and the proposed drug metabolism [28]. Consequently, the radionuclide properties should be matched with the TKI properties in order to result in a functional and effective radiopharmaceutical.
The size of the mAbs and challenging radiosynthesis parameters generally preclude the use of direct labeling with common non-metallic radionuclides (such as carbon-11 and fluorine-18); however, indirect labeling with iodine-123/-125/-131 has been accomplished [36,37]. Thus, radiolabeling of mAb/protein TKIs is most often accomplished by chelation of a radiometal isotope since mAbs can be easily modified to contain a chelating agent for facile metal complexation [38]. Furthermore, these types of complexation often occur rapidly at mild temperatures in biocompatible solutions that are ideal for protecting the integrity of the mAb [30]. There are a number of suitable radiometal isotopes with longer half-lives to match the extended biological half-lives of antibodies—the most favorable kind (for imaging purposes in this regard) is zirconium-89. Conventional strategies for linking chelating agents covalently to mAbs include reaction of electrophilic isothiocyanate and activated carboxyl groups (N-hydroxysuccinimide esters and anhydrides) with nucleophilic amino groups of accessible lysines, and the Michael-type addition reaction of maleimide groups with any available thiols in the mAb. A number of new site-specific conjugation techniques to mAbs are also being developed [38]. Chelating agents for radiometal isotopes and their attachment to biomolecules have been extensively reviewed [39,40,41,42]. The selected chelating agent needs to bind the selected radionuclide with high thermodynamic stability and kinetic inertness to ensure high stability of the complex in vivo [30]. In vivo complex stability is very crucial to prevent innate transchelation of the radiometal to a number of endogenous competitive metal-binding proteins. The advantage of mAb TKI’s (high affinity for target) is offset by the disadvantage of long metabolic cycles and their molecular size and hydrophilicity which limits their BBB penetration. This issue may be overcome by smaller antibody fragments or affibody molecules that mimic antibody-binding properties [17,43]. For radiolabeling of mAb fragments, the short-lived positron emitters, such as gallium-68 (t½ 1.13 h), copper-64 (t½ 12.7 h), yttrium-86 (t½ 14.7 h) and bromine-76 (t½ 16.2 h) are available to facilitate in vivo imaging. Various strategies on the efficient radiolabeling of mAb have been improved and are continually reviewed [44,45,46,47].
The majority of the FDA-approved TKIs are SM probes since they are generally considered safe, have a favorable PK and show high affinity and specificity, but they are inadequate for delayed imaging after injection due to their fast clearance [48]. In contrast to the radiolabeling of mAbs, radiolabeling of TK SMIs is mostly through covalent incorporation of non-metallic radionuclides (carbon-11, fluorine-18) and is therefore more challenging and requires a drug-specific labeling strategy. The radiosynthesis employed needs to achieve the product in a short time, with sufficient yields and with the highest possible specific activity. A number of the TKIs carry readily accessible methoxy (-O-CH3) or amine (-N-CH3) moieties for radiolabeling with carbon-11 through conventional radiomethylation methods. Others carry fluorine atoms in activated ortho- or para-aryl positions or non-activated fluoro-aryl moieties that might allow for conversion to fluorine-18; other less suitable radiolabeling positions would include asymmetrical ureas and tolyl groups [28]. The advantage of carbon-11 and fluorine-18 for PET imaging purposes is that the radiolabeled TKI structure matches the original TKI and will therefore have exactly the same PK properties, and the short half-life of the radionuclide is suited to the fast clearance rates of the TKI.
TKIs, mAb and SMI have previously been radiolabeled for diagnostic purposes, some also for use in TRT, with progress in the field of epidermal growth factor receptor (EGFR) radio-immunotherapy (RIT) [23,27,28,49,50,51,52]. For instance [188Re]Re-nimotuzumab and [125I]iodo-mAb 425 are in a clinical stage for GB and [177Lu]Lu]-/[211At]At-L8A4 (EGFRIII) mAb and [177Lu]Lu-cetuximab are in a preclinical stage for GB [37,53,54,55,56,57,58]. In addition, RTK signaling is affected by ionizing radiation and hence the combination of TKI and RT (external beam radiation therapy or TRT) could have synergistic effects [59].

3. Receptor Tyrosine Kinase Inhibitors (RTKIs) for GB Therapy

In this review, the focus will be on seven RTKs, based on their central role in GB: the EGFR, the vascular endothelial growth factor receptor (VEGFR), the mesenchymal-epithelial transition factor (MET) receptor, the platelet-derived growth factor receptor (PDGFR), the fibroblast growth factor receptor (FGFR), ephrin receptor (Eph-receptor) and the insulin-like growth factor 1 receptor (IGF1R) [1,60,61,62,63,64]. Aberrations and gene expression of EGFR, neurofibromatosis 1 (NF1) and PDGFRA/IDH1 each define classical, mesenchymal and proneural GB, respectively [65]. Upon activation by ligands, these RTKs signal through two major downstream pathways: rat sarcoma (Ras)/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and Ras/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) (Figure 1) [1]. These pathways are involved in the regulation of cell proliferation, survival, differentiation and angiogenesis. The Cancer Genome Atlas (TCGA) confirmed that genetic alterations in the RTK/Ras/PI3K pathway are present in up to 88% of GB tumors [9,66]. The PI3K pathway is also influenced by other aberrant signaling cascades, including loss of function of the phosphatase and tensin homologue (PTEN) protein, amplification and/or mutation of the EGFR, which occurs in 40% and 50% of GB cases, respectively [66].
Numerous drugs that inhibit RTKs and their signaling cascades downstream are currently in phase I and II clinical trials, either in combination with other FDA-approved chemotherapeutic agents such as TMZ, or as emerging, monotherapeutic agents [67,68]. Figure 1 gives an overview of RTKIs that reached the clinic for the treatment of GB.

3.1. Epidermal Growth Factor Receptor (EGFR)

3.1.1. Current Status of EGFR and EGFRIII Targeted Therapy in GB

EGFR genetic alterations, including mutations, rearrangements, alternative splicing and focal amplifications are the dominant RTK lesions in GB. They occur in 57% of tumors and, overall, are the most common oncogene alteration in GB [69]. The most frequent genetic aberration associated with malignant glioma is an amplification of the EGFR, also referred to as ERBB1 or human epidermal receptor 1 (HER1), and the expression of the EGFR variant III (EGFRvIII). Updated insights on EGFR signaling pathways in glioma have recently been reviewed [70]. Due to the important role of the EGFR pathway in glioma, the interest in therapeutically targeting EGFR increased rapidly over the past few decades. Numerous clinical trials targeting EGFR have been completed in GB patients, but unfortunately with disappointing results—see Table 3 [69,70,71,72,73,74]. There are two predominant classes of EGFR inhibitors: (1) SMIs that target the receptor catalytic domain of EGFR, such as gefitinib and erlotinib and (2) mAbs that target the extracellular domain of EGFR, such as cetuximab and nimotuzumab [75].
The first-generation EGFR inhibitors that sterically block the ATP/substrate-binding pocket of EGFR include gefitinib, erlotinib and lapatinib, but all three did not result in improved overall survival (OS) for primary and recurrent GB as a monotherapy or in combination therapies [76,77,78]. The second-generation inhibitors were designed to irreversibly bind to the TK domain of EGFR and other ERBB family members and include afatinib and dacomitinib, both FDA-approved. The combination of afatinib and TMZ showed anti-GB effects preclinically but limited single-agent activity was observed in recurrent GB patients. In the most recent retrospective trial on dacomitinib, a small subset of patients (14.3%) showed clinical benefits [79,80,81]. The third-generation EGFR inhibitors include AZD9291 (osimertinib) and AEE788 (everolimus). Preclinically, AZD9291 proved to have better activity and selectivity for GB than the previous inhibitors, thereby overcoming primary resistance by continuously blocking ERK signaling [82,83]. In a case report, AZD9291 demonstrated clinical activity and a phase II study in recurrent GB patients is currently in the recruitment phase (NCT03732352) [67,84]. AEE788 also inhibits VEGFR, next to EGFR, but was associated with unacceptable toxicity and minimal activity, despite promising results in animal models [85,86,87].
Table 3. Clinical trials in GB targeting the epidermal growth factor receptor.
Table 3. Clinical trials in GB targeting the epidermal growth factor receptor.
CompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined Therapy)Reference
Gefinitib (ZD1839)SMII (−) (after RT/chemo)[88]
II (−) (RT)[76]
I/II (−) (RT)[89]
II (+/−) (cediranib)[90]
Erlotinib (Tarceva, OSI-774)SMI (+) (RT)[91]
II (−)[92]
II (−) (RT + TMZ)[93]
I/II (−) (single)[94]
II (−) (single)[95]
II (−) (TMZ/carmustine)[78]
II (−) (sirolimus)[77]
II (−) (RT/TMZ/bevacizumab)[96]
II (−) (carboplatin)[97]
Pilot (ongoing) (sunitinib, vandetanib)NCT02239952 [67]
Lapatinib (GW572016)SMSee Table 9
Afatinib (Tovok, BIBW2992)SMI/II (−) (TMZ)[79]
I (ongoing)NCT02423525 [67]
Dacomitinib (Vizimpro, PF299804)SMII (−) (single)[98]
II (retrospective, subset +)[80]
Vandetanib (Caprelsa, ZD6474)SMSee Table 9
Tesevatinib (KD019/ XL647)>SMSee Table 9
Osimertinib (AZD9291)SMII (recruiting)NCT03732352 [67]
Everolimus (AEE788)SMSee Table 9
Cetuximab (IMC-C225, Erbitux)mAbII (−)[99]
II (−) (bevacizumab, irinotecan)[100]
I/II (RT/TMZ)[101]
II (ongoing) (RT)NCT02800486 [67]
I/II (ongoing) (mannitol)NCT02861898 [67]
Nimotuzumab (OSAG101)mAbII (+) (RT/chemo)[102]
I/II (+) (RT)[103]
I/II (+) (RT/chemo)[104]
I/II (+/−) (RT/TMZ)[105]
II/III (+) (RT)[106,107]
III (+/−) (RT/chemo)[108]
Panitumumab (Vectibix, ABX–EGF)mAbII (−) (irinotecan)NCT01017653 [67]
GC1118mAbII (ongoing)NCT03618667 [67]
Depatuxizumab mafodotin (ABT-414/mAb 806)Ab-drugI (+/−) (single)[109]
I (+) (TMZ)[110]
I (+) (RT/TMZ)[111]
I (+) (TMZ)[112]
II (x) (TMZ/lomustine)[113]
II/III (ongoing) (RT/TMZ)NCT02573324 [67]
ABT 595Ab-drugI (+)[114]
Epitinib (HMPL-8)SMI (ongoing)NCT03231501 [67]
Rindopepimut (CDX110)VaccineII (+) (TMZ)[73]
III (−) (TMZ)[115]
II (+) (bevacizumab)[116]
CART-EGFRvIII TCARsI (terminated)[117]
I Pilot (−)[118]
Anti-CD3/EGFR Bispecific Antibody Armed T Cells (EGFR BATs)bAb-TI (RT/TMZ) (ongoing)NCT03344250 [67]
T Cells (EGFR BATs)
EGFR(V)-EDV-DoxEDVI (ongoing)NCT02766699 [67]
AMG 596BiTEI (single/AMG 404) (ongoing)NCT03296696 [67]
Sym004Ab mixII (completed, no results)NCT02540161 [67]
Abbreviations: bAb (bispecific antibody), bispecific T cell engager (BiTE®) antibody construct, CARs (chimeric antigen receptors), doxorubicin (Dox), EnGeneIC delivery vehicle (EDV), T (T cells).
Cetuximab, panitumumab and nimotuzumab are FDA-approved anti-EGFR antibodies that bind to the L2 domain, preventing ligand binding and/or dimerization of EGFR [119]. While both cetuximab and panitumumab failed to demonstrate efficacy for recurrent GB, preclinical and multiple clinical trials with nimotuzumab in high-grade glioma patients gave promising results [102,103,107,108].
Other EGFRvIII-specific or preferential agents are in development, stimulated by the fact that the EGFRvIII variant, in contrast with wild-type EGFR, is not responsive to antibodies targeting the L2 domain because of the deletion mutation in the ligand-binding domain [120]. Two antibody drug conjugates have been evaluated for GB, including depatuxizumab mafodotin (ABT-414) and AMG 595. ABT-414 consists of mAb 806 and has shown encouraging but mixed results and grade 1/2 ocular toxicities occurred. Further studies and results are currently under way to evaluate its efficacy in EGFR-amplified, newly diagnosed and recurrent GB (NCT02573324, NCT02343406) [67,109,110,111,112]. AMG 595 was very effective in GB xenograft animal models and had favorable results during its phase I clinical study [114,121].
EGFRvIII-specific vaccines have also been evaluated as a way to activate the host immune system and provide durable responses in GB. However, positive phase II results of the peptide-vaccine rindopepimut could not be confirmed in a phase III randomized study (ACT IV) [73,115]. The randomized trial of rindopepimut combined with bevacizumab supports the potential for GB targeted immunotherapy, but the therapeutic benefit requires validation [116].
Clinical studies have so far failed to prove that EGFR is a reliable prognostic marker, despite recent confirmation that EGFRvIII sensitizes a fraction of GB patients to current standard of care treatment through the upregulation of DNA mismatch repair [122]. Unfavorable results are partly related to resistance mechanisms, categorized as resistant gene mutations, activation of alternative pathways, phenotypic transformation and resistance to apoptotic cell death [22]. In addition, unlike the kinase domain alterations seen in non-small-cell lung carcinoma (NSCLC), EGFR alterations in GB lie primarily in the extracellular domain. SMIs are difficult to develop for the extracellular domain, while mAbs are easier to design but they contend with the BBB [123]. Further studies with novel agents or combination strategies are warranted to re-evaluate the value of EGFR inhibition in molecularly selected GB populations [124]. Tools to identify subgroups of GB patients with true EGFR-dependency are urgently needed. A first step has been made in the retrospective study of Ronellenfitsch et al., where Akt and mTORC1 signaling was found to be a predictive biomarker for the EGFR antibody nimotuzumab in GB [125].

3.1.2. EGFR Radiopharmaceuticals

EGFR molecular imaging is an optimal method for evaluating EGFR expression, which has been shown to be variable in GB, and for determining the EGFR mutation status in vivo [115,126]. Ideally, all future clinical studies should include pre-/post-treatment evaluation of EGFR expression and measurement of intra-tumoral drug concentration. In addition, known escape pathways (such as PI3K and MET) would ideally be assessed as well [123]. Advances in the development of EGFR-targeted molecular cancer imaging agents, including EGF ligands, mAbs, antibody fragments, affibodies and SMs were recently reviewed [48].
The 4-anilinoquinazoline scaffold is considered a privileged structure and serves as the core framework for several SMIs of EGFR [127]. This quinazoline scaffold is known as the hinge-binding motif as its hydrogen bonds to the hinge region of the ATP-binding pocket while the 4-anilino group with varying substituents is orientated in a way that it forms hydrophobic interactions with an adjacent back pocket [128]. Improvement of TK selectivity and development of new EGFR inhibitors was achieved through structure activity relations analysis of this 4-anilinoquinazoline scaffold with modifications to the substituents. Radiolabeling of these inhibitors therefore also occurs at sites attached to the quinazoline scaffold in order to maintain receptor binding integrity. To image EGFR expression-activity in GB, TKIs (SM and antibodies) have strategically been radiolabeled with [11C], [18F], [64Cu] or [89Zr] for PET and with [131I] or [111In] for SPECT. EGFR inhibitors were also labeled with therapeutic isotopes, such as [125I], [211At], [177Lu] and [188Re] (Figure 2 and Table S1) [14,15,54,55,129]. Reversible inhibitors of EGFR TK labeled with isotopes of iodine or [99mTc] were designed to be longer-lived radiopharmaceuticals. Although longer half-lives may give better distribution kinetics, the increase in lipophilicity and size of incorporating iodine or metal chelates into the quinazoline scaffold likely hindered the retention of these compounds into the binding pocket of EGFR TK [48,51].
[11C]C-PD153035, a potent and specific ATP-competitive TKI of the EGFR was capable of visualizing 6 of the human 8 GB tumors using PET and demonstrated favorable biodistribution and radiation dosimetry [130,131]. The concept of using [111In]In-EGFRvIII-CAR labeled T cells is undergoing clinical evaluation for newly-diagnosed GB and intracerebral EGFR-vIII-CAR T cells for recurrent GB; however, one of the trials was terminated (NCT02664363, NCT03283631) [67]. PET imaging studying [11C]C-erlotinib in glioma xenografts showed specific binding of the radiopharmaceutical for activating mutations of the kinase domain but no specific binding for activating mutations of the extracellular domain of the EGFR [132]. Important for GB is that the distribution of [11C]C-erlotinib was affected by two efflux transporters expressed on the BBB, ATP-binding cassette transporter G2 (ABCG2; also known as breast cancer resistance protein, BCRP) and P-glycoprotein (ABCB1), which are known to restrict successful drug delivery [28,133]. A brain distribution study using [11C]C-erlotinib-PET showed that co-infusion of erlotinib/tariquidar may potentially allow for complete ABCB1/ABCG2 inhibition, while simultaneously achieving brain-targeted EGFR inhibition [134]. A [18F]-radiolabeled erlotinib also showed uptake in nHepG2, HCC827, NSCLC and A431 tumor xenografts (Table S1) [135,136,137].
Gefinitib (Iressa®, Astra Zeneca, Cambridge, UK) was radiolabeled with [11C] and [18F], but no increased uptake was seen after [18F]F-gefitinib injection into a GB animal model, although treatment with ABCB1/ABCG2 inhibitors led to enhanced brain penetration [136,138,139,140,141]. Other noteworthy groups of radiopharmaceuticals that derived from the 4-(anilino)quinazoline pharmacophore are [18F]F-ML01 [142], [11C]C-ML03 [143,144], [11C]C/[18F]F-ML04 [144,145] and [18F]F-PEG4-ML04 [146,147]. [18F]F-ML04 showed uptake in U87MG wild-type EGFR tumors which was at least in part, EGFR-associated. However, the distribution of the radiopharmaceutical was flow-limited, warranting possible modifications in chemical structure, as well as in the route of administration [145]. Pantaleo et al. failed to demonstrate the accumulation of different PEG-ylated anilinoquinazoline derivatives labeled with [124I], [18F] and [11C] in subcutaneous GB xenografts in mice [148]. [131I]IPQA, which binds specifically to activated EGFR kinase, showed rapid accumulation and progressive retention post washout in U87MG GB cells with a EGFRvIII mutant receptor [147]. IPQA was also radiolabeled with [124I] and [18F] with positive preclinical results by visualizing NSCLC and epidermoid carcinoma A431 in vivo [147,149,150].
Radiolabeled EGFR antibodies include mAb 425, nimotuzumab, mAb 806, cetuximab and mAb L8A4. Good results were obtained by applying [125I]iodo-mAb 425-RIT, either as monotherapy or in combination with TMZ, which was well-tolerated in patients and prolonged survival in a phase II clinical trial [55,129,151]. Single dose intracavitary [188Re]Re-nimotuzumab showed no improvement of median survival in a phase I clinical trial in 8 GB patients [54]. [64Cu]Cu-DOTA-cetuximab-PET and [111In]In-ABT-806- or [111In]In-cetuximab-SPECT showed uptake in intracranial GB models [152,153,154]. [89Zr]Zr-cetuximab reached the clinic (head and neck cancer and colorectal cancer) and cetuximab has also been labeled with [125I], [88Y] and [177Lu] to allow a theranostic approach; however, this was not applied for GB yet (Table S1) [155,156,157,158]. The radiopharmaceutical [64Cu]Cu-/[177Lu]Lu-cetuximab seemed especially useful as a diagnostic tool for patient selection and as a potent RIT agent in EGFR-positive esophageal squamous-cell carcinoma [158]. Interestingly, a cetuximab Fab has been explored to overcome the unfavorable PK of the full-length mAb and was labeled with [111In] and [64Cu], but is not yet studied in GB (Table S1) [159,160]. The EGFRIII mAb L8A4 was radiolabeled with [125I], [177Lu], [211At] and [131I], with possible therapeutic opportunities. Multiple preclinical studies in GB were performed [37,56,57,58,161,162,163]. Animals received [125I]iodo-BD-L8A4 by either convection enhanced delivery (CED) or direct intratumoral injection. Therapeutic efficacy was shown using either boronated mAb L8A4 alone or in combination with boronophenylalanine in the F98 GB model [163]. Different [177Lu]-labeled conjugates of L8A4 were compared to the characteristics of [125I]iodo-SGMIB-L8A4 in GB in vivo and in vitro [37,56,57].
Moreover, the single chain EGFR targeting antibody fragment [125I]iodo-SIPC-MR1(scFv) and radiolabeled affibodies ([89Zr]Zr-nimotuzumab, [18F]FBEM-Cys-ZEGFR:1907) showed tumor retention in GB in vivo [164,165]. [89Zr]Zr-panitumumab is a novel immuno-PET radiopharmaceutical (EGFR/HER1) and first clinical trials confirm that safety and dosimetry estimates were reasonable for clinical imaging but did not include GB patients [166,167,168,169,170,171].
Apart from EGFR mAbs, EGF-based ligand imaging probes are also designed. Some of these agents have been reviewed by Chen et al. [48]. EGF ligands were radiolabeled with [131I], [68Ga], [18F] and [111In], but data in GB are limited (Table S1) [166,172,173]. Only [111In]In-benzyl-DTPA-hEGF resulted in positive in vitro results for GB [174]. An EGFRvIII-targeting peptide, H-Phe-Ala-Leu-Gly-Glu-Ala-NH2 (FALGEA), was also studied preclinically in GB; [18F]FBA-FALGEA accumulated preferentially in human GB xenografts [175]. Finally, the [188Re]-labeled DNA aptamer U2, targeting U87MG-EGFRvIII, dramatically inhibited tumor volume in a mouse model bearing U87MG GB [176].
Other EGFR immuno-PET and TKI-PET applications that reached a clinical stage for non-GB tumors are listed in Table S1.

3.2. Vascular Endothelial Growth Factor Receptor (VEGFR)

3.2.1. Current Status of VEGFR Targeted Therapy in GB

In GB, angiogenesis is primarily mediated by VEGF and generates blood vessels with distinctive features. GB tissues have shown to have very high levels of VEGF expression, associated with an up-regulation of the VEGFR2 [1,61,177]. This has led to clinical trials with either anti-VEGF antibodies (e.g., bevacizumab), VEGF binding proteins (e.g., aflibercept) or VEGF RTKIs (e.g., cediranib (AZD2171), vandetanib, pazopanib, vatalanib, sorafenib and tivozanib). Therapeutic exploitation of the VEGF axis has achieved substantial clinical benefit across many cancer subtypes, but results in GB remain disappointing [178]. Bevacizumab was granted accelerated approval by the FDA in 2009 for the treatment of patients with progressive or recurrent GB and remains the most extensively characterized anti-angiogenic GB treatment. Despite its approval, bevacizumab and numerous drug combinations have shown mixed results (see Table 4) [179,180,181]. Lomustine plus bevacizumab for progressive GB did reach phase III (EORTC 26101), but did not confer a survival advantage over treatment with lomustine alone [182]. The recombinant fusion protein aflibercept and the pan-VEGFR inhibitor tivozanib also appeared to have little activity in recurrent GB [183,184,185]. Vatalanib had initial good phase I results in GB patients, but a planned randomized phase II trial was discontinued [186,187,188]. Cediranib, a VEGFR-2 TKI, induced structural and functional normalization of tumor vessels and improved tumor blood perfusion for 1 month, which was associated with longer survival in GB patients [189]. However, cediranib used as a monotherapy or in combination with lomustine for recurrent GB in a phase III trial failed to improve progression-free survival (PFS) [190]. Phase II trials with the SM axinitib showed a comparable survival to patients treated with bevacizumab and the addition of lomustine or PD-L1 blocking avelumab did not result in improvement, despite the antitumor effect that was previously reported for the monotherapy in recurrent GB [191,192,193]. The inhibition of the VEGF receptor-mediated PKC activation by enzastaurin failed in randomized phase III trials in recurrent GB [194]. Multi-kinase inhibitors that also inhibit VEGF are later considered in Section 4 of this review.
In general, there is a need for validated markers to select patients who will likely benefit from anti-VEGF therapy. For example, the study of de Groot et al. indicates that circulating myeloid cells, such as VEGFR1+ monocytes, and myeloid-related cytokines are potential biomarkers for response to aflibercept in GB patients [195]. In addition, which drug combinations are optimal to be combined with a drug with anti-angiogenesis activity is unknown, but the pivotal role of the vasculature and angiogenic factors in the immunosuppression of GB supports the use of anti-angiogenics in combination with immunotherapy [196]. Alternative strategies include anti-integrin based approaches (e.g., cilengitide) which exceeds the scope of this review but have been reviewed elsewhere [197].
Table 4. Clinical trials in GB targeting the vascular endothelial growth factor receptor.
Table 4. Clinical trials in GB targeting the vascular endothelial growth factor receptor.
CompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined or Compared Therapy)Reference
BevacizumabmAbII (+) (single/irinotecan)[198]
II (+) (single)[199]
II (+) (single)[200]
II (+) (TMZ)[201]
II (+) (TMZ)[202]
II (+) (TMZ)[203]
II (−) (TMZ)[204]
II (−) (RT/hypoRT)[205]
III (−) (RT/TMZ)[181]
III (−) (RT/TMZ)[180]
II (−) (RT/TMZ)[206]
II (+) (RT/TMZ)[207]
II (+) (RT/TMZ)[208]
II (−) (hypoRT/TMZ)[209]
II (−) (hypoRT/TMZ)[210]
II (+) (irinotecan)[211]
II (+) (irinotecan)[212]
II (−) (irinotecan/TMZ)[213]
II (+) (irinotecan/TMZ)[214]
II (−) (irinotecan)[215]
II (−) (irinotecan/TMZ)[216]
II (−) (irinotecan/TMZ)[217]
II (−) (cetuximab/irinotecan)[100]
II (−) (TMZ/lomustine)[218]
II (+) (lomustine)[219]
II (−) (lomustine)[220]
III (−) (lomustine)[182]
II (−) (carboplatin)[221]
II (−) (carboplatin/irinotecan)[222]
II (+) (rindopepimut)[116]
I/II (−) (BKM120)[223]
I/II (−) (dasatinib)[224]
II (+) (ERC1671 vaccine)[225]
II (−) (onartuzumab)[226]
II (−) (temsirolimus)[227]
II (−) (tandutinib)[228]
II (+) (fotemustine)[229]
II (−) (fotemustine)[230]
II (RT/TMZ/everolimus)[231]
II (−) (metronomic etoposide/TMZ)[232]
II (−) (panobinostat) [233]
I (+) (DEHSRT#)[234]
II (−) (sorafenib)[235]
II (−) (erlotinib/RT/TMZ)[96]
II (erlotinib)[236]
II (−) (vorinostat)[237]
I/II (−) (vorinostat/TMZ)[238]
II (−) (enzastaurin)[239]
Cediranib (AZD-2171)SMII (+) (single)[189]
III (−) (lomustine)[190]
II (+) (gefinitib)[90]
II (active, not recruiting) (olaparib)NCT02974621 [67]
AfliberceptFusion protein *II (−)[184]
I (+) (RT/TMZ)[185]
Vatalinib (PTK787/ZK222584)SMI (+) (imatinib/hydroxyurea)[188]
I (+) II (term) (RT/TMZ)[187]
I (+) (RT/TMZ/anti−epileptic drug)[186]
AxitinibSMII (+)[192]
II (+) (lomustine)[193]
II (−) (avelumab)[191]
TivozanibSMII (−)[183]
RamucirumabmAbII (completed, no results) (IMC−3G3)NCT00895180 [67]
SorafenibSM Pharmaceuticals 14 00626 i001See Table 9
SunitinibSM
Nintedanib (BIBF 1120)SM
Pazopanib (GW786034)SM
Vandetanib (Caprelsa, ZD6474)SM
Cabozantinib (XL-184)SM
Regorafenib (BAY73-4506)SM
Dovitinib (TKI258)SM
Ponatinib (AP24534)SM
Lenvatinib (E7080)SM
Everolimus (AEE788)SM
Anlotinib (AL3818)SM
(*) recombinant fusion protein consisting of the extracellular domains of VEGFR1 and VEGFR2 fused to an immunoglobulin Fc domain, (#) Dose escalation study of hypofractionated stereotactic radiation therapy.

3.2.2. VEGFR Radiopharmaceuticals

Molecular imaging could be a powerful tool for estimating the VEGF content within tumor tissues and select patients to benefit from VEGF targeted therapy. In addition, due to the issue of a ‘pseudo-response’ on contrast-enhanced magnetic resonance imaging (MRI) upon anti-angiogenic treatment of high-grade glioma, there is extensive interest in the development of PET and SPECT ligands that target specific aspects of the angiogenic process [240,241]. Clinically, [89Zr]Zr-bevacizumab has been used to visualize multiple malignancies, including breast cancer, renal tumor lesions and diffuse intrinsic pontine glioma [242,243,244]. The poor results of multiple clinical studies in GB patients with bevacizumab debate its rationale as a promising therapeutic radiopharmaceutical, but its role as an imaging biomarker is still underexplored. However, there was no significant uptake of [89Zr]Zr-bevacizumab in multiple intracranial tumor models, including a GB model [244].
In patients with histologically verified brain tumors, [123I]iodo-VEGF scintigraphy has shown to be promising for the visualization of tumor angiogenesis and may provide relevant prognostic information in patients with glioma [245]. Preclinically, [111In]In-/[125/131I]iodo-bevacizumab, [89Zr]Zr-ranibizumab and [64Cu]Cu-ramucirumab showed potential for different cancer types as listed in Table S1 [246,247,248,249,250]. However, due to the poor PK characteristics of mAbs, efforts have been put towards radiopharmaceuticals based on VEGF isoforms ([64Cu]Cu-VEGF(121/165)), linked to human transferrin ([111In]-hnTf-VEGF) or affibodies ([111In]-ZVEGFR2-Bp2), and peptide-based ([64Cu]Cu-VEGF(125/136) radiopharmaceuticals for imaging VEGFR expression in GB [251,252,253,254,255].

3.3. Mesenchymal-Epithelial Transition Factor (MET) Receptor

3.3.1. Current Status of MET Targeted Therapy in GB

The hepatocyte growth factor (HGF) is the only known ligand for the MET receptor, which plays a major role in the progression, therapeutic resistance and recurrence of GB. It is commonly expressed in GB and strong MET expression was found in tumor cells, blood vessels and peri-necrotic areas of glioma samples [74,124,256]. High MET intensity correlates with high WHO grade and shorter PFS and OS [256,257]. Other reviews have provided comprehensive information on HGF/MET functions and modes of action in GB [256,258,259,260]. An overview of clinical trials in GB patients targeting MET is given in Table 5.
In recurrent GB, outcome to therapy with the monovalent MET inhibitor onartuzumab or the antibody against HGF rilotumumab (AMG102) combined with bevacizumab were discouraging [226,261,262]. Amgen also halted all clinical trials of rilotumumab after alarming effects occurred during the treatment of advanced gastric cancer [263]. The selective MET inhibitor capmatinib (INC280, Tabrecta™) has recently received approval by the FDA for treatment of metastatic MET-mutated NSCLC [264]. However, no clear clinical activity of capmatinib plus buparlisib was observed in adults with MET-amplified recurrent GB [265]. In particular, PLB-1001 raised expectation for success (following a positive phase I study), achieving responses in MET-altered glioma patients and supporting its further clinical investigation. PLB-1001, also called bozitinib, is an orally bioavailable ATP-competitive inhibitor of the proto-oncogene c-met and has shown to be highly selective and BBB-permeable [266]. Other ongoing clinical trials with MET inhibitors include a phase I trial on volitinib for recurrent or non-responding primary CNS tumors (NCT03598244) and a phase Ib trial on crizotinib in addition to the standard treatment for newly diagnosed GB (NCT02270034) [67]. However, crizotinib treatment in combination with dasatinib in children with high-grade glioma was poorly tolerated and its activity was minimal [267]. Potent c-MET kinase inhibitor SGX-523 and mAb against HGF, YYB-101, inhibited GB cell growth in vitro and in vivo. However, clinical trials registered for these agents to treat solid tumors have been terminated or no results could be found (NCT00606879, NCT00607399, NCT02499224) [67,256,268,269,270]. Finally, tivantinib, CM-118, INCB28060, altiratinib and foretinib were found effective against GB in vivo but clinical trials have not been initiated yet [256,268,271,272,273,274,275,276]. Multi-kinase inhibitors that also inhibit MET are covered in Section 4 of this review.
Based on these dissatisfying results, resistance of GB to single modality anti-MET drugs has been investigated and critical proteins that were altered in MET inhibitor-resistant GB include mTOR, FGFR1, EGFR, STAT3 and COX-2. In addition, targeted therapies against EGFR and VEGF in GB (including bevacizumab) often result in resistance due to activation of the MET signaling pathway. Simultaneous inhibition of MET and one of these upregulated proteins led to increased anti-GB effects both in vitro and in vivo [259,277,278,279,280].
Table 5. Clinical trials in GB targeting MET (hepatocyte growth factor receptor).
Table 5. Clinical trials in GB targeting MET (hepatocyte growth factor receptor).
CompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined Therapy)Reference
OnartuzumabmAbII (-) (bevacizumab)[226]
Rilotumumab (AMG102)mAbII (−)[261]
II (−) (bevacizumab)[262]
Capmatinib (INC280)SMIb/II (−) (buparlisib)[265]
I (active, not recruiting) (bevacizumab)NCT02386826 [67]
PLB-1001 (bozitinib)SMI (+)[266]
Volitinib (savolitinib)SMI (recruiting) NCT03598244 [67]
Crizotinib (PF-02341066)SMI (active, not recruiting) (RT/TMZ)NCT02270034 [67]
Cabozantinib * (XL184)SM See Table 9
(*) also targets VEGFR2 + AXL.

3.3.2. MET Radiopharmaceuticals

In recent years, many studies have shown that the expression level and activation status of MET are closely correlated to MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the MET status during and prior to targeted therapy [27,281]. Due to a limited number of validated MET mAbs that work in formalin-fixed and paraffin embedded biopsy samples, immunohistochemical evaluation of MET expression is a challenge [282]. Since HGF has been recognized to have a high binding affinity and specificity to MET, initial studies on targeted molecular imaging of MET were therefore mainly based on HGF ligands [283]. The recombinant human HGF was [64Cu]-labeled ([64Cu]Cu-rh-HGF) and PET imaging revealed specific and prominent uptake of the radiopharmaceutical in MET positive U87MG GB tumors [284]. One concern for these radiopharmaceuticals based on the HGF ligand is their potential to stimulate tumor growth by activating c-met and competition with the endogenous ligand, hindering clinical translation [27,283,284]. Hence, the mAb-based PET radiopharmaceuticals [89Zr]Zr-onartuzumab and [76Br]Br-onartuzumab were developed that specifically target MET in vitro and in vivo. Using the U87MG GB model, [89Zr]Zr-onartuzumab achieved higher tumor accumulation (i.e., tumor/muscle ratios) and effectively visualized changes in MET expression [285,286]. Rilotumumab (AMG102) is an HGF-binding antibody that prevents its binding to MET and [89Zr]Zr-AMG102 was developed by Price and colleagues. The authors reported that this radiopharmaceutical selectively accumulated in tumors with high levels of HGF protein, including the U87MG GB tumor model in vivo [287]. Kim et al. introduced tumor imaging using a radiolabeled c-met-binding peptide ([125I]iodo-cMBP-GGG) in a glioma xenograft model—tumors were successfully visualized on SPECT also supported by using an amino acid linker that reduces hydrophilicity [288]. However, relatively unfavorable in vivo kinetics led to a subsequent design by the same group proposing a radiolabeled dual peptide ligand that would recognize both c-met receptor and the α(v)β(3)integrin; [125I]iodo-c(MBP)-c(RGDyK). Although image contrast and overall quality were improved in U87MG tumor xenografts compared to [125I]I-cMBP-GGG, further optimizations are needed [289].
Other MET specific compounds were radiolabeled and tested preclinically—so far only in other cancer types, listed in Table S1. [125I]iodo-MET4 might be interesting to study for glioma since in a cohort of gliomas, MET4 reacted with 63% [282]. To our best knowledge, [18F]F-AH113804, a peptide-based c-met specific PET imaging agent, is the only radiopharmaceutical translated into humans for detection of locoregional recurrence of breast cancer [290].

3.4. Platelet-Derived Growth Factor Receptor (PDGFR)

3.4.1. Current Status of PDGFR Targeted Therapy in GB

PDGF is a growth factor family of ligands and receptors known to activate PI3K, mitogen-activated protein kinase, Jak family kinase, Src family kinase and phospholipase C gamma signal transduction pathways. Several of these pathways have been causally linked to glioma formation. Human gliomas, especially GB, express all PDGF ligands and both the two cell surface receptors, PDGFR-α and -β, correlated with bad prognosis [291,292,293]. PDGFR-α amplification is found in nearly 15% of GBs and nearly half of these tumors also contain amplifications and/or mutations in EGFR or the MET gene [69,294]. Proneural GBs have shown to be enriched for activating mutations in the PDGFR-α gene and also comprise IDH mutated gliomas, whereas classical GB is enriched for EGFR amplification [65]. PDGFR-β has also been described to be the preferentially expressed type of PDGFR in glioma stem-cells (GSCs) [295].
Table 6 gives an overview of clinical trials in GB targeting PDGFR. Phase II trials on anti-PDGFR-α mAb olaratumab (IMC-3G3) in treating patients with recurrent GB were completed but no results were published (NCT00895180) [67]. A phase II study of tandutinib (MLN518), an inhibitor of PDGFR-β, was closed at interim analysis due to lack of efficacy in patients with recurrent GB. Combined with bevacizumab, therapy was as effective but more toxic than bevacizumab monotherapy [228,296]. Another PDGFR inhibitor, nilotinib (AMN107), was studied in a phase II study in PDGFR amplified malignant glioma, but preliminary results were discouraging [67,297]. Numerous multi-kinase inhibitors that include PDGFR as a target have been studied in GB, such as imatinib, dasatinib, regorafenib, sorafenib, sunitinib, ponatinib, nintedanib and lenvatinib. Unfortunately, only a few had beneficial activity for GB patients; more details are provided in Section 4 and Table 9. PDGFR inhibitors in a preclinical stage for GB include AG1433/AG1296 (tyrphostins), CP-673451 and CT52923, of which some have shown to retard cell growth and radiosensitize GB [298,299,300,301,302].

3.4.2. PDGFR Radiopharmaceuticals

The in vivo visualization of PDGFRβ expression might help to select PDGFRβ targeting treatment and radiolabeled PDGFR TKIs could be used to assess their regional distribution and kinetics. As an example, [11C]C-Imatinib has shown potential to assess the distribution of imatinib in a study on baboons [303]. A PDGFRβ-binding affibody ([111In- or 68Ga]-radiolabeled Z09591) clearly visualized U87MG xenografts by way of PET-/ SPECT-imaging [304,305]. For other preclinical studies with PDGFR imaging agents for non-GB tumors, see Table S1. These include the mAb [64Cu]Cu-D13C6, the affibody conjugate [89Zr]Zr-ZPDGFRβ, the radioiodinated 1-[303]piperidin-4-amine (IQP) and radiobrominated PDGFRβ ligands [306,307,308]. Recently, radiogallium-labeled peptides for PDGFRβ were developed and the effects of several linkers were studied, concluding that further probe modification is required [309]. Current radiolabeled multi-kinase inhibitors, targeting PDGFR amongst others, include [99mTc-/18F-/124I]-labeled imatinib derivatives, imatinib mesylate ([18F]F-STI-571) and dasatinib derivatives ([18F]F-SKI249380, [18F]F-SU11248, [11C]C-sorafenib, [18F]F-sunitinib and [11C]C-nintedanib) [310,311,312,313,314,315]. The concept of [18F]F-STI-571 and [18F]F-SKI249380 containing micelles showed promising results in glioma-bearing animal models (see Section 4.3) [311,312].

3.5. Fibroblast Growth Factor Receptor (FGFR)

3.5.1. Current Status of FGFR Targeted Therapy in GB

The evidence for the biological functions of fibroblast growth factor receptors (FGFR) in GB, as well as pharmacological approaches to target these receptors, have been recently reviewed [316]. A profound heterogeneity of FGFR1–4 expression across GB patients has been revealed by gene expression analysis. The strongest evidence by far indicates that FGFR1 has malignancy-promoting effects and FGFR1 signaling is linked to cancer stemness, invasion and radioresistance in GB [317,318,319]. Based on the evidence that FGFR1 is a GSC regulator, one can speculate if the inhibition of FGFR1 in combination with conventional therapy could prevent or delay GB recurrence [316]. However, the exact role of FGFR inhibitors in treatment of brain tumors remains elusive and the relevance of FGFR as a potential target is probably limited to 3% of GBs exhibiting fusions between FGFR and TACC (transforming acidic coiled-coil containing proteins) genes [316,320].
SMIs, such as lenvatinib, ponatinib, dovitinib, regorafinib, anlotinib and nintedanib, target multiple RTKs including FGFR (see Section 4 and Table 9). More selective FGFR inhibitors include erdafinitb (JNJ-42756493), AZ4547, PD173074, infigratinib (BGJ398) and futibatinib (TAS-120) (Table 7). Recent phase I trials evaluating erdafitinib, a highly selective pan-FGFR TKI, in advanced or refractory solid tumors showed tolerability and preliminary clinical activity, including in GB patients [321,322,323]. Multiple phase I/II/III trials on the FGFR1-4 irreversible inhibitor futibatinib are running in patients with advanced cancers harboring FGFR aberrations, with encouraging preliminary results in FGFR-1 mutant primary brain tumors [67,323]. BGJ398, a FGFR1-3 kinase inhibitor has been evaluated in a phase I trial in patients with advanced solid tumors harboring genetic alterations in FGFR [324]. In malignant glioma patients with FGFR–TACC fusion and/or activating mutation in FGFR1/2/3, two phase I/II trials with BGJ398 or AZD4547 were completed, but no results have been published [67]. Given the possibility that FGFR1-4 may have divergent functions in GB and considering the prevalent expression of these receptors on other cell types in the brain, the development of inhibitors with selectivity for individual FGFRs could be desirable. However, this is a challenge due to the high degree of homology of the kinase domains of FGFR1-4 [317].

3.5.2. FGFR Radiopharmaceuticals

There is growing evidence that only a small fraction of cancer types may respond to FGFR inhibitors, emphasizing the need for non-invasive determination of the FGFR tumor status [326]. To the best of our knowledge, no FGFR-targeting radiopharmaceuticals have been studied for GB. A preclinical study should be noted using a [125I]I-bFGF mAb, which was capable of inhibiting the growth of hepatocellular carcinoma xenografts [327]. Interestingly, FGFR has shown to induce a radiosensitizing effect, a beneficial characteristic for EBRT and TRT [328].

3.6. Ehrin Receptors

3.6.1. Current Status of Eph Receptor Targeted Therapy in GB

The Eph receptors are the largest family of RTKs, with 14 receptors divided into EphA and EphB subcategories, which bind to different types of ephrin ligands [329]. Eph/ephrin expression, clinical outcome and function in GB has been reviewed, including the use of Eph receptors as therapeutic targets [62,330,331]. A gradient of EphA receptor expression was observed in GB on the more de-differentiated stem-like cells and was absent on the less-aggressive differentiated tumor tissue [62]. The EphA2 and EphA3 receptors are highly expressed in GB cells and were found to promote the self-renewal infiltrative invasion of GSCs [330,332,333,334,335]. More recently, EphA3 was shown to be significantly elevated in recurrent versus primary GB [336]. The EphA4 and EphA7 receptors promote GB cell proliferation and migration by potentiating FGF receptor oncogenic signaling or promoting GSCs, respectively [62,330]. Contrarily, the function of EphB receptors is less well-characterized in GB but they clearly have functional roles in cell migration, invasion and tumor angiogenesis. EphB2 has emerged as a candidate for therapeutic strategies to prevent GB tumor invasion. However, inhibition of EphB2 signaling may also increase GB cell proliferation, as shown in preclinical studies [337,338].
Clinical trials in GB patients targeting Eph receptors are listed in Table 8. The anti-EphA3 mAB ifabotuzumab (KB004) was well tolerated and clinically active in a phase I study treating hematological malignancies and is currently being studied in a phase I trial in recurrent GB patients (NCT03374943) [67,339]. Preliminary findings reported a stable disease for 23 weeks in one of the cohorts [340]. A phase I/II trial evaluating a dendritic cell vaccine that includes an EphA2-binding peptide demonstrated measurable CD8+ T cell and clinical responses in 58% of recurrent glioma patients [341]. A phase I study on DS-8895a, an anti-EphA2 IgG1 mAb, was successfully completed in patients with advanced solid tumors but was not studied in GB yet (NCT02004717) [67,342]. Clinical results of multi-targeted TKIs that also inhibit EphA2 (dasatinib) or EphB4 (tesevatinib) are covered in Section 4 and Table 9.
Quite a few proven preclinical successes of Eph inhibition in GB are published [334,335,337,343,344,345]. Importantly, co-targeting multiple Eph receptors might be necessary to achieve a therapeutic response [62,330,346,347].
Table 8. Clinical trials in GB targeting the Ephrin receptors and the insulin-like growth factor 1 receptor.
Table 8. Clinical trials in GB targeting the Ephrin receptors and the insulin-like growth factor 1 receptor.
TargetCompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined Therapy)Reference
Ephrin receptorsTesevatinib (KD019/ XL647)SMSee Table 9
Ifabotuzumab (KB004)mAbI (recruiting) (prelim)[340]
NCT0337494 [67]
Dasatinib (BMS-354825)SMSee Table 9
IGF1RCixutumumab (IMC-A12)mAbI (withdrawn) (temsirolimus)NCT01182883 [67]
IGF-1R/AS ODN *as-odn0/I (+)[348]
0/I (+)[349]
PPP/AXL1717SMI (+)[350]
I/II (unknown recruitment status)NCT01721577 [67]
* antisense oligodeoxynucleotide.

3.6.2. Ehrin Receptor Radiopharmaceuticals

Different approaches towards Eph-targeting radiopharmaceuticals were recently reviewed [351]. Eph receptors are often expressed on migrating tumor cells, especially at the edge where GB cells are actively invading into the brain parenchyma. This observation has led to the investigation of Eph mAbs as potential imaging agents, which might accurately delineate tumor borders and better define areas of active invasion, allowing more complete resection and better patient outcomes [352]. Next to mAbs, high affinity SM TKIs that bind to the intracellular ATP-binding pocket within the kinase domain of Eph receptors are the ideal basis for the development of [11C]- or [18F]-containing radiopharmaceuticals. The main challenge remains the high conservation of the ATP-binding pocket, resulting in a usually low selectivity of such compounds. However, this could be advantageous in case of TRT to target multiple pathways concomitantly [351].
EphA3 targeted [64Cu]Cu-IIIA4 PET/CT imaging revealed specific tumor uptake in an orthotopic GB model and IIIA4 conjugated to maytansine induced a potent GB anti-tumor response [336]. IIIA4-DOTA was also radiolabeled with lutetium-177 ([177Lu]Lu-IIIA4) and this RIT strategy was effective to target both subcutaneous and orthotopic GB tumor bearing animals with minimal toxicity [336,353]. Adding an α-particle-emitting bismuth-213 to IIIA4 enhanced the therapeutic effect in leukemic models but was not studied in GB yet [354]. In the above-mentioned phase I trial of the anti-EphA3 mAb ifabotuzumab (formerly known as KB004 and a humanized version of IIIA4) in recurrent GB patients, therapy and follow-up is guided using [89Zr]Zr-KB004 ([89Zr]Zr-ifabotuzumab) PET (NCT03374943) [67,339].
The EphA2 RTK is overexpressed in GB while it is expressed at low levels in normal neural tissues, representing an attractive imaging target for delineation of tumor infiltration. EphA2-4B3, a mAb specific to human EphA2, was [64Cu]-labeled through conjugation to the chelator NOTA and effectively delineated tumor boundaries in three different GB mouse models [355]. [64Cu]Cu-DOTA-1C1, another radiolabeled EphA2 mAb, showed specific uptake in the U87MG GB in vivo model [352]. The humanized anti-EphA2 antibody DS-8895a was radiolabeled with [111In], [125I] and [89Zr], but because of its superior imaging and tumor uptake characteristics in breast cancer xenografts, [89Zr]Zr-DS-8895 was chosen as a lead compound. The results were superior to those of [64Cu]Cu-DOTA-1C1, particularly at later time points, when maximal uptake in human tumors is anticipated and when [89Zr] half-life is better suited for human trials [356]. A safety and bioimaging trial of [89Zr]Zr-DS-8895a in patients with advanced EphA2-positive cancers was completed, but no results have been published or shared to date (NCT02252211) [67].
Imaging biomarkers for EphB4 were developed due to their overexpression in both tumor cells and angiogenic blood vessels in GB [357]. Benzodioxolyl-pyrimidine-based radiopharmaceuticals targeting EphB4 and indazolylpyrimidinyl derivatives as high-affinity EphB4 receptor ligands were developed, but with discouraging results [358,359]. In contrast, a peptide-based radiopharmaceutical [64Cu]Cu-TNYL-RAW, was useful for PET/CT imaging of EphB4 receptor expression, with specific uptake in both U251 and U87MG GB tumor bearing mice [357,360]. Other EphR targeting peptides, including SWL and SNEW, have been radiolabeled (Table S1) [351,361]. Finally, the recently developed [18F]-labeled xanthine derivatives have potential for PET imaging of Eph receptors but lack studies in GB to date [362].

3.7. Insulin-Like Growth Factor 1 Receptor (IGF1R)

3.7.1. Current Status of IGF1R Targeted Therapy in GB

Insulin-like growth factors (IGFs) promote tumorigenesis and treatment resistance [363,364]. It was confirmed that IGF1 and its receptor (IGF1R) are overexpressed in GBs and could be used as a prognostic factor to identify shorter survival and less favorable response to TMZ [64,365,366,367]. IGF1R signaling has also been found to correlate with resistance to therapies that target other kinases including the EGFR, HER2 and mTOR. In GB patients, resistance to anti-EGFR therapies has been linked to IGFR [368,369]. A number of different strategies were developed: anti-IGF1R antibodies, IGF1/2 neutralizing antibodies, SMIs and IGF ligand TRAPs [363,364,370]. For an overview of IGF as a target for malignant glioma, see Trojan J et al. [371].
Good preclinical results for GB therapy were found for the following IGF1R inhibitors: PQ401, GSK1838705A, picropodophyllin/AXL1717, BMS-536924, BMS-754807, NVP-AEW541 and mAb IMC-A12 (cixutumumab) [1,367,372,373,374,375]. BMS-754807 exhibited potent antiproliferative effects on GB cell lines and was more effective than OSI-906 (linsitinib), which could be explained by off-target effects exerted on other protein kinases independently of IGF-1R inhibition [376].
However, despite preclinical efficacy of experimental IGF1R TKIs, most clinical trials reported an insignificant cancer curative value (e.g., dalotuzumab, robatumumab, R1507, figitumumab) [363,377,378,379,380,381]. In a pilot study in malignant glioma, a vaccine consisting of tumor cells pre-treated with an IGFR1 antisense oligodeoxynucleotide was found to elicit positive clinical responses in 8/12 patients [348]. A subsequent pilot vaccine trial confirmed its potential [349]. The mAb cixutumumab (IMC-A12) demonstrated (single-agent) activity in GB models and a favorable safety and PK profile in patients with advanced, resistant, solid tumors [367,382,383]. A phase I trial of cixutumumab in combination with temsirolimus in pediatric patients with recurrent or refractory solid tumors, including glioma, was withdrawn (NCT01182883) [67]. The best results are obtained with the semisynthetic cyclolignan picropodophyllin (PPP), the active agent in AXL1717, which interferes with the auto-phosphorylation of IGF1R. This drug increases the radiosensitivity of glioma GSCs and causes dramatic tumor regression in intracerebral xenografts, indicating passage of PPP across the BBB [375,384]. Clinically, AXL1717 induced responses in 4/9 (44%) of patients with relapsed malignant astrocytomas. A new formulation of the drug will be used in further investigations in order to better define the optimal dose [350,364].

3.7.2. IGF1R Radiopharmaceuticals

The current status of IGF-1R molecular imaging in cancer was previously reviewed [385]. Multiple SMs (including IGF-1) and mAbs have been radiolabeled with Indium-111 for SPECT imaging of IGF1R, see Table S1 [386,387,388]. Prabhakaran et al. screened many TKIs and selected BMS-754807, a SM dual inhibitor of IGF1R/IR in phase III clinical trials for a variety of human cancers, as one of the candidate ligands for PET imaging. In healthy rodents, the radioligand [18F]F-BMS-754807 exhibited negligible brain uptake [389]. Autoradiography showed 5.25-fold higher binding of [18F]F-BMS-754807 in surgically removed GB tissues in comparison to control brain tissues [390]. In addition, the radiopharmaceutical [11C]C-GSK1838705A did penetrate the BBB and showed retention in the brain in vivo. The radioligand exhibited high uptake in U87MG cells with >70% specific binding to IGF1R [391].
Preclinical studies on cixutumumab (IMC-A12) radiolabeled with [111In] and [225Ac] have shown theranostic potential in breast cancer [392,393]. Several affibody-based radiopharmaceuticals for IGF1R PET imaging were able to discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy (Table S1) [394,395,396,397]. In a preclinical study in GB, the [64Cu]-labeled NOTA-conjugated affibody ZIGF-1R:4:40 specifically targeted IGF-1R in vitro and in vivo [397].

4. Multi-Kinase Inhibition for GB Therapy

GBs are known to have a high level of heterogeneity and often contain a mixture of cells with an amplification and activation of different RTKs. Single RTK inhibition often leads to transient responses and further disease progression due to compensation mechanisms of other pathways. For example, PDGF/PDGFR and FGF/FGFR pathways provide potential escape mechanisms from anti-VEGF/VEGFR therapy [178]. GB resistance to EGFR and MET inhibition could be overcome via blockade of FGFR-SPRY2 bypass signaling [398]. In addition, activation of RTKs not only drives PI3K/Akt signaling activation, but also stimulates other signaling pathways including MAPK, NF-κB and STAT3 [399]. It is noteworthy that PIK3CA and EGFRvIII mutations often lead to PI3K activation independent of RTKs, such as EGFR, HER2, PDGFR, VEGFR and c-met, suggesting that inhibition of RTKs alone is not sufficient to obstruct PI3K/Akt signaling [400]. Therefore, simultaneous targeting of multiple RTKs might be more effective to treat GB, but one of the main challenges for its implementation in clinical practice remains toxicity.

4.1. Current Status of Single Agent Multi-Kinase Inhibitors for GB Therapy

Different multi-kinase inhibitors have been studied in GB without convincing results, including vandetanib, cabozantinib (XL-184) and dasatinib—Table 9 gives an overview, including the relevant targets [224,401,402,403,404,405]. A phase II trial provided evidence of clinical activity of cabozantinib in patients with recurrent GB naive to antiangiogenic therapy, although the results did not meet the predefined statistical target for success [403]. Dasatinib was ineffective in phase I/II trials in recurrent GB, even in combination with bevacizumab or lomustine, which could be due to a proposed active efflux mechanism [224,402,404,406]; however, efficacy of dasatinib treatment of PDGFRα-driven high grade gliomas could be enhanced with everolimus [407].
Regorafenib (BAY 73–4506) treatment showed positive results preclinically and an encouraging overall survival benefit in a phase II trial for recurrent GB (REGOMA trial) and warrants further phase III studies [408,409,410]. Regorafenib was also evaluated in a phase I trial in combination with cetuximab in patients with advanced cancer, including one GB patient, with evidence of clinical benefit [411]. Little beneficial activity was seen with imatinib (Gleevec) for GB patients despite clear efficacy in preclinical studies [412,413,414]. A phase II study of imatinib in combination with hydroxyurea generated promising results in GB and grade III malignant gliomas, but the positive treatment outcome could not be attributed solely to imatinib [415,416]. Tyrphostin (AG-1296) has similar targets but is still at a preclinical stage [417]. In a phase I/II trial, lapatinib did not show significant activity in recurrent GB patients and combination with the standard treatment for newly-diagnosed GB (tolerable and safe), but further investigations are required to evaluate its efficacy [418,419,420]. The anti-tumor activity of the phase II trial using lapatinib in combination with pazopanib was insufficient [421]. Neratinib is in phase III development for metastatic breast cancer and in phase I/II development for advanced breast cancer and other solid tumors, including GB [422]. Neratinib is also included in the recruiting INdividualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT) trial [423]. Sorafenib was approved by the FDA for the treatment of advanced renal cell carcinoma and has an adequate BBB penetration, but was not effective in GB patients, even not in combined treatment with TMZ, RT and others [235,424,425,426,427,428,429]. The nonspecific RTKI sunitinib did not offer significant improvement in the outcome of several GB clinical trials [430,431,432,433,434]. Furthermore, clinical phase II trials of the multi-kinase inhibitors ponatinib, lenvatinib (E7080) and nintedanib in patients with bevacizumab-refractory GB were associated with minimal activity [435,436,437,438]. Moreover, in a dose-escalation phase I study in patients with recurrent GB, everolimus (AEE788) administration was associated with unacceptable toxicity and minimal activity [87]. The combination with RAD001 resulted in clinically significant thrombocytopenia in GB patients [85].
Anlotinib is a more novel multitarget RTKI that was positively evaluated in multiple cancer types. Two case reports were published in GB patients, with a suggestion that FGFR3-TACC3 fusion could be a novel indication for treatment with anlotinib [439,440]. Multiple clinical trials in recurrent or newly diagnosed GB patients are recruiting to test anlotinib as a monotherapy or in combination with TMZ or the standard Stupp regimen (NCT04004975, NCT04547855, NCT04157478, NCT04119674) [67]. In phase I studies in patients with advanced solid malignancies, tesevatinib (KD019/XL647) was well tolerated up to the maximum tolerated dose [441]. A phase II study of tesevatinib monotherapy in patients with recurrent GB was completed—results are awaited to emerge (NCT02844439); however, the efficacy of tesevatinib monotherapy was relatively modest in the intracranial GBM12 model, despite excellent brain penetration [67,442].
SMIs that act on multiple RTKs and are in a preclinical stage for GB include amuvatinib (MP470) (c-KIT and PDGFRα) [443], PD173074 (FGFR/VEGFR) [444] and CUDC-101 (HER2 and EGFR) [445,446]. Finally, GB treatment with multivalent ligand-based vector proteins, also called QUAD, warrant further (pre)clinical development. As an example, Sharma et al. [447] developed a QUAD that targets four GB-associated receptors at the same time (IL-13RA2, EphA2, EphA3, EphB2), which was evaluated in both in vitro and in vivo experiments.
Table 9. Clinical trials on single agent multi-kinase inhibitors for GB therapy.
Table 9. Clinical trials on single agent multi-kinase inhibitors for GB therapy.
TargetCompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined Therapy)Reference
EGFR + HER2Lapatinib (Tykerb, GW572016)SMII (−)[418]
I (+)[420]
Pilot II (+) (RT/TMZ)[419]
I/II (−) (pazopanib)[421]
II (ongoing) (RT/TMZ)NCT01591577 [67]
I (ongoing) (pre-surgeryNCT02101905 [67]
VEGFR-2 + EGFR + RETVandetanib (Caprelsa, ZD6474)SMI (+) (RT/TMZ)[448]
I/II (−)[405]
I (+) (Sirolimus)[449]
II (−) (RT/TMZ)[450]
Pilot (ongoing) (sunitinib, erlotinib)NCT02239952 [67]
EGFR + HER1, HER2 and HER4Neratinib (Nerlynx™)SMII (TMZ) (recruiting)[423]
c-MET, VEGFR-2, RET, KIT, FLT3, AXL and TEKCabozantinib (XL-184)SMI (+) (RT/TMZ)[451]
II (modest) (received prior antiangiogenic therapy)[401]
II (+/−) (naive to antiangiogenic therapy)[403]
II (recruiting)NCT02885324 [67]
VEGFR1–3 + TIE2 + KIT/RET/ RAF1/BRAF genes + PDGFR + FGFR + colony stimulating factor 1 receptorRegorafenib (BAY73-4506)SMII (+) (vs. lomustine)[408]
II (active, not recruiting)NCT02926222 [67]
SRC + KIT + PDGFR + EPHA2 + BCR-ABL fusionDasatinib (BMS-354825)SMI/II (−) (CCNU)[404]
II (−)[402]
I (−) (bevacizumab)[224]
I (+) (erlotinib)[406]
PDGFRα/β + Bcr-Abl + c-FMS + c-KitImatinib (Gleevec)SMII (+/−) (hydroxyurea)[415]
I (+) (vatalinib/hydroxyurea)[188]
I/II (−) (single)[414]
II (−)[412]
II (−) (RT/CCNU)[413]
II (−)[452]
VEGFR2/3 + Raf + PDGFR + c-KIT + Flt-3SorafenibSMII (−) (RT/TMZ)[428]
II (−) (TMZ)[426]
II (+) (TMZ)[453]
II (−) (erlotinib−EGFR)[425]
II (−) (bevacizumab)[235]
I (+) (RT/TMZ)[454]
I/II (−) (temsirolimus)[424]
I (−) (tipifarnib)[429]
I (−) (RT/TMZ)[427]
I/II (active NR) (everolimus)NCT01434602 [67]
VEGFR1-2 + PDGFRβ + FGFR1-2-3Dovitinib (TKI258) SMI (+)[455]
II (−) (no/prior bevacizumab)[456]
PDGFR + VEGFR + FLT3 + RETSunitinibSMI (−) (irinotecan)[432]
II (−)[433]
II (−) (prior bevacizumab)[430]
II (−) (RT)[431]
II (−)[434]
VEGFR1/2/3 + PDGFRα/β + c-KitPazopanib (GW786034)SMI/II (−) (lapatinib)[421]
II (−) (single)[457]
PDGFR + VEGFR + Src + FGFRPonatinib (AP24534)SMII (−) (prior bevacizumab)[438]
PDGFR α/β + FGFR 1-3 + VEGFR 1-3Nintedanib (BIBF 1120) SMII (−) (single)[435]
II (−) (prior bevacizumab)[436]
FGFR1-4, PDGFRβ, VEGFR1-3, RET, and KITLenvatinib (E7080)SMII (modest) (prior bevacizumab)[437]
EGFR + VEGFEverolimus (AEE788)SMIB/II (−) (RAD001)[85]
I (−)[87]
VEGFR1/2/3 + FGFR1/2/3 + c-Kit + RetAnlotinib (AL3818)SMCase report (+)[440]
Case report (+)[439]
I/II (recruiting)NCT04004975 [67]
II (recruiting) (TMZ)NCT04547855 [67]
I/II (recruiting) (RT/TMZ)NCT04157478 [67]
EGFR + VEGFR + EphB4Tesevatinib (KD019/XL647) SMII (completed, no results)NCT02844439 [67]

4.2. Current Status of Combined RTKI Therapy for GB

Combined treatment with different RTKIs is being explored in GB, but with unsatisfying results so far (see Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9). In addition, RTKIs with or without radiation and chemotherapy have been tested in GB patients, including erlotinib/bevacizumab, cediranib/gefitinib, cetuximab/bevacizumab and lapatinib/pazopanib [90,96,100,421]. Multi-targeted approaches for the RTK family also include co-inhibition of anaplastic lymphoma kinase (ALK) and MET in MGMT-unmethylated GB patients, as well as targeting the immunoglobulin-like domains gene family in addition to PDGFRβ and EGFR [458,459]. It must be recognized that in the majority of solid tumors, the deregulation of the TK axis is in itself not the driver, but it occurs secondary to another molecular event that influences the expression of the ligands and/or receptors [363]. Hence, it may be necessary to prescribe an RTKI treatment in combination with drugs that target upstream pathways of RTKs and/or components within the downstream intracellular signaling cascades. The combination of TKIs targeting RTK and mTOR has been tested in GB patients with vandetanib/sirolimus and erlotinib/gefitinib/sirolimus [77,449,460]. Although the phase II trial of erlotinib plus sirolimus was well tolerated, negligible efficacy was noted among unselected recurrent GB patients [77]. Importantly, the class of dual mTOR agents are more likely to be effective in combined treatment strategies [461,462].
Several reviews have addressed the limited clinical efficacy of IGF1R inhibitors, the need for predictive biomarkers and selection of targets for co-inhibition [463,464]. Data suggest that inhibition of IGF1R potentiates the anticancer activity of pharmacological interference with the RAS/RAF/MEK/ERK pathway and PI3K/Akt/mTOR pathway signaling [364]. An example of a promising approach is the co-inhibition of EGFR and IGF1R, which improves the effect of CD95-ligand-induced apoptosis in GB cell lines [465]. Effectively inhibiting multiple pathways that are directly or indirectly involved in tumor angiogenesis could also increase effectiveness compared to single VEGFR inhibition. Hence, RTKI should be combined with inhibitors of the MAPK, JAK-STAT and PI3K/Akt/mTOR pathway [1,399,466,467]. A phase I clinical trial to test the combined treatment of cixutumumab (IGFR1) and selumetinib (MEK 1/2 inhibitor) was well-tolerated with preliminary evidence of clinical benefit but did not include GB patients [468]. Preclinical results treating GB with BKM120 (PI3K), sapanisertib (mTORC1/2) or NVP-BEZ235 (PI3K/mTOR) combined with MEK inhibitors were promising and may also be more potent in NF1-deficient GB [469,470,471]. Moreover, the combination of the mTORC1/2 inhibitor RES529 in combination with anti-angiogenic drugs, such as bevacizumab or sunitinib, provided encouraging results in GB preclinical/murine models [472]. However, the phase Ib/II study of BKM120, given in addition to the MET inhibitor INC280 in patients with recurrent GB bearing PTEN loss or MET alterations, was terminated (NCT01870726) [67]. Finally, a combined expression of EphA2, EphA3, EphB2 and IL-13RA2 is observed in almost every GB patient, presenting in tumor-infiltrating cells, tumor-initiating cells or GSCs and neovasculature. Therefore, a cytotoxic agent that simultaneously targets these four receptors could be powerful in destroying the tumor ‘ecosystem’ of GB [473]. A CED-administered cocktail of ephrin-A1 and IL-13-based cytotoxins has been extended to phase I trials for glioma therapy in dogs and is currently achieving encouraging clinical effects [474].
To conclude, the optimal combination of TK pathway inhibitors for GB treatment still needs to be determined and will mostly be very patient-specific. However, it seems plausible that the inhibition of both upstream RTK and downstream intracellular signaling cascades that include components of the MAPK, JAK-STAT and PI3K/Akt/mTOR pathway are likely to work synergistically and prevent resistance or unwanted feedback loops.

4.3. Multi-Kinase Targeted Radiopharmaceuticals

Derivatives or isotopologues of imatinib [303,310,312,475,476], sorafenib [315,477], lapatinib [478,479], sunitinib [313], nintedanib [23], cabozantinib [480] and vandetanib [481,482] have been radiolabeled and further developed preclinically to various degrees, yet no translation into the clinical setting was achieved (Table S1). Multi-kinase inhibitors are likely to be of limited use to elucidate the expression of one individual RTK. On the other hand, the fact that multiple kinases may be overexpressed in the same cell is a desirable aspect—the translation of these polypharmacological inhibitors into PET radiopharmaceuticals can be seen as valuable [28]. When these ligands are radiolabeled with a therapeutic radionuclide in particular, several signal transduction pathways can be targeted simultaneously, which may increase their overall presence within the tumor and therefore affect this endogenous treatment effectiveness (including the increased radiation dose within the tumor). However, it is important to take into consideration that multi-kinase inhibitors might have different affinities for the individual RTKs, so one RTK might be targeted more efficiently than others. Another possible disadvantage of broad spectrum TKIs is that normal tissues might be targeted as well, resulting in additional, unwanted toxicity [23]. For example, [18F]F-cabozantinib demonstrated a high non-specific binding in tumor and unfortunately in heart tissue as well [480]. [18F]F-dasatinib (SKI249380) is currently under investigation in a clinical trial for potential diagnostic imaging in a wide range of solid tumors, but GB was excluded (NCT01916135) [67]. In a PDGF-B driven model of high-grade gliomas, [18F]F-dasatinib-PET favorably imaged CNS tumors by employing a nanocarrier-encapsulated formulation platform [311]. [18F]F-imatinib (STI-571) showed promising results to measure c-KIT expression levels in the U87MG GB model and further studies with [131I]I-STI-571 are underway [312]. [64Cu]Cu-vandetanib uptake was also noted in the U87MG GB model with an optimal tumor-to-muscle (T/m) ratio at ~5 h post injection but remained high (T/m >30), even until 24 h post-injection. Such ratios are significantly superior to T/m that typically occur with [11C]- or [18F]-labeled SM TKIs (T/m ±3–5) due to the allowable scanning time frame permitted by the half-life of those radioisotopes (typically 60–90 min p.i.) [28]. [11C]C-lapatinib differentially accumulated in brain metastasis vs. normal brain tissue, enabling tumor visualization [478]. Sorafenib was initially labeled at the carbonyl position by Asakawa et al. [477]. However, [11C]C-sorafenib injection in ABCB1a/1b; ABCG2−/− mice confirmed that sorafenib brain accumulation is limited by both transporters, notwithstanding its tumor targeting potential that has been shown in three human cancer xenografts (head and neck, renal and breast cancer), expressing RAF1 kinase [315,483].

5. Selection and Radiolabeling of New TKIs for TRT of GB

Apart from the factors discussed in Section 2 for selecting an appropriate radionuclide and corresponding targeting ligand, biochemical and pharmacological characteristics also play an important role in the suitability of a TKI as a radiopharmaceutical. When considering brain imaging and TRT with TKIs, multiple physico-chemical properties including molecular weight, lipophilicity (required for binding of the inhibitor to the ATP binding pocket of the TK), polar surface area and hydrogen bond donors become increasingly important due to the restrictive BBB [17,28]. An algorithm including six physicochemical parameters for assessing the BBB permeability of CNS drugs was devised by Pfizer and is known as the multiparameter optimization algorithm (CNS MPO). A score of ≥4 indicates suitable parameters [484]. Based on the extensive literature review on RTKIs studied in GB (Table 3, Table 4, Table 5, Table 6, Table 7, Table 8 and Table 9), a selection process was applied to identify TKIs that have not yet been radiolabeled but have the potential to become GB TRT suitable agents. Table 10 gives an overview of the applied selection criteria.
The authors of this review also observed during the selection process, although this falls out of the scope of this review, that radiolabeled compounds targeting the PI3K/Akt/mTOR pathway (both for imaging and TRT) are scarce with almost no reports on relevant studies in GB and no clinical trials [485,486,487]. New radiopharmaceuticals are needed to image PI3K, Akt and mTOR signaling as current evaluation is limited to immunohistochemistry of patient samples [488].
This selection process revealed four SM TKI compounds that could potentially be converted into novel radiopharmaceuticals: BGJ398 (infigratinib), regorafenib, lenvatinib and neratinib (Figure 3). Based on the exclusion criteria, none of the mAb TKIs were found to be suitable. The selected SM RTKIs contain a halogen in aryl position that could indicate a possible location for radioiodination with iodine-125 (Auger emitter) or iodine-131 (beta emitter), and have a potential site for attachment of a chelator for complexation of a therapeutic radiometal, as summarized in Table 2. Noteworthy, regorafenib, lenvatinib and neratinib are multitargeted kinase inhibitors and therapeutic radiolabeling may lead to a multi-pathway inhibition. Concerning possible toxicity issues with these proposed new TRT agents, multiple factors play a role and prediction is difficult. However, it should be kept in mind that the concentration of the TKI as targeted therapy will be markedly higher than the prospective dosage given of a radiolabeled TKI during nuclear imaging or TRT. Additional considerations on GB TRT toxicity have been reviewed recently [17].
Radioiodination of the TKIs follows the same chemistry as that for non-radioactive (‘cold’) iodine. Nucleophilic substitution reactions occur with radioiodine anions while radioiodide can easily be oxidized to an electrophilic form for electrophilic substitution reactions. These electrophilic reactions are more favored as radiolabeling can be achieved in numerous ways without the need to directly generate carrier iodine. Radioiodine can be sourced from sodium iodide ([*I]NaI) molecules and oxidation of radioiodide can be achieved with a variety of mild oxidants such as peracetic acid, chloramine-T or N-chlorosuccinimide. These reactions tend to work on deactivated aromatic compounds, either directly via radio-deprotonation or via various demetallation reactions, yielding products with high in vivo stability. Radio-demetallation reactions make use of electropositive radioiodine and organometallic compounds, such as organoboron, organomercury and organothallium as well as metal compounds from group IV (Si, Ge, Sn). These usually yield products with high radiochemical purity in a highly regioselective manner. Halogen exchange (iodine for iodine) reactions are regularly used for the incorporation of radioiodine into organic molecules, with inorganic salts (ammonium sulfate) or copper (II) salts often being added to catalyze the iodine exchange. When radiolabeling the SM TKI with iodine, it is important to consider the effect that the larger halogen will have on the altered molecule and its behavior in vivo as the TKI may not retain its original biological properties [489].
Attachment of chelators to biomolecules is generally carried out through a nucleophilic reaction of a bifunctional chelating agent with an available primary amine [39,40]. The structures of most SM TKIs do not have free amines (primary or secondary) available for functionalization since the amines are in positions where they are required for binding to the TK active site. Therefore, in order to incorporate a metal chelator into the SM, an adjusted synthetic route for the SM is required. A number of SM TKIs have N-alkyl or O-alkyl substituents attached to their core framework which are not crucially involved with receptor binding. These locations would therefore be most suited for conversion to an N- or O-linker that is functionalized with a nucleophilic group for further reaction with a bifunctional chelator as previously described [40]. However, there are a number of challenges for attachment of a chelator to a SM TKI and subsequent radiometal complexation. The first consideration would be that the N- or O-linker needs to be of a sufficient length to place the chelator far enough from the TK binding motifs in order to not interfere with TK binding. The second consideration would be that the increase in size and molecular weight of the inhibitor could affect pharmacological properties, such as lipophilicity, metabolism and biological half-life, target binding and, crucial for GB targeting, its BBB crossing [28]. The described radiolabeling options, as well as the possible effect on the structure-activity–relationship of the four selected SM TKIs were further investigated.
BGJ398 (infigratinib) is an orally bioavailable selective pan-FGFR kinase inhibitor developed by Novartis Pharma AG (Basel, Switzerland) and currently licensed to BridgeBio Pharma (Palo Alto, CA, USA). BGJ398 is a modified polyurea, where the hydrogens are replaced by a 2,6-dichloro-3,5-dimethoxyphenyl, a methyl group and a 6-{[4-(4-ethylpiperazin-1-yl)phenyl]amino}pyrimidin-4-yl group. The 2,6-dichloro-3,5-dimethoxyphenyl moiety lowers the deconjugation energy, whereas the modified pyrimidinyl aniline is able to modulate the pharmacological profile. Results from computational docking studies suggest that the FGFR1-3 specificity of BGJ398 for FGFR kinases is derived from the coordination of the dichloro-dimethoxy phenyl group to the ATP binding site of the kinase [490]. Therefore, while BGJ398 does contain halogens as required by the selection criteria, conversion of the chlorides to a larger radioiodine would most likely affect the specific binding of BGJ398 to the FGFR, making radioiodination unfeasible. However, radiolabeling via attachment of a chelator group for complexation of therapeutic radiometals such as [177Lu] and [90Y] could be possible utilizing the piperazinyl side chain. The N-ethyl of this functionality protrudes out of the binding site and into the solvent region, thereby allowing for replacement of the ethyl with an alkyl linker connected to a chelator. Some consideration for application of BGJ398 is that its PK profile indicates a pH-dependent solubility that may alter the blood solubility and limit bioavailability. Results of the phase II trial in GB (NCT01975701) are awaited but since this compound is also being investigated for the treatment of other cancer types, radiolabeled BGJ398 could have applications beyond GB, especially for tumors with FGFR genetic alterations, such as cholangiocarcinoma, where BGJ398 reached a phase III trial (NCT03773302) [67]. Genetic changes such as FGFR2 fusions or FGFR mutations confer sensitivity to BGJ398-mediated FGFR inhibition, and in GB, FGFR-TACC fusions may serve as biomarkers [316,320,491,492]. A further consideration for BGJ398 is its BBB penetration. According to the CNS MPO algorithm, BGJ398 had a score of only 2.89, indicating limited feasibility for BBB crossing [484]. Therefore, since BGJ398 is not great for penetration of the BBB, this would possibly limit its potential as a GB imaging biomarker and a therapeutically radiolabeled BGJ398 would most likely need to be administered intracranially.
Regorafenib (BAY73-4506, Stivarga, Bayer HealthCare Pharmaceuticals Inc., Leverkuzen, Germany), which targets both membrane receptors (VEGFR, PDGFR, c-KIT, RET) and intracellular kinases (Raf, BRAF), is an oral multi-kinase inhibitor developed by Bayer which targets angiogenic, stromal and oncogenic receptor tyrosine kinase. The molecule is a generally flat, bi-aryl urea which mimics the adenine group of ATP that binds to the highly conserved ATP-binding pocket to inhibit kinase function [493]. For therapeutic isotope radiolabeling, the options are limited to possible attachment of a chelator in the position of the methyl group since the halides within the structure are located in the hydrophobic and allosteric pockets, making them unsuitable for conversion to radioiodine [494]. The amide hydrogen is required for hydrogen bonding and therefore attachment of a chelator moiety should be with an alkyl chain to minimize the interference of the binding of the compound to the enzyme active site [495]. Considerations for radiopharmaceuticals based on this RTKI is its effective half-life of 28 h and its high plasma protein binding. The compound is FDA-approved for advanced colorectal cancer, advanced gastrointestinal stromal tumor and hepatocellular carcinoma, and phase II/III trials are running in GB (NCT03970447, NCT02926222, NCT04051606) [67,496]. The most common grade 3–4 adverse reactions with the drug are hand/foot skin reactions, diarrhea, hypertension and fatigue [497]. The BBB penetration of regorafenib with a CNS MPO score of 2.44 is unlikely and its structural analog on sorafenib did not penetrate the BBB (consisting of a fluorine in the middle ring) [484,498]. It was also shown that brain accumulation of regorafenib is restricted by ABCG2 and ABCB1, hence inhibition of these transporters may be of clinical relevance for GB applications [499].
Lenvatinib (E7080), developed by Bayer Pharmaceuticals AG (Leverkuzen, Germany), targets FGFR1-4, PDGFRβ, VEGFR1-3, RET and KIT. The N-group of the quinoline moiety in Lenvatinib forms a hydrogen bond with the hinge region of the FGFR-1 receptor, while the two ureido N–H groups interact with the carboxylate side chain of αC-E531, residue. The ureido oxygen is then able to form a hydrogen bond within the binding pocket. Furthermore, the N-cyclopropyl moiety binds into the adjacent allosteric region of VEGFR2 and with the DFG motif adopting an ‘in’ conformation [494]. Therapeutic radiolabeling of lenvatinib will likely be limited to radiometal isotopes since the location of the chloride in the molecule within the hydrophobic pocket makes conversion to a larger radioiodine unfeasible. An amide moiety attached to the quinazoline core provides a potential site for modification to include a chelator, which would allow radiolabeling via chelator complexation. This amide will position itself just outside the ATP binding area and is therefore not involved with any hydrogen bonding [494]. Important considerations for lenvatinib as a prospective TRT agent are its excellent BBB penetration, its metabolization in the liver and its biological half-life of 28 h [500]. The ideal therapeutic radioisotopes to match this half-life would be rhenium-188, holmium-166, samarium-153 and copper-67 (Table 2). Radiolabeled lenvatinib is also worth exploring for other applications, since this SM has been approved for differentiated thyroid cancer, hepatocellular carcinoma and renal cell carcinoma as a single agent or in combination treatments. In addition, lenvatinib has shown promise in several other tumor types including medullary, anaplastic thyroid, adenoid cystic and endometrial cancer [501,502,503].
Neratinib (NerlynxTM, Puma Biotechnology, Inc., Los Angeles, CA, USA), targets the EGFR and HER1, HER2 and HER4 receptors [494]. Neratinib has a highly reactive Michael acceptor that forms a covalent bond with a cysteine residue located within the ATP binding pocket of the EGFR protein and is therefore an irreversible inhibitor [504]. This poses an advantage for therapy since a therapeutically radiolabeled neratinib would remain bound to its target thereby increasing its therapeutic effect. Neratinib can potentially be radiolabeled with radiometal isotopes by chelation, whereby one of the methyl groups on the tertiary amine can be replaced with an alkyl-linked chelator. This amine is found to penetrate the solvent region and can therefore sustain modification without affecting the TK binding significantly. The chloride cannot be converted to radioiodine since it is required in the hydrophobic pocket [505]. Neratinib is FDA-approved to treat HER2-positive metastatic breast cancer and is included in the ongoing biomarker-based INSIGhT trial for newly diagnosed unmethylated GB (NCT02977780) [423]. Neratinib showed adequate penetration of the BBB and efficacy against brain metastasis, with a biological half-life of 28 h [506,507]. Neratinib specifically binds the drug-binding cavity of ABCB1, thereby reducing drug efflux and enhancing drug sensitivity, particularly in the brain [508]. The main toxicity of neratinib in clinical trials is gastro-intestinal and is essentially limited to diarrhea [509].
In summary, the selection of the four compounds was based on the inclusion and exclusion criteria stated in Table 10. Further evaluation of these selected compounds for GB TRT has revealed certain limitations. Firstly, therapy via radioiodination would mostly be unfeasible because of the location of the structural halogens in a TK binding site. However, this does not preclude the possibility of radiofluorination and the evaluation of these selected inhibitors for GB imaging. Secondly, functionalization of the selected inhibitors with a chelating agent will increase the size of the compounds, which may affect lipophilicity and BBB penetration. However, even if BBB passage is unlikely, despite deficits in barrier integrity in GB, CED or similar loco-regional drug application could be applied for TRT applications. CED has been applied in the clinic and was proved to be a safe and effective drug delivery method for GB with limited systemic toxicity [510]. Most RIT strategies for malignant gliomas were administered locally into the postsurgical cavity or intratumorally and the first results on the local administration of [213Bi]Bi-substance P and [225Ac]Ac-substance P are promising [511,512,513,514]. Overall, GB management would greatly benefit from the introduction of TRT using TKI-based radiopharmaceuticals.
Finally, we would like to point out that besides these RTKs that contain intrinsic enzyme activity, there are numerous other plasma membrane receptors that can influence downstream intracellular signaling pathways which play a major role in GB persistence and progression. These include the folate receptors and the NK-1 receptor that lead to development of radiolabeled folate-chelate conjugates and radiolabeled substance-P [511,514,515]. The advantage of TKIs is that many are designed to be multi-targeted, affecting multiple signaling pathways concomitantly. However, every radiopharmaceutical has its pro and cons and the ideal strategy for clinical establishment is a work in progress, particularly for GB [17].

6. Conclusive Statements

This review presented and critically assessed the current status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB. Tyrosine kinase receptors with particular relevance in the treatment of GB have been investigated, namely EGFR, VEGFR, MET, PDGFR, Eph receptor and IGF1R. This overview revealed that only a limited number of developed RTKIs have been explored for their potential theranostic application to date. Hence, through application of relevant selection criteria, four small molecule RTKIs are proposed as new radiopharmaceuticals: infigratinib, regorafenib lenvatinib and neratinib (Figure 3). These new radiopharmaceuticals have the potential to improve TKI targeted therapy patient selection via molecular imaging and to result in a more complete pathway inhibition via TRT and prediction of treatment response.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/ph14070626/s1, Table S1: TKI class radiopharmaceuticals studied in other cancer types.

Author Contributions

Conceptualization, J.B.; writing—original draft preparation, J.B., S.N., C.H.S.D., T.E. and C.V.; writing—review and editing, C.V., T.E. and T.M.G.B.; final approval of the version published, J.B., S.N., C.H.S.D., T.M.G.B., T.E. and C.V. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data sharing not applicable.

Acknowledgments

Figures were created with BioRender.com.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Pearson, J.R.D.; Regad, T. Targeting cellular pathways in glioblastoma multiforme. Signal. Transduct. Target. Ther. 2017, 2, 17040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Ostrom, Q.T.; Gittleman, H.; Stetson, L.; Virk, S.M.; Barnholtz-Sloan, J.S. Epidemiology of gliomas. In Current Understanding and Treatment of Gliomas; Raizer, J., Parsa, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 163, pp. 1–14. [Google Scholar]
  3. Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Le Rhun, E.; Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017, 18, e315–e329. [Google Scholar] [CrossRef] [Green Version]
  4. Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
  5. Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
  6. Weller, M.; Cloughesy, T.; Perry, J.R.; Wick, W. Standards of care for treatment of recurrent glioblastoma-are we there yet? Neuro Oncol. 2013, 15, 4–27. [Google Scholar] [CrossRef] [Green Version]
  7. Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [Green Version]
  8. Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [Green Version]
  9. Huse, J.T.; Holland, E.C. Targeting brain cancer: Advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 2010, 10, 319–331. [Google Scholar] [CrossRef]
  10. Caragher, S.; Miska, J.; Shireman, J.; Park, C.H.; Muroski, M.; Lesniak, M.S.; Ahmed, A.U. Temozolomide Treatment Increases Fatty Acid Uptake in Glioblastoma Stem Cells. Cancers 2020, 12, 3126. [Google Scholar] [CrossRef]
  11. Gimple, R.C.; Bhargava, S.; Dixit, D.; Rich, J.N. Glioblastoma stem cells: Lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019, 33, 591–609. [Google Scholar] [CrossRef]
  12. Rizzo, L.Y.; Theek, B.; Storm, G.; Kiessling, F.; Lammers, T. Recent progress in nanomedicine: Therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol. 2013, 24, 1159–1166. [Google Scholar] [CrossRef] [Green Version]
  13. Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
  14. Puttemans, J.; Lahoutte, T.; D’Huyvetter, M.; Devoogdt, N. Beyond the Barrier: Targeted Radionuclide Therapy in Brain Tumors and Metastases. Pharmaceutics 2019, 11, 376. [Google Scholar] [CrossRef] [Green Version]
  15. Bailly, C.; Vidal, A.; Bonnemaire, C.; Kraeber-Bodéré, F.; Chérel, M.; Pallardy, A.; Rousseau, C.; Garcion, E.; Lacoeuille, F.; Hindré, F.; et al. Potential for Nuclear Medicine Therapy for Glioblastoma Treatment. Front. Pharmacol. 2019, 10, 772. [Google Scholar] [CrossRef]
  16. Pruis, I.J.; van Dongen, G.; Veldhuijzen van Zanten, S.E.M. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors. Int. J. Mol. Sci. 2020, 21, 1029. [Google Scholar] [CrossRef] [Green Version]
  17. Bolcaen, J.; Kleynhans, J.; Nair, S.; Verhoeven, J.; Goethals, I.; Sathekge, M.; Vandevoorde, C.; Ebenhan, T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021. [Google Scholar] [CrossRef]
  18. Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [Green Version]
  19. Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature 2001, 411, 355–365. [Google Scholar] [CrossRef]
  20. Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2021 update. Pharmacol. Res. 2021, 165, 105463. [Google Scholar] [CrossRef]
  21. Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [Green Version]
  22. Yamaoka, T.; Ohba, M.; Ohmori, T. Molecular-Targeted Therapies for Epidermal Growth Factor Receptor and Its Resistance Mechanisms. Int. J. Mol. Sci. 2017, 18, 2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Slobbe, P.; Poot, A.J.; Windhorst, A.D.; van Dongen, G.A. PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov. Today 2012, 17, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
  24. Jiao, Q.; Bi, L.; Ren, Y.; Song, S.; Wang, Q.; Wang, Y.S. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol. Cancer 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
  25. Alexandru, O.; Purcaru, S.O.; Tataranu, L.G.; Lucan, L.; Castro, J.; Folcuţi, C.; Artene, S.A.; Tuţă, C.; Dricu, A. The Influence of EGFR Inactivation on the Radiation Response in High Grade Glioma. Int. J. Mol. Sci 2018, 19, 229. [Google Scholar] [CrossRef] [Green Version]
  26. Hintelmann, K.; Kriegs, M.; Rothkamm, K.; Rieckmann, T. Improving the Efficacy of Tumor Radiosensitization Through Combined Molecular Targeting. Front. Oncol. 2020, 10, 1260. [Google Scholar] [CrossRef]
  27. Wei, W.; Ni, D.; Ehlerding, E.B.; Luo, Q.Y.; Cai, W. PET Imaging of Receptor Tyrosine Kinases in Cancer. Mol. Cancer Ther. 2018, 17, 1625–1636. [Google Scholar] [CrossRef] [Green Version]
  28. Bernard-Gauthier, V.; Bailey, J.J.; Berke, S.; Schirrmacher, R. Recent Advances in the Development and Application of Radiolabeled Kinase Inhibitors for PET Imaging. Molecules 2015, 20, 22000–22027. [Google Scholar] [CrossRef] [Green Version]
  29. St James, S.; Bednarz, B.; Benedict, S.; Buchsbaum, J.C.; Dewaraja, Y.; Frey, E.; Hobbs, R.; Grudzinski, J.; Roncali, E.; Sgouros, G.; et al. Current Status of Radiopharmaceutical Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 891–901. [Google Scholar] [CrossRef]
  30. Ramogida, C.F.; Orvig, C. Tumour targeting with radiometals for diagnosis and therapy. Chem. Commun. 2013, 49, 4720–4739. [Google Scholar] [CrossRef]
  31. Cardinal Health. Available online: https://www.cardinalhealth.com/content/dam/corp/web/documents/fact-sheet/cardinal-health-fda-approved-radiopharmaceuticals.pdf (accessed on 22 May 2021).
  32. Hamoudeh, M.; Kamleh, M.A.; Diab, R.; Fessi, H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Deliv. Rev. 2008, 60, 1329–1346. [Google Scholar] [CrossRef]
  33. Uccelli, L.; Martini, P.; Cittanti, C.; Carnevale, A.; Missiroli, L.; Giganti, M.; Bartolomei, M.; Boschi, A. Therapeutic Radiometals: Worldwide Scientific Literature Trend Analysis (2008–2018). Molecules 2019, 24, 640. [Google Scholar] [CrossRef] [Green Version]
  34. Oriuchi, N.; Higuchi, T.; Hanaoka, H.; Iida, Y.; Endo, K. Current status of cancer therapy with radiolabeled monoclonal antibody. Ann. Nucl. Med. 2005, 19, 355–365. [Google Scholar] [CrossRef]
  35. Sugiura, G.; Kühn, H.; Sauter, M.; Haberkorn, U.; Mier, W. Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules 2014, 19, 2135–2165. [Google Scholar] [CrossRef]
  36. Vaidyanathan, G.; Affleck, D.J.; Li, J.; Welsh, P.; Zalutsky, M.R. A polar substituent-containing acylation agent for the radioiodination of internalizing monoclonal antibodies: N-succinimidyl 4-guanidinomethyl-3-[131I]iodobenzoate ([131I]SGMIB). Bioconjug. Chem. 2001, 12, 428–438. [Google Scholar] [CrossRef]
  37. Chopra, A. [(125)I]-Labeled monoclonal antibody L8A4 against epidermal growth factor receptor variant III (EGFRvIII). In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information (US): Bethesda, MD, USA, 2004. [Google Scholar]
  38. Morais, M.; Ma, M.T. Site-specific chelator-antibody conjugation for PET and SPECT imaging with radiometals. Drug Discov. Today Technol. 2018, 30, 91–104. [Google Scholar] [CrossRef]
  39. Okoye, N.C.; Baumeister, J.E.; Najafi, K.F.; Hennkens, H.M.; Jurisson, S.S. Chelator and metal complex stability for radiopharmaceutical applications. Radiochim. Acta 2019, 107, 1087–1120. [Google Scholar] [CrossRef]
  40. Price, E.W.; Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260–290. [Google Scholar] [CrossRef]
  41. Sarko, D.; Eisenhut, M.; Haberkorn, U.; Mier, W. Bifunctional chelators in the design and application of radiopharmaceuticals for oncological diseases. Curr. Med. Chem. 2012, 19, 2667–2688. [Google Scholar] [CrossRef]
  42. Wängler, B.; Schirrmacher, R.; Bartenstein, P.; Wängler, C. Chelating agents and their use in radiopharmaceutical sciences. Mini Rev. Med. Chem. 2011, 11, 968–983. [Google Scholar] [CrossRef]
  43. Keizer, R.J.; Huitema, A.D.; Schellens, J.H.; Beijnen, J.H. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 493–507. [Google Scholar] [CrossRef]
  44. Nayak, T.K.; Brechbiel, M.W. Radioimmunoimaging with longer-lived positron-emitting radionuclides: Potentials and challenges. Bioconjug. Chem. 2009, 20, 825–841. [Google Scholar] [CrossRef] [Green Version]
  45. Tolmachev, V.; Orlova, A. Influence of labelling methods on biodistribution and imaging properties of radiolabelled peptides for visualisation of molecular therapeutic targets. Curr. Med. Chem. 2010, 17, 2636–2655. [Google Scholar] [CrossRef]
  46. Tijink, B.M.; Laeremans, T.; Budde, M.; Stigter-van Walsum, M.; Dreier, T.; de Haard, H.J.; Leemans, C.R.; van Dongen, G.A. Improved tumor targeting of anti-epidermal growth factor receptor Nanobodies through albumin binding: Taking advantage of modular Nanobody technology. Mol. Cancer Ther. 2008, 7, 2288–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  47. Verel, I.; Visser, G.W.; Boellaard, R.; Stigter-van Walsum, M.; Snow, G.B.; van Dongen, G.A. 89Zr immuno-PET: Comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J. Nucl. Med. 2003, 44, 1271–1281. [Google Scholar] [PubMed]
  48. Chen, W.; Shen, B.; Sun, X. Analysis of Progress and Challenges of EGFR-Targeted Molecular Imaging in Cancer with a Focus on Affibody Molecules. Mol. Imaging 2019, 18, 1536012118823473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  49. Van Dongen, G.A.; Poot, A.J.; Vugts, D.J. PET imaging with radiolabeled antibodies and tyrosine kinase inhibitors: Immuno-PET and TKI-PET. Tumour Biol. 2012, 33, 607–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Tolmachev, V.; Stone-Elander, S.; Orlova, A. Radiolabelled receptor-tyrosine-kinase targeting drugs for patient stratification and monitoring of therapy response: Prospects and pitfalls. Lancet Oncol. 2010, 11, 992–1000. [Google Scholar] [CrossRef]
  51. Hicks, J.W.; VanBrocklin, H.F.; Wilson, A.A.; Houle, S.; Vasdev, N. Radiolabeled small molecule protein kinase inhibitors for imaging with PET or SPECT. Molecules 2010, 15, 8260–8278. [Google Scholar] [CrossRef] [Green Version]
  52. Altai, M.; Orlova, A.; Tolmachev, V. Radiolabeled probes targeting tyrosine-kinase receptors for personalized medicine. Curr. Pharm. Des. 2014, 20, 2275–2292. [Google Scholar] [CrossRef]
  53. Bellaye, P.S.; Moreau, M.; Raguin, O.; Oudot, A.; Bernhard, C.; Vrigneaud, J.M.; Dumont, L.; Vandroux, D.; Denat, F.; Cochet, A.; et al. Radiolabeled F(ab′)(2)-cetuximab for theranostic purposes in colorectal and skin tumor-bearing mice models. Clin. Transl. Oncol. 2018, 20, 1557–1570. [Google Scholar] [CrossRef] [Green Version]
  54. Casacó, A.; López, G.; García, I.; Rodríguez, J.A.; Fernández, R.; Figueredo, J.; Torres, L.; Perera, A.; Batista, J.; Leyva, R.; et al. Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol. Ther. 2008, 7, 333–339. [Google Scholar] [CrossRef] [Green Version]
  55. Emrich, J.G.; Brady, L.W.; Quang, T.S.; Class, R.; Miyamoto, C.; Black, P.; Rodeck, U. Radioiodinated (I-125) monoclonal antibody 425 in the treatment of high grade glioma patients: Ten-year synopsis of a novel treatment. Am. J. Clin. Oncol. 2002, 25, 541–546. [Google Scholar] [CrossRef]
  56. Hens, M.; Vaidyanathan, G.; Zhao, X.G.; Bigner, D.D.; Zalutsky, M.R. Anti-EGFRvIII monoclonal antibody armed with 177Lu: In Vivo comparison of macrocyclic and acyclic ligands. Nucl. Med. Biol. 2010, 37, 741–750. [Google Scholar] [CrossRef] [Green Version]
  57. Hens, M.; Vaidyanathan, G.; Welsh, P.; Zalutsky, M.R. Labeling internalizing anti-epidermal growth factor receptor variant III monoclonal antibody with (177)Lu: In Vitro comparison of acyclic and macrocyclic ligands. Nucl. Med. Biol. 2009, 36, 117–128. [Google Scholar] [CrossRef] [Green Version]
  58. Reist, C.J.; Foulon, C.F.; Alston, K.; Bigner, D.D.; Zalutsky, M.R. Astatine-211 labeling of internalizing anti-EGFRvIII monoclonal antibody using N-succinimidyl 5-[211At]astato-3-pyridinecarboxylate. Nucl. Med. Biol. 1999, 26, 405–411. [Google Scholar] [CrossRef]
  59. Bhattacharya, P.; Shetake, N.G.; Pandey, B.N.; Kumar, A. Receptor tyrosine kinase signaling in cancer radiotherapy and its targeting for tumor radiosensitization. Int. J. Radiat. Biol. 2018, 94, 628–644. [Google Scholar] [CrossRef]
  60. Carrasco-García, E.; Saceda, M.; Martínez-Lacaci, I. Role of receptor tyrosine kinases and their ligands in glioblastoma. Cells 2014, 3, 199–235. [Google Scholar] [CrossRef] [Green Version]
  61. Joensuu, H.; Puputti, M.; Sihto, H.; Tynninen, O.; Nupponen, N.N. Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J. Pathol. 2005, 207, 224–231. [Google Scholar] [CrossRef]
  62. Day, B.W.; Stringer, B.W.; Boyd, A.W. Eph receptors as therapeutic targets in glioblastoma. Br. J. Cancer 2014, 111, 1255–1261. [Google Scholar] [CrossRef] [Green Version]
  63. Kim, G.; Ko, Y.T. Small molecule tyrosine kinase inhibitors in glioblastoma. Arch. Pharm. Res. 2020, 43, 385–394. [Google Scholar] [CrossRef]
  64. Maris, C.; D’Haene, N.; Trépant, A.L.; Le Mercier, M.; Sauvage, S.; Allard, J.; Rorive, S.; Demetter, P.; Decaestecker, C.; Salmon, I. IGF-IR: A new prognostic biomarker for human glioblastoma. Br. J. Cancer 2015, 113, 729–737. [Google Scholar] [CrossRef] [PubMed]
  65. Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef] [Green Version]
  66. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008, 455, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
  67. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/home (accessed on 15 January 2021).
  68. Rodon, J.; Dienstmann, R.; Serra, V.; Tabernero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 2013, 10, 143–153. [Google Scholar] [CrossRef] [PubMed]
  69. Furnari, F.B.; Cloughesy, T.F.; Cavenee, W.K.; Mischel, P.S. Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat. Rev. Cancer 2015, 15, 302–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  70. Oprita, A.; Baloi, S.C.; Staicu, G.A.; Alexandru, O.; Tache, D.E.; Danoiu, S.; Micu, E.S.; Sevastre, A.S. Updated Insights on EGFR Signaling Pathways in Glioma. Int. J. Mol. Sci. 2021, 22, 587. [Google Scholar] [CrossRef] [PubMed]
  71. Westphal, M.; Maire, C.L.; Lamszus, K. EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise. CNS Drugs 2017, 31, 723–735. [Google Scholar] [CrossRef] [Green Version]
  72. Eskilsson, E.; Røsland, G.V.; Solecki, G.; Wang, Q.; Harter, P.N.; Graziani, G.; Verhaak, R.G.W.; Winkler, F.; Bjerkvig, R.; Miletic, H. EGFR heterogeneity and implications for therapeutic intervention in glioblastoma. Neuro Oncol. 2018, 20, 743–752. [Google Scholar] [CrossRef] [Green Version]
  73. Schuster, J.; Lai, R.K.; Recht, L.D.; Reardon, D.A.; Paleologos, N.A.; Groves, M.D.; Mrugala, M.M.; Jensen, R.; Baehring, J.M.; Sloan, A.; et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: The ACT III study. Neuro Oncol. 2015, 17, 854–861. [Google Scholar] [CrossRef] [Green Version]
  74. Le Rhun, E.; Preusser, M.; Roth, P.; Reardon, D.A.; van den Bent, M.; Wen, P.; Reifenberger, G.; Weller, M. Molecular targeted therapy of glioblastoma. Cancer Treat. Rev. 2019, 80, 101896. [Google Scholar] [CrossRef]
  75. Harari, P.M. Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer 2004, 11, 689–708. [Google Scholar] [CrossRef] [Green Version]
  76. Uhm, J.H.; Ballman, K.V.; Wu, W.; Giannini, C.; Krauss, J.C.; Buckner, J.C.; James, C.D.; Scheithauer, B.W.; Behrens, R.J.; Flynn, P.J.; et al. Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 347–353. [Google Scholar] [CrossRef] [Green Version]
  77. Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; Gururangan, S.; Friedman, A.H.; Herndon, J.E., 2nd; Marcello, J.; Norfleet, J.A.; McLendon, R.E.; Sampson, J.H.; et al. Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma. J. Neurooncol. 2010, 96, 219–230. [Google Scholar] [CrossRef] [Green Version]
  78. Van den Bent, M.J.; Brandes, A.A.; Rampling, R.; Kouwenhoven, M.C.; Kros, J.M.; Carpentier, A.F.; Clement, P.M.; Frenay, M.; Campone, M.; Baurain, J.F.; et al. Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J. Clin. Oncol. 2009, 27, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
  79. Reardon, D.A.; Nabors, L.B.; Mason, W.P.; Perry, J.R.; Shapiro, W.; Kavan, P.; Mathieu, D.; Phuphanich, S.; Cseh, A.; Fu, Y.; et al. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro Oncol. 2015, 17, 430–439. [Google Scholar] [CrossRef] [Green Version]
  80. Chi, A.S.; Cahill, D.P.; Reardon, D.A.; Wen, P.Y.; Mikkelsen, T.; Peereboom, D.M.; Wong, E.T.; Gerstner, E.R.; Dietrich, J.; Plotkin, S.R.; et al. Exploring Predictors of Response to Dacomitinib in EGFR-Amplified Recurrent Glioblastoma. JCO Precis. Oncol. 2020, 4. [Google Scholar] [CrossRef]
  81. Vengoji, R.; Macha, M.A.; Nimmakayala, R.K.; Rachagani, S.; Siddiqui, J.A.; Mallya, K.; Gorantla, S.; Jain, M.; Ponnusamy, M.P.; Batra, S.K.; et al. Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. J. Exp. Clin. Cancer Res. 2019, 38, 266. [Google Scholar] [CrossRef]
  82. Chagoya, G.; Kwatra, S.G.; Nanni, C.W.; Roberts, C.M.; Phillips, S.M.; Nullmeyergh, S.; Gilmore, S.P.; Spasojevic, I.; Corcoran, D.L.; Young, C.C.; et al. Efficacy of osimertinib against EGFRvIII+ glioblastoma. Oncotarget 2020, 11, 2074–2082. [Google Scholar] [CrossRef]
  83. Liu, X.; Chen, X.; Shi, L.; Shan, Q.; Cao, Q.; Yue, C.; Li, H.; Li, S.; Wang, J.; Gao, S.; et al. The third-generation EGFR inhibitor AZD9291 overcomes primary resistance by continuously blocking ERK signaling in glioblastoma. J. Exp. Clin. Cancer Res. 2019, 38, 219. [Google Scholar] [CrossRef]
  84. Makhlin, I.; Salinas, R.D.; Zhang, D.; Jacob, F.; Ming, G.L.; Song, H.; Saxena, D.; Dorsey, J.F.; Nasrallah, M.P.; Morrissette, J.J.; et al. Clinical activity of the EGFR tyrosine kinase inhibitor osimertinib in EGFR-mutant glioblastoma. CNS Oncol. 2019, 8, Cns43. [Google Scholar] [CrossRef] [Green Version]
  85. Reardon, D.A.; Cloughesy, T.; Rich, J.; Alfred Yung, W.K.; Yung, L.; DiLea, C.; Huang, J.; Dugan, M.; Mietlowski, W.; Maes, A.; et al. Pharmacokinetic drug interaction between AEE788 and RAD001 causing thrombocytopenia in patients with glioblastoma. Cancer Chemother. Pharmacol. 2012, 69, 281–287. [Google Scholar] [CrossRef] [PubMed]
  86. Goudar, R.K.; Shi, Q.; Hjelmeland, M.D.; Keir, S.T.; McLendon, R.E.; Wikstrand, C.J.; Reese, E.D.; Conrad, C.A.; Traxler, P.; Lane, H.A.; et al. Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol. Cancer Ther. 2005, 4, 101–112. [Google Scholar] [PubMed]
  87. Reardon, D.A.; Conrad, C.A.; Cloughesy, T.; Prados, M.D.; Friedman, H.S.; Aldape, K.D.; Mischel, P.; Xia, J.; DiLea, C.; Huang, J.; et al. Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemother. Pharmacol. 2012, 69, 1507–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Franceschi, E.; Cavallo, G.; Lonardi, S.; Magrini, E.; Tosoni, A.; Grosso, D.; Scopece, L.; Blatt, V.; Urbini, B.; Pession, A.; et al. Gefitinib in patients with progressive high-grade gliomas: A multicentre phase II study by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Br. J. Cancer 2007, 96, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
  89. Chakravarti, A.; Wang, M.; Robins, H.I.; Lautenschlaeger, T.; Curran, W.J.; Brachman, D.G.; Schultz, C.J.; Choucair, A.; Dolled-Filhart, M.; Christiansen, J.; et al. RTOG 0211: A phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 1206–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  90. Brown, N.; McBain, C.; Nash, S.; Hopkins, K.; Sanghera, P.; Saran, F.; Phillips, M.; Dungey, F.; Clifton-Hadley, L.; Wanek, K.; et al. Multi-Center Randomized Phase II Study Comparing Cediranib plus Gefitinib with Cediranib plus Placebo in Subjects with Recurrent/Progressive Glioblastoma. PLoS ONE 2016, 11, e0156369. [Google Scholar] [CrossRef] [PubMed]
  91. Krishnan, S.; Brown, P.D.; Ballman, K.V.; Fiveash, J.B.; Uhm, J.H.; Giannini, C.; Jaeckle, K.A.; Geoffroy, F.J.; Nabors, L.B.; Buckner, J.C. Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: Results of North Central Cancer Treatment Group protocol N0177. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1192–1199. [Google Scholar] [CrossRef]
  92. Yung, W.K.; Vredenburgh, J.J.; Cloughesy, T.F.; Nghiemphu, P.; Klencke, B.; Gilbert, M.R.; Reardon, D.A.; Prados, M.D. Safety and efficacy of erlotinib in first-relapse glioblastoma: A phase II open-label study. Neuro Oncol. 2010, 12, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
  93. Peereboom, D.M.; Shepard, D.R.; Ahluwalia, M.S.; Brewer, C.J.; Agarwal, N.; Stevens, G.H.; Suh, J.H.; Toms, S.A.; Vogelbaum, M.A.; Weil, R.J.; et al. Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme. J. Neurooncol. 2010, 98, 93–99. [Google Scholar] [CrossRef]
  94. Kesavabhotla, K.; Schlaff, C.D.; Shin, B.; Mubita, L.; Kaplan, R.; Tsiouris, A.J.; Pannullo, S.C.; Christos, P.; Lavi, E.; Scheff, R.; et al. Phase I/II study of oral erlotinib for treatment of relapsed/refractory glioblastoma multiforme and anaplastic astrocytoma. J. Exp. Ther. Oncol. 2012, 10, 71–81. [Google Scholar]
  95. Raizer, J.J.; Abrey, L.E.; Lassman, A.B.; Chang, S.M.; Lamborn, K.R.; Kuhn, J.G.; Yung, W.K.; Gilbert, M.R.; Aldape, K.A.; Wen, P.Y.; et al. A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol. 2010, 12, 95–103. [Google Scholar] [CrossRef]
  96. Clarke, J.L.; Molinaro, A.M.; Phillips, J.J.; Butowski, N.A.; Chang, S.M.; Perry, A.; Costello, J.F.; DeSilva, A.A.; Rabbitt, J.E.; Prados, M.D. A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma. Neuro Oncol. 2014, 16, 984–990. [Google Scholar] [CrossRef] [Green Version]
  97. De Groot, J.F.; Gilbert, M.R.; Aldape, K.; Hess, K.R.; Hanna, T.A.; Ictech, S.; Groves, M.D.; Conrad, C.; Colman, H.; Puduvalli, V.K.; et al. Phase II study of carboplatin and erlotinib (Tarceva, OSI-774) in patients with recurrent glioblastoma. J. Neurooncol. 2008, 90, 89–97. [Google Scholar] [CrossRef]
  98. Sepúlveda-Sánchez, J.M.; Vaz, M.; Balañá, C.; Gil-Gil, M.; Reynés, G.; Gallego, Ó.; Martínez-García, M.; Vicente, E.; Quindós, M.; Luque, R.; et al. Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 2017, 19, 1522–1531. [Google Scholar] [CrossRef] [Green Version]
  99. Neyns, B.; Sadones, J.; Joosens, E.; Bouttens, F.; Verbeke, L.; Baurain, J.F.; D’Hondt, L.; Strauven, T.; Chaskis, C.; In’t Veld, P.; et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann. Oncol. 2009, 20, 1596–1603. [Google Scholar] [CrossRef]
  100. Hasselbalch, B.; Lassen, U.; Hansen, S.; Holmberg, M.; Sørensen, M.; Kosteljanetz, M.; Broholm, H.; Stockhausen, M.T.; Poulsen, H.S. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: A phase II trial. Neuro Oncol. 2010, 12, 508–516. [Google Scholar] [CrossRef] [Green Version]
  101. Combs, S.E.; Heeger, S.; Haselmann, R.; Edler, L.; Debus, J.; Schulz-Ertner, D. Treatment of primary glioblastoma multiforme with cetuximab, radiotherapy and temozolomide (GERT)--phase I/II trial: Study protocol. BMC Cancer 2006, 6, 133. [Google Scholar] [CrossRef] [Green Version]
  102. Du, X.J.; Li, X.M.; Cai, L.B.; Sun, J.C.; Wang, S.Y.; Wang, X.C.; Pang, X.L.; Deng, M.L.; Chen, F.F.; Wang, Z.Q.; et al. Efficacy and safety of nimotuzumab in addition to radiotherapy and temozolomide for cerebral glioblastoma: A phase II multicenter clinical trial. J. Cancer 2019, 10, 3214–3223. [Google Scholar] [CrossRef] [Green Version]
  103. Ramos, T.C.; Figueredo, J.; Catala, M.; González, S.; Selva, J.C.; Cruz, T.M.; Toledo, C.; Silva, S.; Pestano, Y.; Ramos, M.; et al. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: Report from a phase I/II trial. Cancer Biol. Ther. 2006, 5, 375–379. [Google Scholar] [CrossRef] [Green Version]
  104. Hong, J.; Peng, Y.; Liao, Y.; Jiang, W.; Wei, R.; Huo, L.; Han, Z.; Duan, C.; Zhong, M. Nimotuzumab prolongs survival in patients with malignant gliomas: A phase I/II clinical study of concomitant radiochemotherapy with or without nimotuzumab. Exp. Ther. Med. 2012, 4, 151–157. [Google Scholar] [CrossRef] [Green Version]
  105. Wang, Y.; Pan, L.; Sheng, X.F.; Chen, S.; Dai, J.Z. Nimotuzumab, a humanized monoclonal antibody specific for the EGFR, in combination with temozolomide and radiation therapy for newly diagnosed glioblastoma multiforme: First results in Chinese patients. Asia Pac. J. Clin. Oncol. 2016, 12, e23–e29. [Google Scholar] [CrossRef]
  106. Solomon, M.T.; Miranda, N.; Jorrín, E.; Chon, I.; Marinello, J.J.; Alert, J.; Lorenzo-Luaces, P.; Crombet, T. Nimotuzumab in combination with radiotherapy in high grade glioma patients: A single institution experience. Cancer Biol. Ther. 2014, 15, 504–509. [Google Scholar] [CrossRef] [Green Version]
  107. Solomón, M.T.; Selva, J.C.; Figueredo, J.; Vaquer, J.; Toledo, C.; Quintanal, N.; Salva, S.; Domíngez, R.; Alert, J.; Marinello, J.J.; et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: Results from a randomized, double blind trial. BMC Cancer 2013, 13, 299. [Google Scholar] [CrossRef] [Green Version]
  108. Westphal, M.; Heese, O.; Steinbach, J.P.; Schnell, O.; Schackert, G.; Mehdorn, M.; Schulz, D.; Simon, M.; Schlegel, U.; Senft, C.; et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur. J. Cancer 2015, 51, 522–532. [Google Scholar] [CrossRef]
  109. Van den Bent, M.; Gan, H.K.; Lassman, A.B.; Kumthekar, P.; Merrell, R.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.B.; Papadopoulos, K.P.; et al. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: Results from a multi-center, international study. Cancer Chemother. Pharmacol. 2017, 80, 1209–1217. [Google Scholar] [CrossRef]
  110. Lassman, A.B.; van den Bent, M.J.; Gan, H.K.; Reardon, D.A.; Kumthekar, P.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.B.; Papadopoulos, K.P.; et al. Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR-amplified, recurrent glioblastoma: Results from an international phase I multicenter trial. Neuro Oncol. 2019, 21, 106–114. [Google Scholar] [CrossRef] [Green Version]
  111. Reardon, D.A.; Lassman, A.B.; van den Bent, M.; Kumthekar, P.; Merrell, R.; Scott, A.M.; Fichtel, L.; Sulman, E.P.; Gomez, E.; Fischer, J.; et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro Oncol. 2017, 19, 965–975. [Google Scholar] [CrossRef] [Green Version]
  112. Gan, H.K.; Reardon, D.A.; Lassman, A.B.; Merrell, R.; van den Bent, M.; Butowski, N.; Lwin, Z.; Wheeler, H.; Fichtel, L.; Scott, A.M.; et al. Safety, pharmacokinetics, and antitumor response of depatuxizumab mafodotin as monotherapy or in combination with temozolomide in patients with glioblastoma. Neuro Oncol. 2018, 20, 838–847. [Google Scholar] [CrossRef]
  113. Van Den Bent, M.; Eoli, M.; Sepulveda, J.M.; Smits, M.; Walenkamp, A.; Frenel, J.S.; Franceschi, E.; Clement, P.M.; Chinot, O.; De Vos, F.; et al. INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 2020, 22, 684–693. [Google Scholar] [CrossRef]
  114. Rosenthal, M.; Curry, R.; Reardon, D.A.; Rasmussen, E.; Upreti, V.V.; Damore, M.A.; Henary, H.A.; Hill, J.S.; Cloughesy, T. Safety, tolerability, and pharmacokinetics of anti-EGFRvIII antibody-drug conjugate AMG 595 in patients with recurrent malignant glioma expressing EGFRvIII. Cancer Chemother. Pharmacol. 2019, 84, 327–336. [Google Scholar] [CrossRef]
  115. Weller, M.; Butowski, N.; Tran, D.D.; Recht, L.D.; Lim, M.; Hirte, H.; Ashby, L.; Mechtler, L.; Goldlust, S.A.; Iwamoto, F.; et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
  116. Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J.; O’Rourke, D.M.; Tran, D.D.; Fink, K.L.; Nabors, L.B.; Li, G.; Bota, D.A.; Lukas, R.V.; et al. Rindopepimut with Bevacizumab for Patients with Relapsed EGFRvIII-Expressing Glioblastoma (ReACT): Results of a Double-Blind Randomized Phase II Trial. Clin. Cancer Res. 2020, 26, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
  117. O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Melenhorst, J.J.; Mansfield, K.; Morrissette, J.J.D.; Martinez-Lage, M.; Brem, S.; Maloney, E.; Shen, A.; et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 2017, 9, eaaa0984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Goff, S.L.; Morgan, R.A.; Yang, J.C.; Sherry, R.M.; Robbins, P.F.; Restifo, N.P.; Feldman, S.A.; Lu, Y.C.; Lu, L.; Zheng, Z.; et al. Pilot Trial of Adoptive Transfer of Chimeric Antigen Receptor-transduced T Cells Targeting EGFRvIII in Patients with Glioblastoma. J. Immunother. 2019, 42, 126–135. [Google Scholar] [CrossRef]
  119. Gan, H.K.; Burgess, A.W.; Clayton, A.H.; Scott, A.M. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 2012, 72, 2924–2930. [Google Scholar] [CrossRef] [Green Version]
  120. An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene 2018, 37, 1561–1575. [Google Scholar] [CrossRef]
  121. Hamblett, K.J.; Kozlosky, C.J.; Siu, S.; Chang, W.S.; Liu, H.; Foltz, I.N.; Trueblood, E.S.; Meininger, D.; Arora, T.; Twomey, B.; et al. AMG 595, an Anti-EGFRvIII Antibody-Drug Conjugate, Induces Potent Antitumor Activity against EGFRvIII-Expressing Glioblastoma. Mol. Cancer Ther. 2015, 14, 1614–1624. [Google Scholar] [CrossRef] [Green Version]
  122. Struve, N.; Binder, Z.A.; Stead, L.F.; Brend, T.; Bagley, S.J.; Faulkner, C.; Ott, L.; Müller-Goebel, J.; Weik, A.S.; Hoffer, K.; et al. EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma. Oncogene 2020, 39, 3041–3055. [Google Scholar] [CrossRef] [Green Version]
  123. Pan, P.C.; Magge, R.S. Mechanisms of EGFR Resistance in Glioblastoma. Int. J. Mol. Sci. 2020, 21, 8471. [Google Scholar] [CrossRef]
  124. Touat, M.; Idbaih, A.; Sanson, M.; Ligon, K.L. Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann. Oncol. 2017, 28, 1457–1472. [Google Scholar] [CrossRef]
  125. Ronellenfitsch, M.W.; Zeiner, P.S.; Mittelbronn, M.; Urban, H.; Pietsch, T.; Reuter, D.; Senft, C.; Steinbach, J.P.; Westphal, M.; Harter, P.N. Akt and mTORC1 signaling as predictive biomarkers for the EGFR antibody nimotuzumab in glioblastoma. Acta Neuropathol. Commun. 2018, 6, 81. [Google Scholar] [CrossRef]
  126. Muñoz-Hidalgo, L.; San-Miguel, T.; Megías, J.; Monleón, D.; Navarro, L.; Roldán, P.; Cerdá-Nicolás, M.; López-Ginés, C. Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma. Neoplasia 2020, 22, 10–21. [Google Scholar] [CrossRef]
  127. Kaufman, N.E.M.; Dhingra, S.; Jois, S.D.; Vicente, M. Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021, 26, 1076. [Google Scholar] [CrossRef]
  128. Elkamhawy, A.; Farag, A.K.; Viswanath, A.N.; Bedair, T.M.; Leem, D.G.; Lee, K.T.; Pae, A.N.; Roh, E.J. Targeting EGFR/HER2 tyrosine kinases with a new potent series of 6-substituted 4-anilinoquinazoline hybrids: Design, synthesis, kinase assay, cell-based assay, and molecular docking. Bioorg. Med. Chem. Lett. 2015, 25, 5147–5154. [Google Scholar] [CrossRef]
  129. Li, L.; Quang, T.S.; Gracely, E.J.; Kim, J.H.; Emrich, J.G.; Yaeger, T.E.; Jenrette, J.M.; Cohen, S.C.; Black, P.; Brady, L.W. A Phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme. J. Neurosurg. 2010, 113, 192–198. [Google Scholar] [CrossRef] [Green Version]
  130. Sun, J.; Cai, L.; Zhang, K.; Zhang, A.; Pu, P.; Yang, W.; Gao, S. A pilot study on EGFR-targeted molecular imaging of PET/CT with 11C-PD153035 in human gliomas. Clin. Nucl. Med. 2014, 39, e20–e26. [Google Scholar] [CrossRef]
  131. Liu, N.; Li, M.; Li, X.; Meng, X.; Yang, G.; Zhao, S.; Yang, Y.; Ma, L.; Fu, Z.; Yu, J. PET-based biodistribution and radiation dosimetry of epidermal growth factor receptor-selective tracer 11C-PD153035 in humans. J. Nucl. Med. 2009, 50, 303–308. [Google Scholar] [CrossRef] [Green Version]
  132. Petrulli, J.R.; Sullivan, J.M.; Zheng, M.Q.; Bennett, D.C.; Charest, J.; Huang, Y.; Morris, E.D.; Contessa, J.N. Quantitative analysis of [11C]-erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia 2013, 15, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
  133. Traxl, A.; Mairinger, S.; Filip, T.; Sauberer, M.; Stanek, J.; Poschner, S.; Jäger, W.; Zoufal, V.; Novarino, G.; Tournier, N.; et al. Inhibition of ABCB1 and ABCG2 at the Mouse Blood-Brain Barrier with Marketed Drugs to Improve Brain Delivery of the Model ABCB1/ABCG2 Substrate [(11)C]erlotinib. Mol. Pharm. 2019, 16, 1282–1293. [Google Scholar] [CrossRef]
  134. Tournier, N.; Goutal, S.; Mairinger, S.; Hernández-Lozano, I.; Filip, T.; Sauberer, M.; Caillé, F.; Breuil, L.; Stanek, J.; Freeman, A.F.; et al. Complete inhibition of ABCB1 and ABCG2 at the blood-brain barrier by co-infusion of erlotinib and tariquidar to improve brain delivery of the model ABCB1/ABCG2 substrate [(11)C]erlotinib. J. Cereb. Blood Flow Metab. 2020, 271678x20965500. [Google Scholar] [CrossRef]
  135. Shamni, O.; Grievink, H.; Itamar, B.; Mishani, E.; Abourbeh, G. Development of a Fluorinated Analogue of Erlotinib for PET Imaging of EGFR Mutation-Positive NSCLC. Mol. Imaging Biol. 2019, 21, 696–704. [Google Scholar] [CrossRef] [Green Version]
  136. Seimbille, Y.; Phelps, M.E.; Czernin, J.; Silverman, D.H.S. Fluorine-18 labeling of 6,7-disubstituted anilinoquinazoline derivatives for positron emission tomography (PET) imaging of tyrosine kinase receptors: Synthesis of 18F-Iressa and related molecular probes. J. Label. Compd. Radiopharm. 2005, 48, 829–843. [Google Scholar] [CrossRef]
  137. Huang, S.; Han, Y.; Chen, M.; Hu, K.; Qi, Y.; Sun, P.; Wang, M.; Wu, H.; Li, G.; Wang, Q.; et al. Radiosynthesis and biological evaluation of 18F-labeled 4-anilinoquinazoline derivative (18F-FEA-Erlotinib) as a potential EGFR PET agent. Bioorg. Med. Chem. Lett. 2018, 28, 1143–1148. [Google Scholar] [CrossRef]
  138. Vlaming, M.L.; Läppchen, T.; Jansen, H.T.; Kivits, S.; van Driel, A.; van de Steeg, E.; van der Hoorn, J.W.; Sio, C.F.; Steinbach, O.C.; DeGroot, J. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug-drug interactions at the murine blood-brain barrier. Nucl. Med. Biol. 2015, 42, 833–841. [Google Scholar] [CrossRef]
  139. Su, H.; Seimbille, Y.; Ferl, G.Z.; Bodenstein, C.; Fueger, B.; Kim, K.J.; Hsu, Y.T.; Dubinett, S.M.; Phelps, M.E.; Czernin, J.; et al. Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1089–1099. [Google Scholar] [CrossRef]
  140. Wang, J.Q.; Gao, M.; Miller, K.D.; Sledge, G.W.; Zheng, Q.H. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg. Med. Chem. Lett. 2006, 16, 4102–4106. [Google Scholar] [CrossRef]
  141. Holt, D.P.; Ravert, H.T.; Dannals, R.F.; Pomper, M.G. Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J. Label. Compd. Radiopharm. 2006, 49, 883–888. [Google Scholar] [CrossRef]
  142. Bonasera, T.A.; Ortu, G.; Rozen, Y.; Krais, R.; Freedman, N.M.; Chisin, R.; Gazit, A.; Levitzki, A.; Mishani, E. Potential (18)F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl. Med. Biol. 2001, 28, 359–374. [Google Scholar] [CrossRef]
  143. Ortu, G.; Ben-David, I.; Rozen, Y.; Freedman, N.M.; Chisin, R.; Levitzki, A.; Mishani, E. Labeled EGFr-TK Irreversible Inhibitor (ML03): In Vitro and in Vivo Properties, Potential as PET Biomarker for Cancer and Feasibility as Anticancer Drug. Int. J. Cancer 2002, 101, 360–370. [Google Scholar] [CrossRef]
  144. Mishani, E.; Abourbeh, G.; Rozen, Y.; Jacobson, O.; Laky, D.; Ben David, I.; Levitzki, A.; Shaul, M. Novel carbon-11 labeled 4-dimethylamino-but-2-enoic acid [4-(phenylamino)-quinazoline-6-yl]-amides: Potential PET bioprobes for molecular imaging of EGFR-positive tumors. Nucl. Med. Biol. 2004, 31, 469–476. [Google Scholar] [CrossRef]
  145. Abourbeh, G.; Dissoki, S.; Jacobson, O.; Litchi, A.; Ben Daniel, R.; Laki, D.; Levitzki, A.; Mishani, E. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl. Med. Biol. 2007, 34, 55–70. [Google Scholar] [CrossRef] [PubMed]
  146. Dissoki, S.; Aviv, Y.; Laky, D.; Abourbeh, G.; Levitzki, A.; Mishani, E. The effect of the [18F]-PEG group on tracer qualification of [4-(phenylamino)-quinazoline-6-YL]-amide moiety—An EGFR putative irreversible inhibitor. Appl. Radiat. Isot. 2007, 65, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
  147. Pal, A.; Balatoni, J.A.; Mukhopadhyay, U.; Ogawa, K.; Gonzalez-Lepera, C.; Shavrin, A.; Volgin, A.; Tong, W.; Alauddin, M.M.; Gelovani, J.G. Radiosynthesis and initial in vitro evaluation of [18F]F-PEG6-IPQA—A novel PET radiotracer for imaging EGFR expression-activity in lung carcinomas. Mol. Imaging Biol. 2011, 13, 853–861. [Google Scholar] [CrossRef] [PubMed]
  148. Pantaleo, M.A.; Mishani, E.; Nanni, C.; Landuzzi, L.; Boschi, S.; Nicoletti, G.; Dissoki, S.; Paterini, P.; Piccaluga, P.P.; Lodi, F.; et al. Evaluation of modified PEG-anilinoquinazoline derivatives as potential agents for EGFR imaging in cancer by small animal PET. Mol. Imaging Biol. 2010, 12, 616–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  149. Pal, A.; Glekas, A.; Doubrovin, M.; Balatoni, J.; Namavari, M.; Beresten, T.; Maxwell, D.; Soghomonyan, S.; Shavrin, A.; Ageyeva, L.; et al. Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography. Mol. Imaging Biol. 2006, 8, 262–277. [Google Scholar] [CrossRef] [PubMed]
  150. Yeh, H.H.; Ogawa, K.; Balatoni, J.; Mukhapadhyay, U.; Pal, A.; Gonzalez-Lepera, C.; Shavrin, A.; Soghomonyan, S.; Flores, L., 2nd; Young, D.; et al. Molecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proc. Natl. Acad. Sci. USA 2011, 108, 1603–1608. [Google Scholar] [CrossRef] [Green Version]
  151. Quang, T.S.; Brady, L.W. Radioimmunotherapy as a novel treatment regimen: 125I-labeled monoclonal antibody 425 in the treatment of high-grade brain gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 972–975. [Google Scholar] [CrossRef]
  152. Reilly, E.B.; Phillips, A.C.; Buchanan, F.G.; Kingsbury, G.; Zhang, Y.; Meulbroek, J.A.; Cole, T.B.; DeVries, P.J.; Falls, H.D.; Beam, C.; et al. Characterization of ABT-806, a Humanized Tumor-Specific Anti-EGFR Monoclonal Antibody. Mol. Cancer Ther. 2015, 14, 1141–1151. [Google Scholar] [CrossRef] [Green Version]
  153. Wehrenberg-Klee, E.; Redjal, N.; Leece, A.; Turker, N.S.; Heidari, P.; Shah, K.; Mahmood, U. PET imaging of glioblastoma multiforme EGFR expression for therapeutic decision guidance. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 379–389. [Google Scholar]
  154. Cai, W.; Chen, K.; He, L.; Cao, Q.; Koong, A.; Chen, X. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 850–858. [Google Scholar] [CrossRef]
  155. Van Loon, J.; Even, A.J.G.; Aerts, H.; Öllers, M.; Hoebers, F.; van Elmpt, W.; Dubois, L.; Dingemans, A.C.; Lalisang, R.I.; Kempers, P.; et al. PET imaging of zirconium-89 labelled cetuximab: A phase I trial in patients with head and neck and lung cancer. Radiother. Oncol. 2017, 122, 267–273. [Google Scholar] [CrossRef]
  156. Menke-van der Houven van Oordt, C.W.; Gootjes, E.C.; Huisman, M.C.; Vugts, D.J.; Roth, C.; Luik, A.M.; Mulder, E.R.; Schuit, R.C.; Boellaard, R.; Hoekstra, O.S.; et al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget 2015, 6, 30384–30393. [Google Scholar] [CrossRef] [Green Version]
  157. Perk, L.R.; Visser, G.W.; Vosjan, M.J.; Stigter-van Walsum, M.; Tijink, B.M.; Leemans, C.R.; van Dongen, G.A. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J. Nucl. Med. 2005, 46, 1898–1906. [Google Scholar]
  158. Song, I.H.; Lee, T.S.; Park, Y.S.; Lee, J.S.; Lee, B.C.; Moon, B.S.; An, G.I.; Lee, H.W.; Kim, K.I.; Lee, Y.J.; et al. Immuno-PET Imaging and Radioimmunotherapy of 64Cu-/177Lu-Labeled Anti-EGFR Antibody in Esophageal Squamous Cell Carcinoma Model. J. Nucl. Med. 2016, 57, 1105–1111. [Google Scholar] [CrossRef] [Green Version]
  159. Van Dijk, L.K.; Hoeben, B.A.; Stegeman, H.; Kaanders, J.H.; Franssen, G.M.; Boerman, O.C.; Bussink, J. 111In-cetuximab-F(ab′)2 SPECT imaging for quantification of accessible epidermal growth factor receptors (EGFR) in HNSCC xenografts. Radiother. Oncol. 2013, 108, 484–488. [Google Scholar] [CrossRef]
  160. Van Dijk, L.K.; Yim, C.B.; Franssen, G.M.; Kaanders, J.H.; Rajander, J.; Solin, O.; Grönroos, T.J.; Boerman, O.C.; Bussink, J. PET of EGFR with (64) Cu-cetuximab-F(ab’)2 in mice with head and neck squamous cell carcinoma xenografts. Contrast Media Mol. Imaging 2016, 11, 65–70. [Google Scholar] [CrossRef] [Green Version]
  161. Foulon, C.F.; Reist, C.J.; Bigner, D.D.; Zalutsky, M.R. Radioiodination via D-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing anti-epidermal growth factor receptor variant III monoclonal antibody. Cancer Res. 2000, 60, 4453–4460. [Google Scholar]
  162. Shankar, S.; Vaidyanathan, G.; Affleck, D.J.; Peixoto, K.; Bigner, D.D.; Zalutsky, M.R. Evaluation of an internalizing monoclonal antibody labeled using N-succinimidyl 3-[131I]iodo-4-phosphonomethylbenzoate ([131I]SIPMB), a negatively charged substituent bearing acylation agent. Nucl. Med. Biol. 2004, 31, 909–919. [Google Scholar] [CrossRef]
  163. Yang, W.; Barth, R.F.; Wu, G.; Kawabata, S.; Sferra, T.J.; Bandyopadhyaya, A.K.; Tjarks, W.; Ferketich, A.K.; Moeschberger, M.L.; Binns, P.J.; et al. Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin. Cancer Res. 2006, 12, 3792–3802. [Google Scholar] [CrossRef] [Green Version]
  164. Kuan, C.T.; Reist, C.J.; Foulon, C.F.; Lorimer, I.A.; Archer, G.; Pegram, C.N.; Pastan, I.; Zalutsky, M.R.; Bigner, D.D. 125I-labeled anti-epidermal growth factor receptor-vIII single-chain Fv exhibits specific and high-level targeting of glioma xenografts. Clin. Cancer Res. 1999, 5, 1539–1549. [Google Scholar]
  165. Miao, Z.; Ren, G.; Liu, H.; Qi, S.; Wu, S.; Cheng, Z. PET of EGFR expression with an 18F-labeled affibody molecule. J. Nucl. Med. 2012, 53, 1110–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  166. Velikyan, I.; Sundberg, A.L.; Lindhe, O.; Höglund, A.U.; Eriksson, O.; Werner, E.; Carlsson, J.; Bergström, M.; Långström, B.; Tolmachev, V. Preparation and evaluation of (68)Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J. Nucl. Med. 2005, 46, 1881–1888. [Google Scholar]
  167. Pereira, P.M.R.; Norfleet, J.; Lewis, J.S.; Escorcia, F.E. ImmunoPET Detects Changes in Multi-RTK Tumor Cell Expression Levels in Response to Targeted Kinase Inhibition. J. Nucl. Med. 2020, 62, 355–371. [Google Scholar] [CrossRef]
  168. Nayak, T.K.; Garmestani, K.; Milenic, D.E.; Brechbiel, M.W. PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J. Nucl. Med. 2012, 53, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  169. Chang, A.J.; De Silva, R.A.; Lapi, S.E. Development and characterization of 89Zr-labeled panitumumab for immuno-positron emission tomographic imaging of the epidermal growth factor receptor. Mol. Imaging 2013, 12, 17–27. [Google Scholar] [PubMed]
  170. Lindenberg, L.; Adler, S.; Turkbey, I.B.; Mertan, F.; Ton, A.; Do, K.; Kummar, S.; Gonzalez, E.M.; Bhattacharyya, S.; Jacobs, P.M.; et al. Dosimetry and first human experience with (89)Zr-panitumumab. Am. J. Nucl. Med. Mol. Imaging 2017, 7, 195–203. [Google Scholar] [PubMed]
  171. Wei, L.; Shi, J.; Afari, G.; Bhattacharyya, S. Preparation of clinical-grade (89) Zr-panitumumab as a positron emission tomography biomarker for evaluating epidermal growth factor receptor-targeted therapy. J. Label. Compd. Radiopharm. 2014, 57, 25–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  172. Reilly, R.M.; Kiarash, R.; Cameron, R.G.; Porlier, N.; Sandhu, J.; Hill, R.P.; Vallis, K.; Hendler, A.; Gariépy, J. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J. Nucl. Med. 2000, 41, 429–438. [Google Scholar]
  173. Li, W.; Niu, G.; Lang, L.; Guo, N.; Ma, Y.; Kiesewetter, D.O.; Backer, J.M.; Shen, B.; Chen, X. PET imaging of EGF receptors using [18F]FBEM-EGF in a head and neck squamous cell carcinoma model. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 300–308. [Google Scholar] [CrossRef] [Green Version]
  174. Sundberg, A.L.; Orlova, A.; Bruskin, A.; Gedda, L.; Carlsson, J.; Blomquist, E.; Lundqvist, H.; Tolmachev, V. [(111)In]Bz-DTPA-hEGF: Preparation and in vitro characterization of a potential anti-glioblastoma targeting agent. Cancer Biother. Radiopharm. 2003, 18, 643–654. [Google Scholar] [CrossRef]
  175. Denholt, C.L.; Binderup, T.; Stockhausen, M.T.; Poulsen, H.S.; Spang-Thomsen, M.; Hansen, P.R.; Gillings, N.; Kjær, A. Evaluation of 4-[18F]fluorobenzoyl-FALGEA-NH2 as a positron emission tomography tracer for epidermal growth factor receptor mutation variant III imaging in cancer. Nucl. Med. Biol. 2011, 38, 509–515. [Google Scholar] [CrossRef]
  176. Zhang, X.; Peng, L.; Liang, Z.; Kou, Z.; Chen, Y.; Shi, G.; Li, X.; Liang, Y.; Wang, F.; Shi, Y. Effects of Aptamer to U87-EGFRvIII Cells on the Proliferation, Radiosensitivity, and Radiotherapy of Glioblastoma Cells. Mol. Ther. Nucleic Acids 2018, 10, 438–449. [Google Scholar] [CrossRef] [Green Version]
  177. Reardon, D.A.; Turner, S.; Peters, K.B.; Desjardins, A.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.; Herndon, J.E., 2nd; Jones, L.W.; Kirkpatrick, J.P.; et al. A review of VEGF/VEGFR-targeted therapeutics for recurrent glioblastoma. J. Natl. Compr. Cancer Netw. 2011, 9, 414–427. [Google Scholar] [CrossRef] [Green Version]
  178. Zhao, Y.; Adjei, A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015, 20, 660–673. [Google Scholar] [CrossRef] [Green Version]
  179. Cohen, M.H.; Shen, Y.L.; Keegan, P.; Pazdur, R. FDA drug approval summary: Bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 2009, 14, 1131–1138. [Google Scholar] [CrossRef]
  180. Chinot, O.L.; de La Motte Rouge, T.; Moore, N.; Zeaiter, A.; Das, A.; Phillips, H.; Modrusan, Z.; Cloughesy, T. AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv. Ther. 2011, 28, 334–340. [Google Scholar] [CrossRef] [Green Version]
  181. Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [Green Version]
  182. Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
  183. Kalpathy-Cramer, J.; Chandra, V.; Da, X.; Ou, Y.; Emblem, K.E.; Muzikansky, A.; Cai, X.; Douw, L.; Evans, J.G.; Dietrich, J.; et al. Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma. J. Neurooncol. 2017, 131, 603–610. [Google Scholar] [CrossRef]
  184. De Groot, J.F.; Lamborn, K.R.; Chang, S.M.; Gilbert, M.R.; Cloughesy, T.F.; Aldape, K.; Yao, J.; Jackson, E.F.; Lieberman, F.; Robins, H.I.; et al. Phase II study of aflibercept in recurrent malignant glioma: A North American Brain Tumor Consortium study. J. Clin. Oncol. 2011, 29, 2689–2695. [Google Scholar] [CrossRef]
  185. Nayak, L.; de Groot, J.; Wefel, J.S.; Cloughesy, T.F.; Lieberman, F.; Chang, S.M.; Omuro, A.; Drappatz, J.; Batchelor, T.T.; DeAngelis, L.M.; et al. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas. J. Neurooncol. 2017, 132, 181–188. [Google Scholar] [CrossRef] [PubMed]
  186. Gerstner, E.R.; Eichler, A.F.; Plotkin, S.R.; Drappatz, J.; Doyle, C.L.; Xu, L.; Duda, D.G.; Wen, P.Y.; Jain, R.K.; Batchelor, T.T. Phase I trial with biomarker studies of vatalanib (PTK787) in patients with newly diagnosed glioblastoma treated with enzyme inducing anti-epileptic drugs and standard radiation and temozolomide. J. Neurooncol. 2011, 103, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  187. Brandes, A.A.; Stupp, R.; Hau, P.; Lacombe, D.; Gorlia, T.; Tosoni, A.; Mirimanoff, R.O.; Kros, J.M.; van den Bent, M.J. EORTC study 26041-22041: Phase I/II study on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT) with PTK787/ZK222584 (PTK/ZK) in newly diagnosed glioblastoma. Eur. J. Cancer 2010, 46, 348–354. [Google Scholar] [CrossRef] [PubMed]
  188. Reardon, D.A.; Egorin, M.J.; Desjardins, A.; Vredenburgh, J.J.; Beumer, J.H.; Lagattuta, T.F.; Gururangan, S.; Herndon, J.E., 2nd; Salvado, A.J.; Friedman, H.S. Phase I pharmacokinetic study of the vascular endothelial growth factor receptor tyrosine kinase inhibitor vatalanib (PTK787) plus imatinib and hydroxyurea for malignant glioma. Cancer 2009, 115, 2188–2198. [Google Scholar] [CrossRef]
  189. Batchelor, T.T.; Duda, D.G.; di Tomaso, E.; Ancukiewicz, M.; Plotkin, S.R.; Gerstner, E.; Eichler, A.F.; Drappatz, J.; Hochberg, F.H.; Benner, T.; et al. Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. J. Clin. Oncol. 2010, 28, 2817–2823. [Google Scholar] [CrossRef]
  190. Batchelor, T.T.; Mulholland, P.; Neyns, B.; Nabors, L.B.; Campone, M.; Wick, A.; Mason, W.; Mikkelsen, T.; Phuphanich, S.; Ashby, L.S.; et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J. Clin. Oncol. 2013, 31, 3212–3218. [Google Scholar] [CrossRef] [Green Version]
  191. Awada, G.; Ben Salama, L.; De Cremer, J.; Schwarze, J.K.; Fischbuch, L.; Seynaeve, L.; Du Four, S.; Vanbinst, A.M.; Michotte, A.; Everaert, H.; et al. Axitinib plus avelumab in the treatment of recurrent glioblastoma: A stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J. Immunother. Cancer 2020, 8, e001146. [Google Scholar] [CrossRef]
  192. Duerinck, J.; Du Four, S.; Vandervorst, F.; D’Haene, N.; Le Mercier, M.; Michotte, A.; Van Binst, A.M.; Everaert, H.; Salmon, I.; Bouttens, F.; et al. Randomized phase II study of axitinib versus physicians best alternative choice of therapy in patients with recurrent glioblastoma. J. Neurooncol. 2016, 128, 147–155. [Google Scholar] [CrossRef]
  193. Duerinck, J.; Du Four, S.; Bouttens, F.; Andre, C.; Verschaeve, V.; Van Fraeyenhove, F.; Chaskis, C.; D’Haene, N.; Le Mercier, M.; Rogiers, A.; et al. Randomized phase II trial comparing axitinib with the combination of axitinib and lomustine in patients with recurrent glioblastoma. J. Neurooncol. 2018, 136, 115–125. [Google Scholar] [CrossRef]
  194. Wick, W.; Puduvalli, V.K.; Chamberlain, M.C.; van den Bent, M.J.; Carpentier, A.F.; Cher, L.M.; Mason, W.; Weller, M.; Hong, S.; Musib, L.; et al. Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J. Clin. Oncol. 2010, 28, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
  195. De Groot, J.F.; Piao, Y.; Tran, H.; Gilbert, M.; Wu, H.K.; Liu, J.; Bekele, B.N.; Cloughesy, T.; Mehta, M.; Robins, H.I.; et al. Myeloid biomarkers associated with glioblastoma response to anti-VEGF therapy with aflibercept. Clin. Cancer Res. 2011, 17, 4872–4881. [Google Scholar] [CrossRef] [Green Version]
  196. Wirsching, H.G.; Roth, P.; Weller, M. A vasculature-centric approach to developing novel treatment options for glioblastoma. Expert Opin. Ther. Targets 2021, 25, 87–100. [Google Scholar] [CrossRef]
  197. Malric, L.; Monferran, S.; Gilhodes, J.; Boyrie, S.; Dahan, P.; Skuli, N.; Sesen, J.; Filleron, T.; Kowalski-Chauvel, A.; Cohen-Jonathan Moyal, E.; et al. Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: An update. Oncotarget 2017, 8, 86947–86968. [Google Scholar] [CrossRef] [Green Version]
  198. Kreisl, T.N.; Kim, L.; Moore, K.; Duic, P.; Royce, C.; Stroud, I.; Garren, N.; Mackey, M.; Butman, J.A.; Camphausen, K.; et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 740–745. [Google Scholar] [CrossRef]
  199. Raizer, J.J.; Grimm, S.; Chamberlain, M.C.; Nicholas, M.K.; Chandler, J.P.; Muro, K.; Dubner, S.; Rademaker, A.W.; Renfrow, J.; Bredel, M. A phase 2 trial of single-agent bevacizumab given in an every-3-week schedule for patients with recurrent high-grade gliomas. Cancer 2010, 116, 5297–5305. [Google Scholar] [CrossRef]
  200. Nagane, M.; Nishikawa, R.; Narita, Y.; Kobayashi, H.; Takano, S.; Shinoura, N.; Aoki, T.; Sugiyama, K.; Kuratsu, J.; Muragaki, Y.; et al. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. JPN J. Clin. Oncol. 2012, 42, 887–895. [Google Scholar] [CrossRef] [Green Version]
  201. Reyes-Botero, G.; Cartalat-Carel, S.; Chinot, O.L.; Barrie, M.; Taillandier, L.; Beauchesne, P.; Catry-Thomas, I.; Barrière, J.; Guillamo, J.S.; Fabbro, M.; et al. Temozolomide Plus Bevacizumab in Elderly Patients with Newly Diagnosed Glioblastoma and Poor Performance Status: An ANOCEF Phase II Trial (ATAG). Oncologist 2018, 23, e524–e544. [Google Scholar] [CrossRef] [Green Version]
  202. Balana, C.; De Las Penas, R.; Sepúlveda, J.M.; Gil-Gil, M.J.; Luque, R.; Gallego, O.; Carrato, C.; Sanz, C.; Reynes, G.; Herrero, A.; et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: The GENOM 009 randomized phase II trial. J. Neurooncol. 2016, 127, 569–579. [Google Scholar] [CrossRef]
  203. Lou, E.; Peters, K.B.; Sumrall, A.L.; Desjardins, A.; Reardon, D.A.; Lipp, E.S.; Herndon, J.E., 2nd; Coan, A.; Bailey, L.; Turner, S.; et al. Phase II trial of upfront bevacizumab and temozolomide for unresectable or multifocal glioblastoma. Cancer Med. 2013, 2, 185–195. [Google Scholar] [CrossRef]
  204. Desjardins, A.; Reardon, D.A.; Coan, A.; Marcello, J.; Herndon, J.E., 2nd; Bailey, L.; Peters, K.B.; Friedman, H.S.; Vredenburgh, J.J. Bevacizumab and daily temozolomide for recurrent glioblastoma. Cancer 2012, 118, 1302–1312. [Google Scholar] [CrossRef]
  205. Wirsching, H.G.; Tabatabai, G.; Roelcke, U.; Hottinger, A.F.; Jörger, F.; Schmid, A.; Plasswilm, L.; Schrimpf, D.; Mancao, C.; Capper, D.; et al. Bevacizumab plus hypofractionated radiotherapy versus radiotherapy alone in elderly patients with glioblastoma: The randomized, open-label, phase II ARTE trial. Ann. Oncol. 2018, 29, 1423–1430. [Google Scholar] [CrossRef]
  206. Van Linde, M.E.; Verhoeff, J.J.; Richel, D.J.; van Furth, W.R.; Reijneveld, J.C.; Verheul, H.M.; Stalpers, L.J. Bevacizumab in combination with radiotherapy and temozolomide for patients with newly diagnosed glioblastoma multiforme. Oncologist 2015, 20, 107–108. [Google Scholar] [CrossRef] [Green Version]
  207. Narayana, A.; Gruber, D.; Kunnakkat, S.; Golfinos, J.G.; Parker, E.; Raza, S.; Zagzag, D.; Eagan, P.; Gruber, M.L. A clinical trial of bevacizumab, temozolomide, and radiation for newly diagnosed glioblastoma. J. Neurosurg. 2012, 116, 341–345. [Google Scholar] [CrossRef]
  208. Lai, A.; Tran, A.; Nghiemphu, P.L.; Pope, W.B.; Solis, O.E.; Selch, M.; Filka, E.; Yong, W.H.; Mischel, P.S.; Liau, L.M.; et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J. Clin. Oncol. 2011, 29, 142–148. [Google Scholar] [CrossRef] [Green Version]
  209. Omuro, A.; Beal, K.; Gutin, P.; Karimi, S.; Correa, D.D.; Kaley, T.J.; DeAngelis, L.M.; Chan, T.A.; Gavrilovic, I.T.; Nolan, C.; et al. Phase II study of bevacizumab, temozolomide, and hypofractionated stereotactic radiotherapy for newly diagnosed glioblastoma. Clin. Cancer Res. 2014, 20, 5023–5031. [Google Scholar] [CrossRef] [Green Version]
  210. Ney, D.E.; Carlson, J.A.; Damek, D.M.; Gaspar, L.E.; Kavanagh, B.D.; Kleinschmidt-DeMasters, B.K.; Waziri, A.E.; Lillehei, K.O.; Reddy, K.; Chen, C. Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma. J. Neurooncol. 2015, 122, 135–143. [Google Scholar] [CrossRef]
  211. Vredenburgh, J.J.; Desjardins, A.; Reardon, D.A.; Peters, K.B.; Herndon, J.E., 2nd; Marcello, J.; Kirkpatrick, J.P.; Sampson, J.H.; Bailey, L.; Threatt, S.; et al. The addition of bevacizumab to standard radiation therapy and temozolomide followed by bevacizumab, temozolomide, and irinotecan for newly diagnosed glioblastoma. Clin. Cancer Res. 2011, 17, 4119–4124. [Google Scholar] [CrossRef] [Green Version]
  212. Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  213. Chauffert, B.; Feuvret, L.; Bonnetain, F.; Taillandier, L.; Frappaz, D.; Taillia, H.; Schott, R.; Honnorat, J.; Fabbro, M.; Tennevet, I.; et al. Randomized phase II trial of irinotecan and bevacizumab as neo-adjuvant and adjuvant to temozolomide-based chemoradiation compared with temozolomide-chemoradiation for unresectable glioblastoma: Final results of the TEMAVIR study from ANOCEF. Ann. Oncol. 2014, 25, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
  214. Peters, K.B.; Lou, E.; Desjardins, A.; Reardon, D.A.; Lipp, E.S.; Miller, E.; Herndon, J.E., 2nd; McSherry, F.; Friedman, H.S.; Vredenburgh, J.J. Phase II Trial of Upfront Bevacizumab, Irinotecan, and Temozolomide for Unresectable Glioblastoma. Oncologist 2015, 20, 727–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  215. Herrlinger, U.; Schäfer, N.; Steinbach, J.P.; Weyerbrock, A.; Hau, P.; Goldbrunner, R.; Friedrich, F.; Rohde, V.; Ringel, F.; Schlegel, U.; et al. Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial. J. Clin. Oncol. 2016, 34, 1611–1619. [Google Scholar] [CrossRef]
  216. Gilbert, M.R.; Pugh, S.L.; Aldape, K.; Sorensen, A.G.; Mikkelsen, T.; Penas-Prado, M.; Bokstein, F.; Kwok, Y.; Lee, R.J.; Mehta, M. NRG oncology RTOG 0625: A randomized phase II trial of bevacizumab with either irinotecan or dose-dense temozolomide in recurrent glioblastoma. J. Neurooncol. 2017, 131, 193–199. [Google Scholar] [CrossRef] [Green Version]
  217. Hofland, K.F.; Hansen, S.; Sorensen, M.; Engelholm, S.; Schultz, H.P.; Muhic, A.; Grunnet, K.; Ask, A.; Costa, J.C.; Kristiansen, C.; et al. Neoadjuvant bevacizumab and irinotecan versus bevacizumab and temozolomide followed by concomitant chemoradiotherapy in newly diagnosed glioblastoma multiforme: A randomized phase II study. Acta Oncol. 2014, 53, 939–944. [Google Scholar] [CrossRef] [Green Version]
  218. Brandes, A.A.; Gil-Gil, M.; Saran, F.; Carpentier, A.F.; Nowak, A.K.; Mason, W.; Zagonel, V.; Dubois, F.; Finocchiaro, G.; Fountzilas, G.; et al. A Randomized Phase II Trial (TAMIGA) Evaluating the Efficacy and Safety of Continuous Bevacizumab Through Multiple Lines of Treatment for Recurrent Glioblastoma. Oncologist 2019, 24, 521–528. [Google Scholar] [CrossRef] [Green Version]
  219. Taal, W.; Oosterkamp, H.M.; Walenkamp, A.M.; Dubbink, H.J.; Beerepoot, L.V.; Hanse, M.C.; Buter, J.; Honkoop, A.H.; Boerman, D.; de Vos, F.Y.; et al. Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 trial. Lancet Oncol. 2014, 15, 943–953. [Google Scholar] [CrossRef]
  220. Weathers, S.P.; Han, X.; Liu, D.D.; Conrad, C.A.; Gilbert, M.R.; Loghin, M.E.; O’Brien, B.J.; Penas-Prado, M.; Puduvalli, V.K.; Tremont-Lukats, I.; et al. A randomized phase II trial of standard dose bevacizumab versus low dose bevacizumab plus lomustine (CCNU) in adults with recurrent glioblastoma. J. Neurooncol. 2016, 129, 487–494. [Google Scholar] [CrossRef]
  221. Field, K.M.; Simes, J.; Nowak, A.K.; Cher, L.; Wheeler, H.; Hovey, E.J.; Brown, C.S.; Barnes, E.H.; Sawkins, K.; Livingstone, A.; et al. Randomized phase 2 study of carboplatin and bevacizumab in recurrent glioblastoma. Neuro Oncol. 2015, 17, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
  222. Reardon, D.A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sampson, J.H.; McLendon, R.E.; Herndon, J.E., 2nd; Bulusu, A.; Threatt, S.; Friedman, A.H.; et al. Phase II study of carboplatin, irinotecan, and bevacizumab for bevacizumab naïve, recurrent glioblastoma. J. Neurooncol. 2012, 107, 155–164. [Google Scholar] [CrossRef] [Green Version]
  223. Hainsworth, J.D.; Becker, K.P.; Mekhail, T.; Chowdhary, S.A.; Eakle, J.F.; Wright, D.; Langdon, R.M.; Yost, K.J.; Padula, G.D.A.; West-Osterfield, K.; et al. Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J. Neurooncol. 2019, 144, 303–311. [Google Scholar] [CrossRef]
  224. Galanis, E.; Anderson, S.K.; Twohy, E.L.; Carrero, X.W.; Dixon, J.G.; Tran, D.D.; Jeyapalan, S.A.; Anderson, D.M.; Kaufmann, T.J.; Feathers, R.W.; et al. A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer 2019, 125, 3790–3800. [Google Scholar] [CrossRef]
  225. Bota, D.A.; Chung, J.; Dandekar, M.; Carrillo, J.A.; Kong, X.T.; Fu, B.D.; Hsu, F.P.; Schönthal, A.H.; Hofman, F.M.; Chen, T.C.; et al. Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: Interim results and correlations with CD4(+) T-lymphocyte counts. CNS Oncol. 2018, 7, Cns22. [Google Scholar] [CrossRef] [Green Version]
  226. Cloughesy, T.; Finocchiaro, G.; Belda-Iniesta, C.; Recht, L.; Brandes, A.A.; Pineda, E.; Mikkelsen, T.; Chinot, O.L.; Balana, C.; Macdonald, D.R.; et al. Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients With Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O(6)-Methylguanine-DNA Methyltransferase Biomarker Analyses. J. Clin. Oncol. 2017, 35, 343–351. [Google Scholar] [CrossRef] [Green Version]
  227. Lassen, U.; Sorensen, M.; Gaziel, T.B.; Hasselbalch, B.; Poulsen, H.S. Phase II study of bevacizumab and temsirolimus combination therapy for recurrent glioblastoma multiforme. Anticancer Res. 2013, 33, 1657–1660. [Google Scholar]
  228. Odia, Y.; Sul, J.; Shih, J.H.; Kreisl, T.N.; Butman, J.A.; Iwamoto, F.M.; Fine, H.A. A Phase II trial of tandutinib (MLN 518) in combination with bevacizumab for patients with recurrent glioblastoma. CNS Oncol. 2016, 5, 59–67. [Google Scholar] [CrossRef] [Green Version]
  229. Brandes, A.A.; Finocchiaro, G.; Zagonel, V.; Reni, M.; Caserta, C.; Fabi, A.; Clavarezza, M.; Maiello, E.; Eoli, M.; Lombardi, G.; et al. AVAREG: A phase II, randomized, noncomparative study of fotemustine or bevacizumab for patients with recurrent glioblastoma. Neuro Oncol. 2016, 18, 1304–1312. [Google Scholar] [CrossRef]
  230. Soffietti, R.; Trevisan, E.; Bertero, L.; Cassoni, P.; Morra, I.; Fabrini, M.G.; Pasqualetti, F.; Lolli, I.; Castiglione, A.; Ciccone, G.; et al. Bevacizumab and fotemustine for recurrent glioblastoma: A phase II study of AINO (Italian Association of Neuro-Oncology). J. Neurooncol. 2014, 116, 533–541. [Google Scholar] [CrossRef] [Green Version]
  231. Hainsworth, J.D.; Shih, K.C.; Shepard, G.C.; Tillinghast, G.W.; Brinker, B.T.; Spigel, D.R. Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/everolimus as first-line treatment for patients with glioblastoma. Clin. Adv. Hematol. Oncol. 2012, 10, 240–246. [Google Scholar]
  232. Reardon, D.A.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.; Rich, J.N.; McLendon, R.; Herndon, J.E., 2nd; Marcello, J.; Threatt, S.; et al. Phase II study of metronomic chemotherapy with bevacizumab for recurrent glioblastoma after progression on bevacizumab therapy. J. Neurooncol. 2011, 103, 371–379. [Google Scholar] [CrossRef] [Green Version]
  233. Lee, E.Q.; Reardon, D.A.; Schiff, D.; Drappatz, J.; Muzikansky, A.; Grimm, S.A.; Norden, A.D.; Nayak, L.; Beroukhim, R.; Rinne, M.L.; et al. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma. Neuro Oncol. 2015, 17, 862–867. [Google Scholar] [CrossRef] [Green Version]
  234. Clarke, J.; Neil, E.; Terziev, R.; Gutin, P.; Barani, I.; Kaley, T.; Lassman, A.B.; Chan, T.A.; Yamada, J.; DeAngelis, L.; et al. Multicenter, Phase 1, Dose Escalation Study of Hypofractionated Stereotactic Radiation Therapy with Bevacizumab for Recurrent Glioblastoma and Anaplastic Astrocytoma. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 797–804. [Google Scholar] [CrossRef]
  235. Galanis, E.; Anderson, S.K.; Lafky, J.M.; Uhm, J.H.; Giannini, C.; Kumar, S.K.; Kimlinger, T.K.; Northfelt, D.W.; Flynn, P.J.; Jaeckle, K.A.; et al. Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): A north central cancer treatment group trial. Clin. Cancer Res. 2013, 19, 4816–4823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  236. Sathornsumetee, S.; Desjardins, A.; Vredenburgh, J.J.; McLendon, R.E.; Marcello, J.; Herndon, J.E.; Mathe, A.; Hamilton, M.; Rich, J.N.; Norfleet, J.A.; et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol. 2010, 12, 1300–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  237. Ghiaseddin, A.; Reardon, D.; Massey, W.; Mannerino, A.; Lipp, E.S.; Herndon, J.E., 2nd; McSherry, F.; Desjardins, A.; Randazzo, D.; Friedman, H.S.; et al. Phase II Study of Bevacizumab and Vorinostat for Patients with Recurrent World Health Organization Grade 4 Malignant Glioma. Oncologist 2018, 23, 157-e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  238. Peters, K.B.; Lipp, E.S.; Miller, E.; Herndon, J.E., 2nd; McSherry, F.; Desjardins, A.; Reardon, D.A.; Friedman, H.S. Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas. J. Neurooncol. 2018, 137, 349–356. [Google Scholar] [CrossRef]
  239. Odia, Y.; Iwamoto, F.M.; Moustakas, A.; Fraum, T.J.; Salgado, C.A.; Li, A.; Kreisl, T.N.; Sul, J.; Butman, J.A.; Fine, H.A. A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J. Neurooncol. 2016, 127, 127–135. [Google Scholar] [CrossRef] [PubMed]
  240. Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.F.; Sorensen, A.G.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.R.; Lassman, A.B.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef]
  241. Thompson, G.; Mills, S.J.; Coope, D.J.; O’Connor, J.P.; Jackson, A. Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours. Br. J. Radiol. 2011, 84, S127–S144. [Google Scholar] [CrossRef] [Green Version]
  242. Gaykema, S.B.; Brouwers, A.H.; Lub-de Hooge, M.N.; Pleijhuis, R.G.; Timmer-Bosscha, H.; Pot, L.; van Dam, G.M.; van der Meulen, S.B.; de Jong, J.R.; Bart, J.; et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J. Nucl. Med. 2013, 54, 1014–1018. [Google Scholar] [CrossRef] [Green Version]
  243. Oosting, S.F.; Brouwers, A.H.; van Es, S.C.; Nagengast, W.B.; Oude Munnink, T.H.; Lub-de Hooge, M.N.; Hollema, H.; de Jong, J.R.; de Jong, I.J.; de Haas, S.; et al. 89Zr-bevacizumab PET visualizes heterogeneous tracer accumulation in tumor lesions of renal cell carcinoma patients and differential effects of antiangiogenic treatment. J. Nucl. Med. 2015, 56, 63–69. [Google Scholar] [CrossRef] [Green Version]
  244. Jansen, M.H.; Lagerweij, T.; Sewing, A.C.; Vugts, D.J.; van Vuurden, D.G.; Molthoff, C.F.; Caretti, V.; Veringa, S.J.; Petersen, N.; Carcaboso, A.M.; et al. Bevacizumab Targeting Diffuse Intrinsic Pontine Glioma: Results of 89Zr-Bevacizumab PET Imaging in Brain Tumor Models. Mol. Cancer Ther. 2016, 15, 2166–2174. [Google Scholar] [CrossRef] [Green Version]
  245. Rainer, E.; Wang, H.; Traub-Weidinger, T.; Widhalm, G.; Fueger, B.; Chang, J.; Zhu, Z.; Marosi, C.; Haug, A.; Hacker, M.; et al. The prognostic value of [123I]-vascular endothelial growth factor ([(123I]-VEGF) in glioma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2396–2403. [Google Scholar] [CrossRef] [Green Version]
  246. Laffon, E.; Marthan, R. A three-time-point method for assessing kinetic parameters of (64)Cu-labeled Ramucirumab trapping in VEGFR-2 positive lung tumors. Phys. Med. 2017, 43, 1–5. [Google Scholar] [CrossRef]
  247. Luo, H.; England, C.G.; Graves, S.A.; Sun, H.; Liu, G.; Nickles, R.J.; Cai, W. PET Imaging of VEGFR-2 Expression in Lung Cancer with 64Cu-Labeled Ramucirumab. J. Nucl. Med. 2016, 57, 285–290. [Google Scholar] [CrossRef] [Green Version]
  248. Nagengast, W.B.; Lub-de Hooge, M.N.; Oosting, S.F.; den Dunnen, W.F.; Warnders, F.J.; Brouwers, A.H.; de Jong, J.R.; Price, P.M.; Hollema, H.; Hospers, G.A.; et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011, 71, 143–153. [Google Scholar] [CrossRef] [Green Version]
  249. Kameswaran, M.; Sarma, H.D.; Dash, A. Preclinical evaluation of (131)I-Bevacizumab—A prospective agent for radioimmunotherapy in VEGF expressing cancers. Appl. Radiat. Isot. 2017, 123, 109–113. [Google Scholar] [CrossRef]
  250. Stollman, T.H.; Scheer, M.G.; Leenders, W.P.; Verrijp, K.C.; Soede, A.C.; Oyen, W.J.; Ruers, T.J.; Boerman, O.C. Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody. Int. J. Cancer 2008, 122, 2310–2314. [Google Scholar] [CrossRef]
  251. Mitran, B.; Güler, R.; Roche, F.P.; Lindström, E.; Selvaraju, R.K.; Fleetwood, F.; Rinne, S.S.; Claesson-Welsh, L.; Tolmachev, V.; Ståhl, S.; et al. Radionuclide imaging of VEGFR2 in glioma vasculature using biparatopic affibody conjugate: Proof-of-principle in a murine model. Theranostics 2018, 8, 4462–4476. [Google Scholar] [CrossRef]
  252. Chan, C.; Sandhu, J.; Guha, A.; Scollard, D.A.; Wang, J.; Chen, P.; Bai, K.; Lee, L.; Reilly, R.M. A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for (111)In for imaging tumor angiogenesis. J. Nucl. Med. 2005, 46, 1745–1752. [Google Scholar]
  253. Cai, W.; Chen, K.; Mohamedali, K.A.; Cao, Q.; Gambhir, S.S.; Rosenblum, M.G.; Chen, X. PET of vascular endothelial growth factor receptor expression. J. Nucl. Med. 2006, 47, 2048–2056. [Google Scholar]
  254. Hu, K.; Shang, J.; Xie, L.; Hanyu, M.; Zhang, Y.; Yang, Z.; Xu, H.; Wang, L.; Zhang, M.R. PET Imaging of VEGFR with a Novel (64)Cu-Labeled Peptide. ACS Omega 2020, 5, 8508–8514. [Google Scholar] [CrossRef] [Green Version]
  255. Chen, K.; Cai, W.; Li, Z.B.; Wang, H.; Chen, X. Quantitative PET imaging of VEGF receptor expression. Mol. Imaging Biol. 2009, 11, 15–22. [Google Scholar] [CrossRef] [PubMed]
  256. Cheng, F.; Guo, D. MET in glioma: Signaling pathways and targeted therapies. J. Exp. Clin. Cancer Res. 2019, 38, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  257. Kong, D.S.; Song, S.Y.; Kim, D.H.; Joo, K.M.; Yoo, J.S.; Koh, J.S.; Dong, S.M.; Suh, Y.L.; Lee, J.I.; Park, K.; et al. Prognostic significance of c-Met expression in glioblastomas. Cancer 2009, 115, 140–148. [Google Scholar] [CrossRef]
  258. Mulcahy, E.Q.X.; Colόn, R.R.; Abounader, R. HGF/MET Signaling in Malignant Brain Tumors. Int. J. Mol. Sci. 2020, 21, 7546. [Google Scholar] [CrossRef] [PubMed]
  259. Cruickshanks, N.; Zhang, Y.; Hine, S.; Gibert, M.; Yuan, F.; Oxford, M.; Grello, C.; Pahuski, M.; Dube, C.; Guessous, F.; et al. Discovery and Therapeutic Exploitation of Mechanisms of Resistance to MET Inhibitors in Glioblastoma. Clin. Cancer Res. 2019, 25, 663–673. [Google Scholar] [CrossRef] [Green Version]
  260. Cruickshanks, N.; Zhang, Y.; Yuan, F.; Pahuski, M.; Gibert, M.; Abounader, R. Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma. Cancers 2017, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  261. Wen, P.Y.; Schiff, D.; Cloughesy, T.F.; Raizer, J.J.; Laterra, J.; Smitt, M.; Wolf, M.; Oliner, K.S.; Anderson, A.; Zhu, M.; et al. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 2011, 13, 437–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  262. Affronti, M.L.; Jackman, J.G.; McSherry, F.; Herndon, J.E., 2nd; Massey, E.C., Jr.; Lipp, E.; Desjardins, A.; Friedman, H.S.; Vlahovic, G.; Vredenburgh, J.; et al. Phase II Study to Evaluate the Efficacy and Safety of Rilotumumab and Bevacizumab in Subjects with Recurrent Malignant Glioma. Oncologist 2018, 23, e889–e898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  263. Catenacci, D.V.T.; Tebbutt, N.C.; Davidenko, I.; Murad, A.M.; Al-Batran, S.E.; Ilson, D.H.; Tjulandin, S.; Gotovkin, E.; Karaszewska, B.; Bondarenko, I.; et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1467–1482. [Google Scholar] [CrossRef]
  264. Dhillon, S. Capmatinib: First Approval. Drugs 2020, 80, 1125–1131. [Google Scholar] [CrossRef]
  265. Van den Bent, M.; Azaro, A.; De Vos, F.; Sepulveda, J.; Yung, W.K.A.; Wen, P.Y.; Lassman, A.B.; Joerger, M.; Tabatabai, G.; Rodon, J.; et al. A Phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma. J. Neurooncol. 2020, 146, 79–89. [Google Scholar] [CrossRef] [Green Version]
  266. Hu, H.; Mu, Q.; Bao, Z.; Chen, Y.; Liu, Y.; Chen, J.; Wang, K.; Wang, Z.; Nam, Y.; Jiang, B.; et al. Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor. Cell 2018, 175, 1665–1678.e18. [Google Scholar] [CrossRef] [Green Version]
  267. Broniscer, A.; Jia, S.; Mandrell, B.; Hamideh, D.; Huang, J.; Onar-Thomas, A.; Gajjar, A.; Raimondi, S.C.; Tatevossian, R.G.; Stewart, C.F. Phase 1 trial, pharmacokinetics, and pharmacodynamics of dasatinib combined with crizotinib in children with recurrent or progressive high-grade and diffuse intrinsic pontine glioma. Pediatr. Blood Cancer 2018, 65, e27035. [Google Scholar] [CrossRef]
  268. Guessous, F.; Zhang, Y.; diPierro, C.; Marcinkiewicz, L.; Sarkaria, J.; Schiff, D.; Buchanan, S.; Abounader, R. An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth. Anticancer Agents Med. Chem. 2010, 10, 28–35. [Google Scholar] [CrossRef] [Green Version]
  269. Kim, H.; Hong, S.H.; Kim, J.Y.; Kim, I.C.; Park, Y.W.; Lee, S.J.; Song, S.W.; Kim, J.J.; Park, G.; Kim, T.M.; et al. Preclinical development of a humanized neutralizing antibody targeting HGF. Exp. Mol. Med. 2017, 49, e309. [Google Scholar] [CrossRef]
  270. Sa, J.K.; Kim, S.H.; Lee, J.K.; Cho, H.J.; Shin, Y.J.; Shin, H.; Koo, H.; Kim, D.; Lee, M.; Kang, W.; et al. Identification of genomic and molecular traits that present therapeutic vulnerability to HGF-targeted therapy in glioblastoma. Neuro Oncol. 2019, 21, 222–233. [Google Scholar] [CrossRef] [Green Version]
  271. Piao, Y.; Park, S.Y.; Henry, V.; Smith, B.D.; Tiao, N.; Flynn, D.L.; de Groot, J.F. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models. Neuro Oncol. 2016, 18, 1230–1241. [Google Scholar] [CrossRef] [Green Version]
  272. Knubel, K.H.; Pernu, B.M.; Sufit, A.; Nelson, S.; Pierce, A.M.; Keating, A.K. MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme. Oncotarget 2014, 5, 1338–1351. [Google Scholar] [CrossRef] [Green Version]
  273. Meng, L.; Shu, M.; Chen, Y.; Yang, D.; He, Q.; Zhao, H.; Feng, Z.; Liang, C.; Yu, K. A novel lead compound CM-118: Antitumor activity and new insight into the molecular mechanism and combination therapy strategy in c-Met- and ALK-dependent cancers. Cancer Biol. Ther. 2014, 15, 721–734. [Google Scholar] [CrossRef] [Green Version]
  274. Jia, H.; Dai, G.; Weng, J.; Zhang, Z.; Wang, Q.; Zhou, F.; Jiao, L.; Cui, Y.; Ren, Y.; Fan, S.; et al. Discovery of (S)-1-(1-(Imidazo[1,2-a]pyridin-6-yl)ethyl)-6-(1-methyl-1H-pyrazol-4-yl)-1H-[1,2,3]triazolo[4,5-b]pyrazine (volitinib) as a highly potent and selective mesenchymal-epithelial transition factor (c-Met) inhibitor in clinical development for treatment of cancer. J. Med. Chem. 2014, 57, 7577–7589. [Google Scholar] [CrossRef]
  275. Liu, X.; Wang, Q.; Yang, G.; Marando, C.; Koblish, H.K.; Hall, L.M.; Fridman, J.S.; Behshad, E.; Wynn, R.; Li, Y.; et al. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3. Clin. Cancer Res. 2011, 17, 7127–7138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  276. Wu, Y.; Li, Z.; Zhang, L.; Liu, G. Tivantinib Hampers the Proliferation of Glioblastoma Cells via PI3K/Akt/Mammalian Target of Rapamycin (mTOR) Signaling. Med. Sci. Monit. 2019, 25, 7383–7390. [Google Scholar] [CrossRef] [PubMed]
  277. Guo, G.; Narayan, R.N.; Horton, L.; Patel, T.R.; Habib, A.A. The Role of EGFR-Met Interactions in the Pathogenesis of Glioblastoma and Resistance to Treatment. Curr. Cancer Drug Targets 2017, 17, 297–302. [Google Scholar] [CrossRef] [PubMed]
  278. Jahangiri, A.; De Lay, M.; Miller, L.M.; Carbonell, W.S.; Hu, Y.L.; Lu, K.; Tom, M.W.; Paquette, J.; Tokuyasu, T.A.; Tsao, S.; et al. Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clin. Cancer Res. 2013, 19, 1773–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  279. Lu, K.V.; Chang, J.P.; Parachoniak, C.A.; Pandika, M.M.; Aghi, M.K.; Meyronet, D.; Isachenko, N.; Fouse, S.D.; Phillips, J.J.; Cheresh, D.A.; et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012, 22, 21–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  280. Jun, H.J.; Acquaviva, J.; Chi, D.; Lessard, J.; Zhu, H.; Woolfenden, S.; Bronson, R.T.; Pfannl, R.; White, F.; Housman, D.E.; et al. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme. Oncogene 2012, 31, 3039–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  281. Han, Z.; Xiao, Y.; Wang, K.; Yan, J.; Xiao, Z.; Fang, F.; Jin, Z.; Liu, Y.; Sun, X.; Shen, B. Development of a SPECT Tracer to Image c-Met Expression in a Xenograft Model of Non-Small Cell Lung Cancer. J. Nucl. Med. 2018, 59, 1686–1691. [Google Scholar] [CrossRef] [Green Version]
  282. Knudsen, B.S.; Zhao, P.; Resau, J.; Cottingham, S.; Gherardi, E.; Xu, E.; Berghuis, B.; Daugherty, J.; Grabinski, T.; Toro, J.; et al. A novel multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical and clinical settings. Appl. Immunohistochem. Mol. Morphol. 2009, 17, 57–67. [Google Scholar] [CrossRef] [Green Version]
  283. Han, Z.; Wu, Y.; Wang, K.; Xiao, Y.; Cheng, Z.; Sun, X.; Shen, B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: A systematic review. EJNMMI Res. 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
  284. Luo, H.; Hong, H.; Slater, M.R.; Graves, S.A.; Shi, S.; Yang, Y.; Nickles, R.J.; Fan, F.; Cai, W. PET of c-Met in Cancer with 64Cu-Labeled Hepatocyte Growth Factor. J. Nucl. Med. 2015, 56, 758–763. [Google Scholar] [CrossRef] [Green Version]
  285. Pool, M.; Terwisscha van Scheltinga, A.G.T.; Kol, A.; Giesen, D.; de Vries, E.G.E.; Lub-de Hooge, M.N. (89)Zr-Onartuzumab PET imaging of c-MET receptor dynamics. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 1328–1336. [Google Scholar] [CrossRef] [Green Version]
  286. Jagoda, E.M.; Lang, L.; Bhadrasetty, V.; Histed, S.; Williams, M.; Kramer-Marek, G.; Mena, E.; Rosenblum, L.; Marik, J.; Tinianow, J.N.; et al. Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J. Nucl. Med. 2012, 53, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
  287. Price, E.W.; Carnazza, K.E.; Carlin, S.D.; Cho, A.; Edwards, K.J.; Sevak, K.K.; Glaser, J.M.; de Stanchina, E.; Janjigian, Y.Y.; Lewis, J.S. (89)Zr-DFO-AMG102 Immuno-PET to Determine Local Hepatocyte Growth Factor Protein Levels in Tumors for Enhanced Patient Selection. J. Nucl. Med. 2017, 58, 1386–1394. [Google Scholar] [CrossRef] [Green Version]
  288. Kim, E.M.; Park, E.H.; Cheong, S.J.; Lee, C.M.; Kim, D.W.; Jeong, H.J.; Lim, S.T.; Sohn, M.H.; Kim, K.; Chung, J. Characterization, biodistribution and small-animal SPECT of I-125-labeled c-Met binding peptide in mice bearing c-Met receptor tyrosine kinase-positive tumor xenografts. Nucl. Med. Biol 2009, 36, 371–378. [Google Scholar] [CrossRef]
  289. Kim, E.M.; Jeong, M.H.; Kim, D.W.; Jeong, H.J.; Lim, S.T.; Sohn, M.H. Iodine 125-labeled mesenchymal-epithelial transition factor binding peptide-click-cRGDyk heterodimer for glioma imaging. Cancer Sci. 2011, 102, 1516–1521. [Google Scholar] [CrossRef]
  290. Arulappu, A.; Battle, M.; Eisenblaetter, M.; McRobbie, G.; Khan, I.; Monypenny, J.; Weitsman, G.; Galazi, M.; Hoppmann, S.; Gazinska, P.; et al. c-Met PET Imaging Detects Early-Stage Locoregional Recurrence of Basal-Like Breast Cancer. J. Nucl. Med. 2016, 57, 765–770. [Google Scholar] [CrossRef] [Green Version]
  291. Fomchenko, E.I.; Holland, E.C. Platelet-derived growth factor-mediated gliomagenesis and brain tumor recruitment. Neurosurg. Clin. N. Am. 2007, 18, 39–58. [Google Scholar] [CrossRef]
  292. Nazarenko, I.; Hede, S.M.; He, X.; Hedrén, A.; Thompson, J.; Lindström, M.S.; Nistér, M. PDGF and PDGF receptors in glioma. Upsala J. Med. Sci. 2012, 117, 99–112. [Google Scholar] [CrossRef] [Green Version]
  293. Cantanhede, I.G.; de Oliveira, J.R.M. PDGF Family Expression in Glioblastoma Multiforme: Data Compilation from Ivy Glioblastoma Atlas Project Database. Sci. Rep. 2017, 7, 15271. [Google Scholar] [CrossRef] [Green Version]
  294. Szerlip, N.J.; Pedraza, A.; Chakravarty, D.; Azim, M.; McGuire, J.; Fang, Y.; Ozawa, T.; Holland, E.C.; Huse, J.T.; Jhanwar, S.; et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc. Natl. Acad. Sci. USA 2012, 109, 3041–3046. [Google Scholar] [CrossRef] [Green Version]
  295. Kim, Y.; Kim, E.; Wu, Q.; Guryanova, O.; Hitomi, M.; Lathia, J.D.; Serwanski, D.; Sloan, A.E.; Weil, R.J.; Lee, J.; et al. Platelet-derived growth factor receptors differentially inform intertumoral and intratumoral heterogeneity. Genes Dev. 2012, 26, 1247–1262. [Google Scholar] [CrossRef] [Green Version]
  296. Batchelor, T.T.; Gerstner, E.R.; Ye, X.; Desideri, S.; Duda, D.G.; Peereboom, D.; Lesser, G.J.; Chowdhary, S.; Wen, P.Y.; Grossman, S.; et al. Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-β tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Neuro Oncol. 2017, 19, 567–575. [Google Scholar] [CrossRef] [Green Version]
  297. Picconi, D.; Juarez, T.; Kesari, S. ACTR-56. Phase II trial of nilotinib in PDGFR-alpha enriched recurrent glioblastoma. Neuro Oncol. 2019, 21, vi26. [Google Scholar] [CrossRef]
  298. Alexandru, O.; Sevastre, A.S.; Castro, J.; Artene, S.A.; Tache, D.E.; Purcaru, O.S.; Sfredel, V.; Tataranu, L.G.; Dricu, A. Platelet-Derived Growth Factor Receptor and Ionizing Radiation in High Grade Glioma Cell Lines. Int. J. Mol. Sci. 2019, 20, 4663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  299. Popescu, A.M.; Alexandru, O.; Brindusa, C.; Purcaru, S.O.; Tache, D.E.; Tataranu, L.G.; Taisescu, C.; Dricu, A. Targeting the VEGF and PDGF signaling pathway in glioblastoma treatment. Int. J. Clin. Exp. Pathol. 2015, 8, 7825–7837. [Google Scholar] [PubMed]
  300. Ziegler, D.S.; Wright, R.D.; Kesari, S.; Lemieux, M.E.; Tran, M.A.; Jain, M.; Zawel, L.; Kung, A.L. Resistance of human glioblastoma multiforme cells to growth factor inhibitors is overcome by blockade of inhibitor of apoptosis proteins. J. Clin. Investig. 2008, 118, 3109–3122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  301. Lokker, N.A.; Sullivan, C.M.; Hollenbach, S.J.; Israel, M.A.; Giese, N.A. Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res. 2002, 62, 3729–3735. [Google Scholar] [PubMed]
  302. Roberts, W.G.; Whalen, P.M.; Soderstrom, E.; Moraski, G.; Lyssikatos, J.P.; Wang, H.F.; Cooper, B.; Baker, D.A.; Savage, D.; Dalvie, D.; et al. Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res. 2005, 65, 957–966. [Google Scholar] [PubMed]
  303. Kil, K.E.; Ding, Y.S.; Lin, K.S.; Alexoff, D.; Kim, S.W.; Shea, C.; Xu, Y.; Muench, L.; Fowler, J.S. Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec). Nucl. Med. Biol. 2007, 34, 153–163. [Google Scholar] [CrossRef] [Green Version]
  304. Tolmachev, V.; Varasteh, Z.; Honarvar, H.; Hosseinimehr, S.J.; Eriksson, O.; Jonasson, P.; Frejd, F.Y.; Abrahmsen, L.; Orlova, A. Imaging of platelet-derived growth factor receptor β expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591. J. Nucl. Med. 2014, 55, 294–300. [Google Scholar] [CrossRef] [Green Version]
  305. Strand, J.; Varasteh, Z.; Eriksson, O.; Abrahmsen, L.; Orlova, A.; Tolmachev, V. Gallium-68-labeled affibody molecule for PET imaging of PDGFRβ expression in vivo. Mol. Pharm. 2014, 11, 3957–3964. [Google Scholar] [CrossRef]
  306. Effendi, N.; Mishiro, K.; Takarada, T.; Makino, A.; Yamada, D.; Kitamura, Y.; Shiba, K.; Kiyono, Y.; Odani, A.; Ogawa, K. Radiobrominated benzimidazole-quinoline derivatives as Platelet-derived growth factor receptor beta (PDGFRβ) imaging probes. Sci. Rep. 2018, 8, 10369. [Google Scholar] [CrossRef]
  307. Effendi, N.; Ogawa, K.; Mishiro, K.; Takarada, T.; Yamada, D.; Kitamura, Y.; Shiba, K.; Maeda, T.; Odani, A. Synthesis and evaluation of radioiodinated 1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}piperidin-4-amine derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg. Med. Chem. 2017, 25, 5576–5585. [Google Scholar] [CrossRef] [Green Version]
  308. Wagner, M.; Wuest, M.; Hamann, I.; Lopez-Campistrous, A.; McMullen, T.P.W.; Wuest, F. Molecular imaging of platelet-derived growth factor receptor-alpha (PDGFRα) in papillary thyroid cancer using immuno-PET. Nucl. Med. Biol. 2018, 58, 51–58. [Google Scholar] [CrossRef]
  309. Effendi, N.; Mishiro, K.; Shiba, K.; Kinuya, S.; Ogawa, K. Development of Radiogallium-Labeled Peptides for Platelet-Derived Growth Factor Receptor β (PDGFRβ) Imaging: Influence of Different Linkers. Molecules 2020, 26, 41. [Google Scholar] [CrossRef]
  310. Doubrovin, M.; Kochetkova, T.; Santos, E.; Veach, D.R.; Smith-Jones, P.; Pillarsetty, N.; Balatoni, J.; Bornmann, W.; Gelovani, J.; Larson, S.M. (124)I-iodopyridopyrimidinone for PET of Abl kinase-expressing tumors in vivo. J. Nucl. Med. 2010, 51, 121–129. [Google Scholar] [CrossRef] [Green Version]
  311. Benezra, M.; Hambardzumyan, D.; Penate-Medina, O.; Veach, D.R.; Pillarsetty, N.; Smith-Jones, P.; Phillips, E.; Ozawa, T.; Zanzonico, P.B.; Longo, V.; et al. Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia 2012, 14, 1132–1143. [Google Scholar] [CrossRef] [Green Version]
  312. Peng, Z.; Maxwell, D.S.; Sun, D.; Bhanu Prasad, B.A.; Pal, A.; Wang, S.; Balatoni, J.; Ghosh, P.; Lim, S.T.; Volgin, A.; et al. Imatinib analogs as potential agents for PET imaging of Bcr-Abl and c-KIT expression at a kinase level. Bioorg. Med. Chem. 2014, 22, 623–632. [Google Scholar] [CrossRef] [Green Version]
  313. Caballero, J.; Muñoz, C.; Alzate-Morales, J.H.; Cunha, S.; Gano, L.; Bergmann, R.; Steinbach, J.; Kniess, T. Synthesis, in silico, in vitro, and in vivo investigation of 5-[¹¹C]methoxy-substituted sunitinib, a tyrosine kinase inhibitor of VEGFR-2. Eur. J. Med. Chem. 2012, 58, 272–280. [Google Scholar] [CrossRef]
  314. Slobbe, P.; Poot, A.J.; Haumann, R.; Schuit, R.C.; Windhorst, A.D.; van Dongen, G.A. Two anti-angiogenic TKI-PET tracers, [(11)C]axitinib and [(11)C]nintedanib: Radiosynthesis, in vivo metabolism and initial biodistribution studies in rodents. Nucl. Med. Biol. 2016, 43, 612–624. [Google Scholar] [CrossRef]
  315. Poot, A.J.; van der Wildt, B.; Stigter-van Walsum, M.; Rongen, M.; Schuit, R.C.; Hendrikse, N.H.; Eriksson, J.; van Dongen, G.A.; Windhorst, A.D. [¹¹C]Sorafenib: Radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. Nucl. Med. Biol. 2013, 40, 488–497. [Google Scholar] [CrossRef] [Green Version]
  316. Jimenez-Pascual, A.; Siebzehnrubl, F.A. Fibroblast Growth Factor Receptor Functions in Glioblastoma. Cells 2019, 8, 715. [Google Scholar] [CrossRef] [Green Version]
  317. Jimenez-Pascual, A.; Lathia, J.D.; Siebzehnrubl, F.A. ADAMDEC1 and FGF2/FGFR1 signaling constitute a positive feedback loop to maintain GBM cancer stem cells. Mol. Cell Oncol. 2020, 7, 1684787. [Google Scholar] [CrossRef]
  318. Gouazé-Andersson, V.; Delmas, C.; Taurand, M.; Martinez-Gala, J.; Evrard, S.; Mazoyer, S.; Toulas, C.; Cohen-Jonathan-Moyal, E. FGFR1 Induces Glioblastoma Radioresistance through the PLCγ/Hif1α Pathway. Cancer Res. 2016, 76, 3036–3044. [Google Scholar] [CrossRef] [Green Version]
  319. Kowalski-Chauvel, A.; Gouaze-Andersson, V.; Baricault, L.; Martin, E.; Delmas, C.; Toulas, C.; Cohen-Jonathan-Moyal, E.; Seva, C. Alpha6-Integrin Regulates FGFR1 Expression through the ZEB1/YAP1 Transcription Complex in Glioblastoma Stem Cells Resulting in Enhanced Proliferation and Stemness. Cancers 2019, 11, 406. [Google Scholar] [CrossRef] [Green Version]
  320. Lasorella, A.; Sanson, M.; Iavarone, A. FGFR-TACC gene fusions in human glioma. Neuro Oncol. 2017, 19, 475–483. [Google Scholar] [CrossRef] [Green Version]
  321. Tabernero, J.; Bahleda, R.; Dienstmann, R.; Infante, J.R.; Mita, A.; Italiano, A.; Calvo, E.; Moreno, V.; Adamo, B.; Gazzah, A.; et al. Phase I Dose-Escalation Study of JNJ-42756493, an Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2015, 33, 3401–3408. [Google Scholar] [CrossRef]
  322. Nishina, T.; Takahashi, S.; Iwasawa, R.; Noguchi, H.; Aoki, M.; Doi, T. Safety, pharmacokinetic, and pharmacodynamics of erdafitinib, a pan-fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor, in patients with advanced or refractory solid tumors. Investig. New Drugs 2018, 36, 424–434. [Google Scholar] [CrossRef]
  323. Bahleda, R.; Meric-Bernstam, F.; Goyal, L.; Tran, B.; He, Y.; Yamamiya, I.; Benhadji, K.A.; Matos, I.; Arkenau, H.T. Phase I, first-in-human study of futibatinib, a highly selective, irreversible FGFR1-4 inhibitor in patients with advanced solid tumors. Ann. Oncol. 2020, 31, 1405–1412. [Google Scholar] [CrossRef]
  324. Nogova, L.; Sequist, L.V.; Perez Garcia, J.M.; Andre, F.; Delord, J.P.; Hidalgo, M.; Schellens, J.H.; Cassier, P.A.; Camidge, D.R.; Schuler, M.; et al. Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients with Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study. J. Clin. Oncol. 2017, 35, 157–165. [Google Scholar] [CrossRef] [PubMed]
  325. Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin. Cancer Res. 2019, 25, 4888–4897. [Google Scholar] [CrossRef] [PubMed]
  326. Babina, I.S.; Turner, N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 2017, 17, 318–332. [Google Scholar] [CrossRef] [PubMed]
  327. Hu, P.H.; Pan, L.H.; Wong, P.T.; Chen, W.H.; Yang, Y.Q.; Wang, H.; Xiang, J.J.; Xu, M. (125)I-labeled anti-bFGF monoclonal antibody inhibits growth of hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 5033–5041. [Google Scholar] [CrossRef]
  328. Huang, C.Y.; Tai, W.T.; Wu, S.Y.; Shih, C.T.; Chen, M.H.; Tsai, M.H.; Kuo, C.W.; Shiau, C.W.; Hung, M.H.; Chen, K.F. Dovitinib Acts as a Novel Radiosensitizer in Hepatocellular Carcinoma by Targeting SHP-1/STAT3 Signaling. Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 761–771. [Google Scholar] [CrossRef]
  329. Janes, P.W.; Vail, M.E.; Gan, H.K.; Scott, A.M. Antibody Targeting of Eph Receptors in Cancer. Pharmaceuticals 2020, 13, 88. [Google Scholar] [CrossRef]
  330. Barquilla, A.; Pasquale, E.B. Eph receptors and ephrins: Therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 465–487. [Google Scholar] [CrossRef] [Green Version]
  331. Anderton, M.; van der Meulen, E.; Blumenthal, M.J.; Schäfer, G. The Role of the Eph Receptor Family in Tumorigenesis. Cancers 2021, 13, 206. [Google Scholar] [CrossRef]
  332. Wykosky, J.; Gibo, D.M.; Stanton, C.; Debinski, W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol. Cancer Res. 2005, 3, 541–551. [Google Scholar] [CrossRef] [Green Version]
  333. Miao, C.; Zhao, W.; Yuan, S.; Yu, J.; Zhao, S.; Ma, L.; Zhang, D.; Hu, X. A novel molecular agent for glioma angiogenesis imaging. Nucl. Med. Commun. 2017, 38, 919–926. [Google Scholar] [CrossRef]
  334. Ferluga, S.; Tomé, C.M.; Herpai, D.M.; D’Agostino, R.; Debinski, W. Simultaneous targeting of Eph receptors in glioblastoma. Oncotarget 2016, 7, 59860–59876. [Google Scholar] [CrossRef] [Green Version]
  335. Binda, E.; Visioli, A.; Giani, F.; Lamorte, G.; Copetti, M.; Pitter, K.L.; Huse, J.T.; Cajola, L.; Zanetti, N.; DiMeco, F.; et al. The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell 2012, 22, 765–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  336. Offenhäuser, C.; Al-Ejeh, F.; Puttick, S.; Ensbey, K.S.; Bruce, Z.C.; Jamieson, P.R.; Smith, F.M.; Stringer, B.W.; Carrington, B.; Fuchs, A.V.; et al. EphA3 Pay-Loaded Antibody Therapeutics for the Treatment of Glioblastoma. Cancers 2018, 10, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  337. Wang, S.D.; Rath, P.; Lal, B.; Richard, J.P.; Li, Y.; Goodwin, C.R.; Laterra, J.; Xia, S. EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 2012, 31, 5132–5143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  338. Nakada, M.; Niska, J.A.; Miyamori, H.; McDonough, W.S.; Wu, J.; Sato, H.; Berens, M.E. The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res. 2004, 64, 3179–3185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  339. Swords, R.T.; Greenberg, P.L.; Wei, A.H.; Durrant, S.; Advani, A.S.; Hertzberg, M.S.; Jonas, B.A.; Lewis, I.D.; Rivera, G.; Gratzinger, D.; et al. KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study. Leuk. Res. 2016, 50, 123–131. [Google Scholar] [CrossRef]
  340. Hui, G.; Lawrence, C.; Po, I.; Zarnie, L.; Eddie, L.; Christian, W.; Alex, M.; Uwe, A.; Nicole, C.; Kristen, R.; et al. Phase I safety and bioimaging trial of KB004 (ifabotuzumab) in patients with glioblastoma. J. Nucl. Med. 2020, 61, 1562. [Google Scholar]
  341. Okada, H.; Kalinski, P.; Ueda, R.; Hoji, A.; Kohanbash, G.; Donegan, T.E.; Mintz, A.H.; Engh, J.A.; Bartlett, D.L.; Brown, C.K.; et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 2011, 29, 330–336. [Google Scholar] [CrossRef] [Green Version]
  342. Shitara, K.; Satoh, T.; Iwasa, S.; Yamaguchi, K.; Muro, K.; Komatsu, Y.; Nishina, T.; Esaki, T.; Hasegawa, J.; Kakurai, Y.; et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: A first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J. Immunother. Cancer 2019, 7, 219. [Google Scholar] [CrossRef]
  343. Gravina, G.L.; Mancini, A.; Colapietro, A.; Delle Monache, S.; Sferra, R.; Vitale, F.; Cristiano, L.; Martellucci, S.; Marampon, F.; Mattei, V.; et al. The Small Molecule Ephrin Receptor Inhibitor, GLPG1790, Reduces Renewal Capabilities of Cancer Stem Cells, Showing Anti-Tumour Efficacy on Preclinical Glioblastoma Models. Cancers 2019, 11, 359. [Google Scholar] [CrossRef] [Green Version]
  344. Chu, L.; Wang, A.; Ni, L.; Yan, X.; Song, Y.; Zhao, M.; Sun, K.; Mu, H.; Liu, S.; Wu, Z.; et al. Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 2018, 25, 1634–1641. [Google Scholar] [CrossRef] [Green Version]
  345. Wang, L.; Tang, S.; Yu, Y.; Lv, Y.; Wang, A.; Yan, X.; Li, N.; Sha, C.; Sun, K.; Li, Y. Intranasal Delivery of Temozolomide-Conjugated Gold Nanoparticles Functionalized with Anti-EphA3 for Glioblastoma Targeting. Mol. Pharm. 2021, 18, 915–927. [Google Scholar] [CrossRef]
  346. Bhatia, S.; Bukkapatnam, S.; Van Court, B.; Phan, A.; Oweida, A.; Gadwa, J.; Mueller, A.C.; Piper, M.; Darragh, L.; Nguyen, D.; et al. The effects of ephrinB2 signaling on proliferation and invasion in glioblastoma multiforme. Mol. Carcinog. 2020, 59, 1064–1075. [Google Scholar] [CrossRef]
  347. Qazi, M.A.; Vora, P.; Venugopal, C.; Adams, J.; Singh, M.; Hu, A.; Gorelik, M.; Subapanditha, M.K.; Savage, N.; Yang, J.; et al. Cotargeting Ephrin Receptor Tyrosine Kinases A2 and A3 in Cancer Stem Cells Reduces Growth of Recurrent Glioblastoma. Cancer Res. 2018, 78, 5023–5037. [Google Scholar] [CrossRef] [Green Version]
  348. Andrews, D.W.; Resnicoff, M.; Flanders, A.E.; Kenyon, L.; Curtis, M.; Merli, G.; Baserga, R.; Iliakis, G.; Aiken, R.D. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J. Clin. Oncol. 2001, 19, 2189–2200. [Google Scholar] [CrossRef]
  349. Harshyne, L.A.; Hooper, K.M.; Andrews, E.G.; Nasca, B.J.; Kenyon, L.C.; Andrews, D.W.; Hooper, D.C. Glioblastoma exosomes and IGF-1R/AS-ODN are immunogenic stimuli in a translational research immunotherapy paradigm. Cancer Immunol. Immunother. 2015, 64, 299–309. [Google Scholar] [CrossRef]
  350. Aiken, R.; Axelson, M.; Harmenberg, J.; Klockare, M.; Larsson, O.; Wassberg, C. Phase I clinical trial of AXL1717 for treatment of relapsed malignant astrocytomas: Analysis of dose and response. Oncotarget 2017, 8, 81501–81510. [Google Scholar] [CrossRef] [Green Version]
  351. Neuber, C.; Belter, B.; Mamat, C.; Pietzsch, J. Radiopharmacologist’s and Radiochemist’s View on Targeting the Eph/Ephrin Receptor Tyrosine Kinase System. ACS Omega 2020, 5, 16318–16331. [Google Scholar] [CrossRef]
  352. Cai, W.; Ebrahimnejad, A.; Chen, K.; Cao, Q.; Li, Z.B.; Tice, D.A.; Chen, X. Quantitative radioimmunoPET imaging of EphA2 in tumor-bearing mice. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 2024–2036. [Google Scholar] [CrossRef]
  353. Day, B.W.; Stringer, B.W.; Al-Ejeh, F.; Ting, M.J.; Wilson, J.; Ensbey, K.S.; Jamieson, P.R.; Bruce, Z.C.; Lim, Y.C.; Offenhäuser, C.; et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell 2013, 23, 238–248. [Google Scholar] [CrossRef] [Green Version]
  354. Charmsaz, S.; Al-Ejeh, F.; Yeadon, T.M.; Miller, K.J.; Smith, F.M.; Stringer, B.W.; Moore, A.S.; Lee, F.T.; Cooper, L.T.; Stylianou, C.; et al. EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia 2017, 31, 1779–1787. [Google Scholar] [CrossRef] [Green Version]
  355. Puttick, S.; Stringer, B.W.; Day, B.W.; Bruce, Z.C.; Ensbey, K.S.; Mardon, K.; Cowin, G.J.; Thurecht, K.J.; Whittaker, A.K.; Fay, M.; et al. EphA2 as a Diagnostic Imaging Target in Glioblastoma: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Mol. Imaging 2015, 14, 385–399. [Google Scholar] [CrossRef]
  356. Burvenich, I.J.; Parakh, S.; Gan, H.K.; Lee, F.T.; Guo, N.; Rigopoulos, A.; Lee, S.T.; Gong, S.; O’Keefe, G.J.; Tochon-Danguy, H.; et al. Molecular Imaging and Quantitation of EphA2 Expression in Xenograft Models with 89Zr-DS-8895a. J. Nucl. Med. 2016, 57, 974–980. [Google Scholar] [CrossRef] [Green Version]
  357. Huang, M.; Xiong, C.; Lu, W.; Zhang, R.; Zhou, M.; Huang, Q.; Weinberg, J.; Li, C. Dual-modality micro-positron emission tomography/computed tomography and near-infrared fluorescence imaging of EphB4 in orthotopic glioblastoma xenograft models. Mol. Imaging Biol. 2014, 16, 74–84. [Google Scholar] [CrossRef] [Green Version]
  358. Mamat, C.; Mosch, B.; Neuber, C.; Köckerling, M.; Bergmann, R.; Pietzsch, J. Fluorine-18 radiolabeling and radiopharmacological characterization of a benzodioxolylpyrimidine-based radiotracer targeting the receptor tyrosine kinase EphB4. ChemMedChem 2012, 7, 1991–2003. [Google Scholar] [CrossRef]
  359. Ebert, K.; Wiemer, J.; Caballero, J.; Köckerling, M.; Steinbach, J.; Pietzsch, J.; Mamat, C. Development of indazolylpyrimidine derivatives as high-affine EphB4 receptor ligands and potential PET radiotracers. Bioorg. Med. Chem. 2015, 23, 6025–6035. [Google Scholar] [CrossRef]
  360. Xiong, C.; Huang, M.; Zhang, R.; Song, S.; Lu, W.; Flores, L., 2nd; Gelovani, J.; Li, C. In vivo small-animal PET/CT of EphB4 receptors using 64Cu-labeled peptide. J. Nucl. Med. 2011, 52, 241–248. [Google Scholar] [CrossRef] [Green Version]
  361. Noberini, R.; Lamberto, I.; Pasquale, E.B. Targeting Eph receptors with peptides and small molecules: Progress and challenges. Semin. Cell. Dev. Biol. 2012, 23, 51–57. [Google Scholar] [CrossRef] [Green Version]
  362. Pretze, M.; Neuber, C.; Kinski, E.; Belter, B.; Köckerling, M.; Caflisch, A.; Steinbach, J.; Pietzsch, J.; Mamat, C. Synthesis, radiolabelling and initial biological characterisation of (18)F-labelled xanthine derivatives for PET imaging of Eph receptors. Org. Biomol. Chem. 2020, 18, 3104–3116. [Google Scholar] [CrossRef]
  363. Osher, E.; Macaulay, V.M. Therapeutic Targeting of the IGF Axis. Cells 2019, 8, 895. [Google Scholar] [CrossRef] [Green Version]
  364. Li, R.; Pourpak, A.; Morris, S.W. Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J. Med. Chem. 2009, 52, 4981–5004. [Google Scholar] [CrossRef] [Green Version]
  365. Samani, A.A.; Yakar, S.; LeRoith, D.; Brodt, P. The role of the IGF system in cancer growth and metastasis: Overview and recent insights. Endocr. Rev. 2007, 28, 20–47. [Google Scholar] [CrossRef] [PubMed]
  366. Schlenska-Lange, A.; Knüpfer, H.; Lange, T.J.; Kiess, W.; Knüpfer, M. Cell proliferation and migration in glioblastoma multiforme cell lines are influenced by insulin-like growth factor I in vitro. Anticancer Res. 2008, 28, 1055–1060. [Google Scholar] [PubMed]
  367. Zamykal, M.; Martens, T.; Matschke, J.; Günther, H.S.; Kathagen, A.; Schulte, A.; Peters, R.; Westphal, M.; Lamszus, K. Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms. Neuro Oncol. 2015, 17, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
  368. Chakravarti, A.; Loeffler, J.S.; Dyson, N.J. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002, 62, 200–207. [Google Scholar]
  369. Mellinghoff, I.K.; Wang, M.Y.; Vivanco, I.; Haas-Kogan, D.A.; Zhu, S.; Dia, E.Q.; Lu, K.V.; Yoshimoto, K.; Huang, J.H.; Chute, D.J.; et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 2005, 353, 2012–2024. [Google Scholar] [CrossRef] [Green Version]
  370. Ryan, P.D.; Goss, P.E. The emerging role of the insulin-like growth factor pathway as a therapeutic target in cancer. Oncologist 2008, 13, 16–24. [Google Scholar] [CrossRef]
  371. Trojan, J.; Cloix, J.F.; Ardourel, M.Y.; Chatel, M.; Anthony, D.D. Insulin-like growth factor type I biology and targeting in malignant gliomas. Neuroscience 2007, 145, 795–811. [Google Scholar] [CrossRef]
  372. Zhou, X.; Shen, F.; Ma, P.; Hui, H.; Pei, S.; Chen, M.; Wang, Z.; Zhou, W.; Jin, B. GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo. Mol. Med. Rep. 2015, 12, 5641–5646. [Google Scholar] [CrossRef] [Green Version]
  373. Zhou, X.; Zhao, X.; Li, X.; Ping, G.; Pei, S.; Chen, M.; Wang, Z.; Zhou, W.; Jin, B. PQ401, an IGF-1R inhibitor, induces apoptosis and inhibits growth, proliferation and migration of glioma cells. J. Chemother. 2016, 28, 44–49. [Google Scholar] [CrossRef]
  374. Premkumar, D.R.; Jane, E.P.; Pollack, I.F. Co-administration of NVP-AEW541 and dasatinib induces mitochondrial-mediated apoptosis through Bax activation in malignant human glioma cell lines. Int. J. Oncol. 2010, 37, 633–643. [Google Scholar] [CrossRef]
  375. Yin, S.; Girnita, A.; Strömberg, T.; Khan, Z.; Andersson, S.; Zheng, H.; Ericsson, C.; Axelson, M.; Nistér, M.; Larsson, O.; et al. Targeting the insulin-like growth factor-1 receptor by picropodophyllin as a treatment option for glioblastoma. Neuro Oncol. 2010, 12, 19–27. [Google Scholar] [CrossRef]
  376. Fuentes-Baile, M.; Ventero, M.P.; Encinar, J.A.; García-Morales, P.; Poveda-Deltell, M.; Pérez-Valenciano, E.; Barberá, V.M.; Gallego-Plazas, J.; Rodríguez-Lescure, Á.; Martín-Nieto, J.; et al. Differential Effects of IGF-1R Small Molecule Tyrosine Kinase Inhibitors BMS-754807 and OSI-906 on Human Cancer Cell Lines. Cancers 2020, 12, 3717. [Google Scholar] [CrossRef]
  377. Baserga, R. The decline and fall of the IGF-I receptor. J. Cell Physiol. 2013, 228, 675–679. [Google Scholar] [CrossRef]
  378. Ramalingam, S.S.; Spigel, D.R.; Chen, D.; Steins, M.B.; Engelman, J.A.; Schneider, C.P.; Novello, S.; Eberhardt, W.E.; Crino, L.; Habben, K.; et al. Randomized phase II study of erlotinib in combination with placebo or R1507, a monoclonal antibody to insulin-like growth factor-1 receptor, for advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 2011, 29, 4574–4580. [Google Scholar] [CrossRef] [Green Version]
  379. De Bono, J.S.; Piulats, J.M.; Pandha, H.S.; Petrylak, D.P.; Saad, F.; Aparicio, L.M.; Sandhu, S.K.; Fong, P.; Gillessen, S.; Hudes, G.R.; et al. Phase II randomized study of figitumumab plus docetaxel and docetaxel alone with crossover for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2014, 20, 1925–1934. [Google Scholar] [CrossRef] [Green Version]
  380. Philip, P.A.; Goldman, B.; Ramanathan, R.K.; Lenz, H.J.; Lowy, A.M.; Whitehead, R.P.; Wakatsuki, T.; Iqbal, S.; Gaur, R.; Benedetti, J.K.; et al. Dual blockade of epidermal growth factor receptor and insulin-like growth factor receptor-1 signaling in metastatic pancreatic cancer: Phase Ib and randomized phase II trial of gemcitabine, erlotinib, and cixutumumab versus gemcitabine plus erlotinib (SWOG S0727). Cancer 2014, 120, 2980–2985. [Google Scholar] [CrossRef] [Green Version]
  381. Moran, T.; Felip, E.; Keedy, V.; Borghaei, H.; Shepherd, F.A.; Insa, A.; Brown, H.; Fitzgerald, T.; Sathyanarayanan, S.; Reilly, J.F.; et al. Activity of dalotuzumab, a selective anti-IGF1R antibody, in combination with erlotinib in unselected patients with Non-small-cell lung cancer: A phase I/II randomized trial. Exp. Hematol. Oncol. 2014, 3, 26. [Google Scholar] [CrossRef] [Green Version]
  382. Houghton, P.J.; Morton, C.L.; Gorlick, R.; Kolb, E.A.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Maris, J.M.; Wu, J.; Smith, M.A. Initial testing of a monoclonal antibody (IMC-A12) against IGF-1R by the Pediatric Preclinical Testing Program. Pediatr. Blood Cancer 2010, 54, 921–926. [Google Scholar] [CrossRef] [Green Version]
  383. Higano, C.S.; Berlin, J.; Gordon, M.; LoRusso, P.; Tang, S.; Dontabhaktuni, A.; Schwartz, J.D.; Cosaert, J.; Mehnert, J.M. Safety, tolerability, and pharmacokinetics of single and multiple doses of intravenous cixutumumab (IMC-A12), an inhibitor of the insulin-like growth factor-I receptor, administered weekly or every 2 weeks in patients with advanced solid tumors. Investig. New Drugs 2015, 33, 450–462. [Google Scholar] [CrossRef]
  384. Osuka, S.; Sampetrean, O.; Shimizu, T.; Saga, I.; Onishi, N.; Sugihara, E.; Okubo, J.; Fujita, S.; Takano, S.; Matsumura, A.; et al. IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 2013, 31, 627–640. [Google Scholar] [CrossRef]
  385. Sun, Y.; Sun, X.; Shen, B. Molecular Imaging of IGF-1R in Cancer. Mol. Imaging 2017, 16, 1536012117736648. [Google Scholar] [CrossRef] [Green Version]
  386. Cornelissen, B.; McLarty, K.; Kersemans, V.; Reilly, R.M. The level of insulin growth factor-1 receptor expression is directly correlated with the tumor uptake of (111)In-IGF-1(E3R) in vivo and the clonogenic survival of breast cancer cells exposed in vitro to trastuzumab (Herceptin). Nucl. Med. Biol. 2008, 35, 645–653. [Google Scholar] [CrossRef]
  387. Fleuren, E.D.; Versleijen-Jonkers, Y.M.; van de Luijtgaarden, A.C.; Molkenboer-Kuenen, J.D.; Heskamp, S.; Roeffen, M.H.; van Laarhoven, H.W.; Houghton, P.J.; Oyen, W.J.; Boerman, O.C.; et al. Predicting IGF-1R therapy response in bone sarcomas: Immuno-SPECT imaging with radiolabeled R1507. Clin. Cancer Res. 2011, 17, 7693–7703. [Google Scholar] [CrossRef] [Green Version]
  388. Heskamp, S.; van Laarhoven, H.W.; Molkenboer-Kuenen, J.D.; Bouwman, W.H.; van der Graaf, W.T.; Oyen, W.J.; Boerman, O.C. Optimization of IGF-1R SPECT/CT imaging using 111In-labeled F(ab′)2 and Fab fragments of the monoclonal antibody R1507. Mol. Pharm. 2012, 9, 2314–2321. [Google Scholar] [CrossRef]
  389. Prabhakaran, J.; Dewey, S.L.; McClure, R.; Simpson, N.R.; Tantawy, M.N.; Mann, J.J.; Pham, W.; Kumar, J.S.D. In vivo evaluation of IGF1R/IR PET ligand [(18)F]BMS-754807 in rodents. Bioorg. Med. Chem. Lett. 2017, 27, 941–943. [Google Scholar] [CrossRef] [Green Version]
  390. Majo, V.J.; Arango, V.; Simpson, N.R.; Prabhakaran, J.; Kassir, S.A.; Underwood, M.D.; Bakalian, M.; Canoll, P.; John Mann, J.; Dileep Kumar, J.S. Synthesis and in vitro evaluation of [18F]BMS-754807: A potential PET ligand for IGF-1R. Bioorg. Med. Chem. Lett. 2013, 23, 4191–4194. [Google Scholar] [CrossRef] [Green Version]
  391. Solingapuram Sai, K.K.; Prabhakaran, J.; Sattiraju, A.; Mann, J.J.; Mintz, A.; Kumar, J.S.D. Radiosynthesis and evaluation of IGF1R PET ligand [(11)C]GSK1838705A. Bioorg. Med. Chem. Lett. 2017, 27, 2895–2897. [Google Scholar] [CrossRef]
  392. Solomon, V.R.; Alizadeh, E.; Bernhard, W.; Hartimath, S.V.; Hill, W.; Chekol, R.; Barreto, K.M.; Geyer, C.R.; Fonge, H. (111)In- and (225)Ac-Labeled Cixutumumab for Imaging and α-Particle Radiotherapy of IGF-1R Positive Triple-Negative Breast Cancer. Mol. Pharm. 2019, 16, 4807–4816. [Google Scholar] [CrossRef]
  393. Solomon, V.R.; Alizadeh, E.; Bernhard, W.; Makhlouf, A.; Hartimath, S.V.; Hill, W.; El-Sayed, A.; Barreto, K.; Geyer, C.R.; Fonge, H. Development and preclinical evaluation of cixutumumab drug conjugates in a model of insulin growth factor receptor I (IGF-1R) positive cancer. Sci. Rep. 2020, 10, 18549. [Google Scholar] [CrossRef]
  394. Orlova, A.; Hofström, C.; Strand, J.; Varasteh, Z.; Sandstrom, M.; Andersson, K.; Tolmachev, V.; Gräslund, T. [99mTc(CO)3]+-(HE)3-ZIGF1R:4551, a new Affibody conjugate for visualization of insulin-like growth factor-1 receptor expression in malignant tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 439–449. [Google Scholar] [CrossRef] [Green Version]
  395. Mitran, B.; Altai, M.; Hofström, C.; Honarvar, H.; Sandström, M.; Orlova, A.; Tolmachev, V.; Gräslund, T. Evaluation of 99mTc-Z IGF1R:4551-GGGC affibody molecule, a new probe for imaging of insulin-like growth factor type 1 receptor expression. Amino Acids 2015, 47, 303–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  396. Tolmachev, V.; Malmberg, J.; Hofström, C.; Abrahmsén, L.; Bergman, T.; Sjöberg, A.; Sandström, M.; Gräslund, T.; Orlova, A. Imaging of insulinlike growth factor type 1 receptor in prostate cancer xenografts using the affibody molecule 111In-DOTA-ZIGF1R:4551. J. Nucl. Med. 2012, 53, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  397. Su, X.; Cheng, K.; Liu, Y.; Hu, X.; Meng, S.; Cheng, Z. PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule. Amino Acids 2015, 47, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
  398. Day, E.K.; Sosale, N.G.; Xiao, A.; Zhong, Q.; Purow, B.; Lazzara, M.J. Glioblastoma Cell Resistance to EGFR and MET Inhibition Can Be Overcome via Blockade of FGFR-SPRY2 Bypass Signaling. Cell Rep. 2020, 30, 3383–3396.e7. [Google Scholar] [CrossRef] [Green Version]
  399. Ou, A.; Ott, M.; Fang, D.; Heimberger, A.B. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers 2021, 13, 437. [Google Scholar] [CrossRef]
  400. Zhao, H.F.; Wang, J.; Shao, W.; Wu, C.P.; Chen, Z.P.; To, S.T.; Li, W.P. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer 2017, 16, 100. [Google Scholar] [CrossRef] [Green Version]
  401. Cloughesy, T.F.; Drappatz, J.; de Groot, J.; Prados, M.D.; Reardon, D.A.; Schiff, D.; Chamberlain, M.; Mikkelsen, T.; Desjardins, A.; Ping, J.; et al. Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients with prior antiangiogenic therapy. Neuro Oncol. 2018, 20, 259–267. [Google Scholar] [CrossRef] [Green Version]
  402. Lassman, A.B.; Pugh, S.L.; Gilbert, M.R.; Aldape, K.D.; Geinoz, S.; Beumer, J.H.; Christner, S.M.; Komaki, R.; DeAngelis, L.M.; Gaur, R.; et al. Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro Oncol. 2015, 17, 992–998. [Google Scholar] [CrossRef] [Green Version]
  403. Wen, P.Y.; Drappatz, J.; de Groot, J.; Prados, M.D.; Reardon, D.A.; Schiff, D.; Chamberlain, M.; Mikkelsen, T.; Desjardins, A.; Holland, J.; et al. Phase II study of cabozantinib in patients with progressive glioblastoma: Subset analysis of patients naive to antiangiogenic therapy. Neuro Oncol. 2018, 20, 249–258. [Google Scholar] [CrossRef]
  404. Franceschi, E.; Stupp, R.; van den Bent, M.J.; van Herpen, C.; Laigle Donadey, F.; Gorlia, T.; Hegi, M.; Lhermitte, B.; Strauss, L.C.; Allgeier, A.; et al. EORTC 26083 phase I/II trial of dasatinib in combination with CCNU in patients with recurrent glioblastoma. Neuro Oncol. 2012, 14, 1503–1510. [Google Scholar] [CrossRef] [Green Version]
  405. Kreisl, T.N.; McNeill, K.A.; Sul, J.; Iwamoto, F.M.; Shih, J.; Fine, H.A. A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro Oncol. 2012, 14, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
  406. Reardon, D.A.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.B.; Sathornsumetee, S.; Threatt, S.; Sampson, J.H.; Herndon, J.E., 2nd; Coan, A.; McSherry, F.; et al. Phase 1 trial of dasatinib plus erlotinib in adults with recurrent malignant glioma. J. Neurooncol. 2012, 108, 499–506. [Google Scholar] [CrossRef] [Green Version]
  407. Miklja, Z.; Yadav, V.N.; Cartaxo, R.T.; Siada, R.; Thomas, C.C.; Cummings, J.R.; Mullan, B.; Stallard, S.; Paul, A.; Bruzek, A.K.; et al. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma. J. Clin. Investig. 2020, 130, 5313–5325. [Google Scholar] [CrossRef]
  408. Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Rudà, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef]
  409. Hamed, H.A.; Tavallai, S.; Grant, S.; Poklepovic, A.; Dent, P. Sorafenib/regorafenib and lapatinib interact to kill CNS tumor cells. J. Cell Physiol. 2015, 230, 131–139. [Google Scholar] [CrossRef] [Green Version]
  410. Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef]
  411. Subbiah, V.; Khawaja, M.R.; Hong, D.S.; Amini, B.; Yungfang, J.; Liu, H.; Johnson, A.; Schrock, A.B.; Ali, S.M.; Sun, J.X.; et al. First-in-human trial of multikinase VEGF inhibitor regorafenib and anti-EGFR antibody cetuximab in advanced cancer patients. JCI Insight 2017, 2, e90380. [Google Scholar] [CrossRef]
  412. Razis, E.; Selviaridis, P.; Labropoulos, S.; Norris, J.L.; Zhu, M.J.; Song, D.D.; Kalebic, T.; Torrens, M.; Kalogera-Fountzila, A.; Karkavelas, G.; et al. Phase II study of neoadjuvant imatinib in glioblastoma: Evaluation of clinical and molecular effects of the treatment. Clin. Cancer Res. 2009, 15, 6258–6266. [Google Scholar] [CrossRef] [Green Version]
  413. Sautter, L.; Hofheinz, R.; Tuettenberg, J.; Grimm, M.; Vajkoczy, P.; Groden, C.; Schmieder, K.; Hochhaus, A.; Wenz, F.; Giordano, F.A. Open-Label Phase II Evaluation of Imatinib in Primary Inoperable or Incompletely Resected and Recurrent Glioblastoma. Oncology 2020, 98, 16–22. [Google Scholar] [CrossRef]
  414. Wen, P.Y.; Yung, W.K.; Lamborn, K.R.; Dahia, P.L.; Wang, Y.; Peng, B.; Abrey, L.E.; Raizer, J.; Cloughesy, T.F.; Fink, K.; et al. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clin. Cancer Res. 2006, 12, 4899–4907. [Google Scholar] [CrossRef] [Green Version]
  415. Reardon, D.A.; Egorin, M.J.; Quinn, J.A.; Rich, J.N.; Gururangan, S.; Vredenburgh, J.J.; Desjardins, A.; Sathornsumetee, S.; Provenzale, J.M.; Herndon, J.E., 2nd; et al. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J. Clin. Oncol. 2005, 23, 9359–9368. [Google Scholar] [CrossRef] [PubMed]
  416. Desjardins, A.; Quinn, J.A.; Vredenburgh, J.J.; Sathornsumetee, S.; Friedman, A.H.; Herndon, J.E.; McLendon, R.E.; Provenzale, J.M.; Rich, J.N.; Sampson, J.H.; et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J. Neurooncol. 2007, 83, 53–60. [Google Scholar] [CrossRef] [PubMed]
  417. Li, H.; Zheng, J.; Guan, R.; Zhu, Z.; Yuan, X. Tyrphostin AG 1296 induces glioblastoma cell apoptosis in vitro and in vivo. Oncol. Lett. 2015, 10, 3429–3433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  418. Thiessen, B.; Stewart, C.; Tsao, M.; Kamel-Reid, S.; Schaiquevich, P.; Mason, W.; Easaw, J.; Belanger, K.; Forsyth, P.; McIntosh, L.; et al. A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: Clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother. Pharmacol. 2010, 65, 353–361. [Google Scholar] [CrossRef]
  419. Yu, A.; Faiq, N.; Green, S.; Lai, A.; Green, R.; Hu, J.; Cloughesy, T.F.; Mellinghoff, I.; Nghiemphu, P.L. Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study. J. Neurooncol. 2017, 134, 357–362. [Google Scholar] [CrossRef]
  420. Karavasilis, V.; Kotoula, V.; Pentheroudakis, G.; Televantou, D.; Lambaki, S.; Chrisafi, S.; Bobos, M.; Fountzilas, G. A phase I study of temozolomide and lapatinib combination in patients with recurrent high-grade gliomas. J. Neurol. 2013, 260, 1469–1480. [Google Scholar] [CrossRef]
  421. Reardon, D.A.; Groves, M.D.; Wen, P.Y.; Nabors, L.; Mikkelsen, T.; Rosenfeld, S.; Raizer, J.; Barriuso, J.; McLendon, R.E.; Suttle, A.B.; et al. A phase I/II trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma. Clin. Cancer Res. 2013, 19, 900–908. [Google Scholar] [CrossRef] [Green Version]
  422. Deeks, E.D. Neratinib: First Global Approval. Drugs 2017, 77, 1695–1704. [Google Scholar] [CrossRef]
  423. Alexander, B.M.; Trippa, L.; Gaffey, S.; Arrillaga-Romany, I.C.; Lee, E.Q.; Rinne, M.L.; Ahluwalia, M.S.; Colman, H.; Fell, G.; Galanis, E.; et al. Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): A Bayesian Adaptive Platform Trial to Develop Precision Medicines for Patients with Glioblastoma. JCO Precis. Oncol. 2019, 3, po.18.00071. [Google Scholar] [CrossRef]
  424. Schiff, D.; Jaeckle, K.A.; Anderson, S.K.; Galanis, E.; Giannini, C.; Buckner, J.C.; Stella, P.; Flynn, P.J.; Erickson, B.J.; Schwerkoske, J.F.; et al. Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572. Cancer 2018, 124, 1455–1463. [Google Scholar] [CrossRef]
  425. Peereboom, D.M.; Ahluwalia, M.S.; Ye, X.; Supko, J.G.; Hilderbrand, S.L.; Phuphanich, S.; Nabors, L.B.; Rosenfeld, M.R.; Mikkelsen, T.; Grossman, S.A. NABTT 0502: A phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol. 2013, 15, 490–496. [Google Scholar] [CrossRef] [Green Version]
  426. Reardon, D.A.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.H.; Marcello, J.; Herndon, J.E., 2nd; McLendon, R.E.; Janney, D.; et al. Effect of CYP3A-inducing anti-epileptics on sorafenib exposure: Results of a phase II study of sorafenib plus daily temozolomide in adults with recurrent glioblastoma. J. Neurooncol. 2011, 101, 57–66. [Google Scholar] [CrossRef] [Green Version]
  427. Hottinger, A.F.; Ben Aissa, A.; Espeli, V.; Squiban, D.; Dunkel, N.; Vargas, M.I.; Hundsberger, T.; Mach, N.; Schaller, K.; Weber, D.C.; et al. Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma. Br. J. Cancer 2014, 110, 2655–2661. [Google Scholar] [CrossRef]
  428. Hainsworth, J.D.; Ervin, T.; Friedman, E.; Priego, V.; Murphy, P.B.; Clark, B.L.; Lamar, R.E. Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme. Cancer 2010, 116, 3663–3669. [Google Scholar] [CrossRef]
  429. Nghiemphu, P.L.; Ebiana, V.A.; Wen, P.; Gilbert, M.; Abrey, L.E.; Lieberman, F.; DeAngelis, L.M.; Robins, H.I.; Yung, W.K.A.; Chang, S.; et al. Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02. J. Neurooncol. 2018, 136, 79–86. [Google Scholar] [CrossRef]
  430. Kreisl, T.N.; Smith, P.; Sul, J.; Salgado, C.; Iwamoto, F.M.; Shih, J.H.; Fine, H.A. Continuous daily sunitinib for recurrent glioblastoma. J. Neurooncol. 2013, 111, 41–48. [Google Scholar] [CrossRef]
  431. Balaña, C.; Gil, M.J.; Perez, P.; Reynes, G.; Gallego, O.; Ribalta, T.; Capellades, J.; Gonzalez, S.; Verger, E. Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: Results of a phase II study. Target. Oncol. 2014, 9, 321–329. [Google Scholar] [CrossRef]
  432. Reardon, D.A.; Vredenburgh, J.J.; Coan, A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sathornsumetee, S.; Rich, J.N.; Herndon, J.E.; Friedman, H.S. Phase I study of sunitinib and irinotecan for patients with recurrent malignant glioma. J. Neurooncol. 2011, 105, 621–627. [Google Scholar] [CrossRef] [Green Version]
  433. Pan, E.; Yu, D.; Yue, B.; Potthast, L.; Chowdhary, S.; Smith, P.; Chamberlain, M. A prospective phase II single-institution trial of sunitinib for recurrent malignant glioma. J. Neurooncol. 2012, 110, 111–118. [Google Scholar] [CrossRef] [Green Version]
  434. Hutterer, M.; Nowosielski, M.; Haybaeck, J.; Embacher, S.; Stockhammer, F.; Gotwald, T.; Holzner, B.; Capper, D.; Preusser, M.; Marosi, C.; et al. A single-arm phase II Austrian/German multicenter trial on continuous daily sunitinib in primary glioblastoma at first recurrence (SURGE 01-07). Neuro Oncol. 2014, 16, 92–102. [Google Scholar] [CrossRef] [Green Version]
  435. Muhic, A.; Poulsen, H.S.; Sorensen, M.; Grunnet, K.; Lassen, U. Phase II open-label study of nintedanib in patients with recurrent glioblastoma multiforme. J. Neurooncol. 2013, 111, 205–212. [Google Scholar] [CrossRef]
  436. Norden, A.D.; Schiff, D.; Ahluwalia, M.S.; Lesser, G.J.; Nayak, L.; Lee, E.Q.; Rinne, M.L.; Muzikansky, A.; Dietrich, J.; Purow, B.; et al. Phase II trial of triple tyrosine kinase receptor inhibitor nintedanib in recurrent high-grade gliomas. J. Neurooncol. 2015, 121, 297–302. [Google Scholar] [CrossRef]
  437. Reardon, D.A.; Pan, E.; Fan, J.; Mink, J.; Barboriak, D.P.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.; O’Brien, J.P.; Wen, P.Y. 417PD—A Phase 2 Trial of the Multitargeted Kinase Inhibitor Lenvatinib (E7080) in Patients (PTS) with Recurrent Glioblastoma (GBM) And Disease Progression Following Prior Bevacizumab Treatment. Ann. Oncol. 2012, 23, ix146. [Google Scholar] [CrossRef]
  438. Lee, E.Q.; Muzikansky, A.; Duda, D.G.; Gaffey, S.; Dietrich, J.; Nayak, L.; Chukwueke, U.N.; Beroukhim, R.; Doherty, L.; Laub, C.K.; et al. Phase II trial of ponatinib in patients with bevacizumab-refractory glioblastoma. Cancer Med. 2019, 8, 5988–5994. [Google Scholar] [CrossRef]
  439. Wang, Y.; Liang, D.; Chen, J.; Chen, H.; Fan, R.; Gao, Y.; Tao, R.; Zhang, H. Targeted Therapy with Anlotinib for a Patient with an Oncogenic FGFR3-TACC3 Fusion and Recurrent Glioblastoma. Oncologist 2021, 26, 173–177. [Google Scholar] [CrossRef]
  440. Lv, Y.; Zhang, J.; Liu, F.; Song, M.; Hou, Y.; Liang, N. Targeted therapy with anlotinib for patient with recurrent glioblastoma: A case report and literature review. Medicine 2019, 98, e15749. [Google Scholar] [CrossRef]
  441. Das, M.; Padda, S.K.; Frymoyer, A.; Molina, J.; Adjei, A.; Lensing, J.L.; Miles, D.; Sikic, B.I.; Wakelee, H.A. A safety, tolerability, and pharmacokinetic analysis of two phase I studies of multitargeted small molecule tyrosine kinase inhibitor XL647 with an intermittent and continuous dosing schedule in patients with advanced solid malignancies. Cancer Chemother. Pharmacol. 2018, 82, 541–550. [Google Scholar] [CrossRef] [PubMed]
  442. Kizilbash, S.H.; Gupta, S.K.; Parrish, K.E.; Laramy, J.K.; Kim, M.; Gampa, G.; Carlson, B.L.; Bakken, K.K.; Mladek, A.C.; Schroeder, M.A.; et al. In Vivo Efficacy of Tesevatinib in EGFR-Amplified Patient-Derived Xenograft Glioblastoma Models May Be Limited by Tissue Binding and Compensatory Signaling. Mol. Cancer Ther. 2021. [Google Scholar] [CrossRef] [PubMed]
  443. Welsh, J.W.; Mahadevan, D.; Ellsworth, R.; Cooke, L.; Bearss, D.; Stea, B. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiat. Oncol. 2009, 4, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  444. Loilome, W.; Joshi, A.D.; ap Rhys, C.M.; Piccirillo, S.; Vescovi, A.L.; Gallia, G.L.; Riggins, G.J. Glioblastoma cell growth is suppressed by disruption of Fibroblast Growth Factor pathway signaling. J. Neurooncol. 2009, 94, 359–366. [Google Scholar] [CrossRef]
  445. Liffers, K.; Kolbe, K.; Westphal, M.; Lamszus, K.; Schulte, A. Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition. Target. Oncol. 2016, 11, 29–40. [Google Scholar] [CrossRef]
  446. Schlaff, C.D.; Arscott, W.T.; Gordon, I.; Tandle, A.; Tofilon, P.; Camphausen, K. Radiosensitization Effects of Novel Triple-Inhibitor CUDC-101 in Glioblastoma Multiforme and Breast Cancer Cells In Vitro. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, S650. [Google Scholar] [CrossRef]
  447. Sharma, P.; Sonawane, P.; Herpai, D.; D’Agostino, R.; Rossmeisl, J.; Tatter, S.; Debinski, W. Multireceptor targeting of glioblastoma. Neurooncol. Adv. 2020, 2, vdaa107. [Google Scholar] [CrossRef]
  448. Drappatz, J.; Norden, A.D.; Wong, E.T.; Doherty, L.M.; Lafrankie, D.C.; Ciampa, A.; Kesari, S.; Sceppa, C.; Gerard, M.; Phan, P.; et al. Phase I study of vandetanib with radiotherapy and temozolomide for newly diagnosed glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 85–90. [Google Scholar] [CrossRef]
  449. Chheda, M.G.; Wen, P.Y.; Hochberg, F.H.; Chi, A.S.; Drappatz, J.; Eichler, A.F.; Yang, D.; Beroukhim, R.; Norden, A.D.; Gerstner, E.R.; et al. Vandetanib plus sirolimus in adults with recurrent glioblastoma: Results of a phase I and dose expansion cohort study. J. Neurooncol. 2015, 121, 627–634. [Google Scholar] [CrossRef]
  450. Lee, E.Q.; Kaley, T.J.; Duda, D.G.; Schiff, D.; Lassman, A.B.; Wong, E.T.; Mikkelsen, T.; Purow, B.W.; Muzikansky, A.; Ancukiewicz, M.; et al. A Multicenter, Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients. Clin. Cancer Res. 2015, 21, 3610–3618. [Google Scholar] [CrossRef] [Green Version]
  451. Schiff, D.; Desjardins, A.; Cloughesy, T.; Mikkelsen, T.; Glantz, M.; Chamberlain, M.C.; Reardon, D.A.; Wen, P.Y. Phase 1 dose escalation trial of the safety and pharmacokinetics of cabozantinib concurrent with temozolomide and radiotherapy or temozolomide after radiotherapy in newly diagnosed patients with high-grade gliomas. Cancer 2016, 122, 582–587. [Google Scholar] [CrossRef]
  452. Raymond, E.; Brandes, A.A.; Dittrich, C.; Fumoleau, P.; Coudert, B.; Clement, P.M.; Frenay, M.; Rampling, R.; Stupp, R.; Kros, J.M.; et al. Phase II study of imatinib in patients with recurrent gliomas of various histologies: A European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J. Clin. Oncol. 2008, 26, 4659–4665. [Google Scholar] [CrossRef] [Green Version]
  453. Zustovich, F.; Landi, L.; Lombardi, G.; Porta, C.; Galli, L.; Fontana, A.; Amoroso, D.; Galli, C.; Andreuccetti, M.; Falcone, A.; et al. Sorafenib plus daily low-dose temozolomide for relapsed glioblastoma: A phase II study. Anticancer Res. 2013, 33, 3487–3494. [Google Scholar] [CrossRef]
  454. Den, R.B.; Kamrava, M.; Sheng, Z.; Werner-Wasik, M.; Dougherty, E.; Marinucchi, M.; Lawrence, Y.R.; Hegarty, S.; Hyslop, T.; Andrews, D.W.; et al. A phase I study of the combination of sorafenib with temozolomide and radiation therapy for the treatment of primary and recurrent high-grade gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 321–328. [Google Scholar] [CrossRef] [Green Version]
  455. Schäfer, N.; Gielen, G.H.; Kebir, S.; Wieland, A.; Till, A.; Mack, F.; Schaub, C.; Tzaridis, T.; Reinartz, R.; Niessen, M.; et al. Phase I trial of dovitinib (TKI258) in recurrent glioblastoma. J. Cancer Res. Clin. Oncol. 2016, 142, 1581–1589. [Google Scholar] [CrossRef]
  456. Sharma, M.; Schilero, C.; Peereboom, D.M.; Hobbs, B.P.; Elson, P.; Stevens, G.H.J.; McCrae, K.; Nixon, A.B.; Ahluwalia, M.S. Phase II study of Dovitinib in recurrent glioblastoma. J. Neurooncol. 2019, 144, 359–368. [Google Scholar] [CrossRef]
  457. Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Mehta, M.P.; Chang, S.M.; Butowski, N.A.; Deangelis, L.M.; Abrey, L.E.; Zhang, W.T.; Prados, M.D.; et al. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro Oncol. 2010, 12, 855–861. [Google Scholar] [CrossRef] [Green Version]
  458. Das, A.; Alshareef, M.; Porto, G.B.F.; Infinger, L.K.; Vandergrift, W.A., 3rd; Lindhorst, S.M.; Varma, A.K.; Patel, S.J.; Cachia, D. Preconditioning with INC280 and LDK378 drugs sensitizes MGMT-unmethylated glioblastoma to temozolomide: Pre-clinical assessment. J. Neurol. Sci. 2020, 418, 117102. [Google Scholar] [CrossRef] [PubMed]
  459. Xiao, Q.; Dong, M.; Cheng, F.; Mao, F.; Zong, W.; Wu, K.; Wang, H.; Xie, R.; Wang, B.; Lei, T.; et al. LRIG2 promotes the proliferation and cell cycle progression of glioblastoma cells in vitro and in vivo through enhancing PDGFRβ signaling. Int. J. Oncol. 2019, 54, 2257. [Google Scholar] [CrossRef] [PubMed]
  460. Doherty, L.; Gigas, D.C.; Kesari, S.; Drappatz, J.; Kim, R.; Zimmerman, J.; Ostrowsky, L.; Wen, P.Y. Pilot study of the combination of EGFR and mTOR inhibitors in recurrent malignant gliomas. Neurology 2006, 67, 156–158. [Google Scholar] [CrossRef] [PubMed]
  461. Ilagan, E.; Manning, B.D. Emerging role of mTOR in the response to cancer therapeutics. Trends Cancer 2016, 2, 241–251. [Google Scholar] [CrossRef] [Green Version]
  462. Fan, Q.; Aksoy, O.; Wong, R.A.; Ilkhanizadeh, S.; Novotny, C.J.; Gustafson, W.C.; Truong, A.Y.; Cayanan, G.; Simonds, E.F.; Haas-Kogan, D.; et al. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell 2017, 31, 424–435. [Google Scholar] [CrossRef] [Green Version]
  463. Pillai, R.N.; Ramalingam, S.S. Inhibition of insulin-like growth factor receptor: End of a targeted therapy? Transl. Lung Cancer Res. 2013, 2, 14–22. [Google Scholar] [CrossRef]
  464. Beckwith, H.; Yee, D. Minireview: Were the IGF Signaling Inhibitors All Bad? Mol. Endocrinol. 2015, 29, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
  465. Steinbach, J.P.; Eisenmann, C.; Klumpp, A.; Weller, M. Co-inhibition of epidermal growth factor receptor and type 1 insulin-like growth factor receptor synergistically sensitizes human malignant glioma cells to CD95L-induced apoptosis. Biochem. Biophys. Res. Commun. 2004, 321, 524–530. [Google Scholar] [CrossRef]
  466. Viswanathan, A.; Musa, A.; Murugesan, A.; Vale, J.R.; Afonso, C.A.M.; Konda Mani, S.; Yli-Harja, O.; Candeias, N.R.; Kandhavelu, M. Battling Glioblastoma: A Novel Tyrosine Kinase Inhibitor with Multi-Dimensional Anti-Tumor Effect (Running Title: Cancer Cells Death Signalling Activation). Cells 2019, 8, 1624. [Google Scholar] [CrossRef] [Green Version]
  467. Wang, G.; Wang, J.J.; Fu, X.L.; Guang, R.; To, S.T. Advances in the targeting of HIF-1α and future therapeutic strategies for glioblastoma multiforme (Review). Oncol. Rep. 2017, 37, 657–670. [Google Scholar] [CrossRef] [Green Version]
  468. Wilky, B.A.; Rudek, M.A.; Ahmed, S.; Laheru, D.A.; Cosgrove, D.; Donehower, R.C.; Nelkin, B.; Ball, D.; Doyle, L.A.; Chen, H.; et al. A phase I trial of vertical inhibition of IGF signalling using cixutumumab, an anti-IGF-1R antibody, and selumetinib, an MEK 1/2 inhibitor, in advanced solid tumours. Br. J. Cancer 2015, 112, 24–31. [Google Scholar] [CrossRef] [Green Version]
  469. El Meskini, R.; Iacovelli, A.J.; Kulaga, A.; Gumprecht, M.; Martin, P.L.; Baran, M.; Householder, D.B.; Van Dyke, T.; Weaver Ohler, Z. A preclinical orthotopic model for glioblastoma recapitulates key features of human tumors and demonstrates sensitivity to a combination of MEK and PI3K pathway inhibitors. Dis. Model. Mech. 2015, 8, 45–56. [Google Scholar] [CrossRef] [Green Version]
  470. Sunayama, J.; Matsuda, K.; Sato, A.; Tachibana, K.; Suzuki, K.; Narita, Y.; Shibui, S.; Sakurada, K.; Kayama, T.; Tomiyama, A.; et al. Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stem-like cells. Stem Cells 2010, 28, 1930–1939. [Google Scholar] [CrossRef]
  471. Schreck, K.C.; Allen, A.N.; Wang, J.; Pratilas, C.A. Combination MEK and mTOR inhibitor therapy is active in models of glioblastoma. Neurooncol. Adv. 2020, 2, vdaa138. [Google Scholar] [CrossRef]
  472. Gravina, G.L.; Mancini, A.; Colapietro, A.; Delle Monache, S.; Sferra, R.; Pompili, S.; Vitale, F.; Martellucci, S.; Marampon, F.; Mattei, V.; et al. The Brain Penetrating and Dual TORC1/TORC2 Inhibitor, RES529, Elicits Anti-Glioma Activity and Enhances the Therapeutic Effects of Anti-Angiogenetic Compounds in Preclinical Murine Models. Cancers 2019, 11, 1604. [Google Scholar] [CrossRef] [Green Version]
  473. Sharma, P.; Debinski, W. Receptor-Targeted Glial Brain Tumor Therapies. Int. J. Mol. Sci. 2018, 19, 3326. [Google Scholar] [CrossRef] [Green Version]
  474. Rossmeisl, J.H.; Herpai, D.; Quigley, M.; Cecere, T.E.; Robertson, J.L.; D’Agostino, R.B.; Hinckley, J.; Tatter, S.B.; Dickinson, P.J.; Debinski, W. Phase I trial of convection-enhanced delivery of IL13RA2 and EPHA2 receptor targeted cytotoxins in dogs with spontaneous intracranial gliomas. Neuro Oncol. 2021, 23, 422–434. [Google Scholar] [CrossRef]
  475. Gundogdu, E.; Demir, E.S.; Özgenç, E.; Yeğen, G.; Aksu, B. Applying Quality by Design Principles in the Development and Preparation of a New Radiopharmaceutical: Technetium-99m-Imatinib Mesylate. ACS Omega 2020, 5, 5297–5305. [Google Scholar] [CrossRef]
  476. Glekas, A.P.; Pillarsetty, N.K.; Punzalan, B.; Khan, N.; Smith-Jones, P.; Larson, S.M. In vivo imaging of Bcr-Abl overexpressing tumors with a radiolabeled imatinib analog as an imaging surrogate for imatinib. J. Nucl. Med. 2011, 52, 1301–1307. [Google Scholar] [CrossRef] [Green Version]
  477. Asakawa, C.; Ogawa, M.; Kumata, K.; Fujinaga, M.; Kato, K.; Yamasaki, T.; Yui, J.; Kawamura, K.; Hatori, A.; Fukumura, T.; et al. [11C]sorafenib: Radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice. Bioorg. Med. Chem. Lett. 2011, 21, 2220–2223. [Google Scholar] [CrossRef]
  478. Saleem, A.; Searle, G.E.; Kenny, L.M.; Huiban, M.; Kozlowski, K.; Waldman, A.D.; Woodley, L.; Palmieri, C.; Lowdell, C.; Kaneko, T.; et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer. EJNMMI Res. 2015, 5, 30. [Google Scholar] [CrossRef] [Green Version]
  479. Basuli, F.; Wu, H.; Li, C.; Shi, Z.-D.; Sulima, A.; Griffiths, G.L. A first synthesis of 18F-radiolabeled lapatinib: A potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity. J. Label. Compd. Radiopharm. 2011, 54, 633–636. [Google Scholar] [CrossRef]
  480. Lien, V.T.; Celen, S.; Nuruddin, S.; Attili, B.; Doumont, G.; Van Simaeys, G.; Bormans, G.; Klaveness, J.; Olberg, D.E. Preclinical evaluation of [(18)F]cabozantinib as a PET imaging agent in a prostate cancer mouse model. Nucl. Med. Biol. 2020, 93, 74–80. [Google Scholar] [CrossRef]
  481. Gao, M.; Lola, C.M.; Wang, M.; Miller, K.D.; Sledge, G.W.; Zheng, Q.H. Radiosynthesis of [11C]Vandetanib and [11C]chloro-Vandetanib as new potential PET agents for imaging of VEGFR in cancer. Bioorg. Med. Chem. Lett. 2011, 21, 3222–3226. [Google Scholar] [CrossRef]
  482. Li, F.; Jiang, S.; Zu, Y.; Lee, D.Y.; Li, Z. A tyrosine kinase inhibitor-based high-affinity PET radiopharmaceutical targets vascular endothelial growth factor receptor. J. Nucl. Med. 2014, 55, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
  483. Lagas, J.S.; van Waterschoot, R.A.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol. Cancer Ther. 2010, 9, 319–326. [Google Scholar] [CrossRef] [Green Version]
  484. Shergalis, A.; Bankhead, A.; Luesakul, U.; Muangsin, N.; Neamati, N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol. Rev. 2018, 70, 412–445. [Google Scholar] [CrossRef] [Green Version]
  485. Batsios, G.; Viswanath, P.; Subramani, E.; Najac, C.; Gillespie, A.M.; Santos, R.D.; Molloy, A.R.; Pieper, R.O.; Ronen, S.M. PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci. Rep. 2019, 9, 10521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  486. Josephs, D.H.; Sarker, D. Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics. Transl. Oncogenom. 2015, 7, 33–49. [Google Scholar] [CrossRef] [Green Version]
  487. Gaikwad, S.M.; Ray, P. Non-invasive imaging of PI3K/Akt/mTOR signalling in cancer. Am. J. Nucl. Med. Mol. Imaging 2012, 2, 418–431. [Google Scholar] [PubMed]
  488. Makino, A.; Arai, T.; Hirata, M.; Ono, M.; Ohmomo, Y.; Saji, H. Development of novel PET probes targeting phosphatidylinositol 3-kinase (PI3K) in tumors. Nucl. Med. Biol. 2016, 43, 101–107. [Google Scholar] [CrossRef]
  489. Ferris, T.; Carroll, L.; Jenner, S.; Aboagye, E.O. Use of radioiodine in nuclear medicine-A brief overview. J. Label. Compd. Radiopharm. 2021, 64, 92–108. [Google Scholar] [CrossRef] [PubMed]
  490. Guagnano, V.; Furet, P.; Spanka, C.; Bordas, V.; Le Douget, M.; Stamm, C.; Brueggen, J.; Jensen, M.R.; Schnell, C.; Schmid, H.; et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem. 2011, 54, 7066–7083. [Google Scholar] [CrossRef]
  491. Javle, M.; Lowery, M.; Shroff, R.T.; Weiss, K.H.; Springfeld, C.; Borad, M.J.; Ramanathan, R.K.; Goyal, L.; Sadeghi, S.; Macarulla, T.; et al. Phase II Study of BGJ398 in Patients with FGFR-Altered Advanced Cholangiocarcinoma. J. Clin. Oncol. 2018, 36, 276–282. [Google Scholar] [CrossRef]
  492. Wu, Y.M.; Su, F.; Kalyana-Sundaram, S.; Khazanov, N.; Ateeq, B.; Cao, X.; Lonigro, R.J.; Vats, P.; Wang, R.; Lin, S.F.; et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013, 3, 636–647. [Google Scholar] [CrossRef] [Green Version]
  493. Hwang, S.H.; Wecksler, A.T.; Zhang, G.; Morisseau, C.; Nguyen, L.V.; Fu, S.H.; Hammock, B.D. Synthesis and biological evaluation of sorafenib- and regorafenib-like sEH inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 3732–3737. [Google Scholar] [CrossRef] [Green Version]
  494. Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015, 36, 422–439. [Google Scholar] [CrossRef] [Green Version]
  495. Gerisch, M.; Hafner, F.T.; Lang, D.; Radtke, M.; Diefenbach, K.; Cleton, A.; Lettieri, J. Mass balance, metabolic disposition, and pharmacokinetics of a single oral dose of regorafenib in healthy human subjects. Cancer Chemother. Pharmacol. 2018, 81, 195–206. [Google Scholar] [CrossRef] [Green Version]
  496. Ettrich, T.J.; Seufferlein, T. Regorafenib. Recent Results Cancer Res. 2018, 211, 45–56. [Google Scholar] [CrossRef]
  497. Krishnamoorthy, S.K.; Relias, V.; Sebastian, S.; Jayaraman, V.; Saif, M.W. Management of regorafenib-related toxicities: A review. Ther. Adv. Gastroenterol. 2015, 8, 285–297. [Google Scholar] [CrossRef] [Green Version]
  498. Simard, J.R.; Getlik, M.; Grütter, C.; Pawar, V.; Wulfert, S.; Rabiller, M.; Rauh, D. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J. Am. Chem Soc. 2009, 131, 13286–13296. [Google Scholar] [CrossRef]
  499. Kort, A.; Durmus, S.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. Brain and Testis Accumulation of Regorafenib is Restricted by Breast Cancer Resistance Protein (BCRP/ABCG2) and P-glycoprotein (P-GP/ABCB1). Pharm. Res. 2015, 32, 2205–2216. [Google Scholar] [CrossRef] [Green Version]
  500. Wang, R.; Yamada, T.; Arai, S.; Fukuda, K.; Taniguchi, H.; Tanimoto, A.; Nishiyama, A.; Takeuchi, S.; Yamashita, K.; Ohtsubo, K.; et al. Distribution and Activity of Lenvatinib in Brain Tumor Models of Human Anaplastic Thyroid Cancer Cells in Severe Combined Immune Deficient Mice. Mol. Cancer Ther. 2019, 18, 947–956. [Google Scholar] [CrossRef] [Green Version]
  501. Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [Green Version]
  502. Hao, Z.; Wang, P. Lenvatinib in Management of Solid Tumors. Oncologist 2020, 25, e302–e310. [Google Scholar] [CrossRef] [Green Version]
  503. Ikeda, K.; Kudo, M.; Kawazoe, S.; Osaki, Y.; Ikeda, M.; Okusaka, T.; Tamai, T.; Suzuki, T.; Hisai, T.; Hayato, S.; et al. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J. Gastroenterol. 2017, 52, 512–519. [Google Scholar] [CrossRef] [Green Version]
  504. Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol. 2012, 6, 155–176. [Google Scholar] [CrossRef] [Green Version]
  505. Tsou, H.R.; Overbeek-Klumpers, E.G.; Hallett, W.A.; Reich, M.F.; Floyd, M.B.; Johnson, B.D.; Michalak, R.S.; Nilakantan, R.; Discafani, C.; Golas, J.; et al. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3-carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity. J. Med. Chem. 2005, 48, 1107–1131. [Google Scholar] [CrossRef]
  506. Nasrazadani, A.; Brufsky, A. Neratinib: The emergence of a new player in the management of HER2+ breast cancer brain metastasis. Future Oncol. 2020, 16, 247–254. [Google Scholar] [CrossRef]
  507. National Center for Biotechnology Information. PubChem Compound Summary for CID 9915743, Neratinib. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Neratinib (accessed on 26 May 2021).
  508. Zhao, X.Q.; Xie, J.D.; Chen, X.G.; Sim, H.M.; Zhang, X.; Liang, Y.J.; Singh, S.; Talele, T.T.; Sun, Y.; Ambudkar, S.V.; et al. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol. Pharmacol. 2012, 82, 47–58. [Google Scholar] [CrossRef] [Green Version]
  509. Prové, A.; Dirix, L. Neratinib for the treatment of breast cancer. Expert Opin. Pharmacother. 2016, 17, 2243–2248. [Google Scholar] [CrossRef]
  510. Jahangiri, A.; Chin, A.T.; Flanigan, P.M.; Chen, R.; Bankiewicz, K.; Aghi, M.K. Convection-enhanced delivery in glioblastoma: A review of preclinical and clinical studies. J. Neurosurg. 2017, 126, 191–200. [Google Scholar] [CrossRef] [Green Version]
  511. Królicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Safety and efficacy of targeted alpha therapy with (213)Bi-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 614–622. [Google Scholar] [CrossRef]
  512. Zalutsky, M.R.; Reardon, D.A.; Akabani, G.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; McLendon, R.E.; Wong, T.Z.; Bigner, D.D. Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med. 2008, 49, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  513. Reardon, D.A.; Akabani, G.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; Herndon, J.E., 2nd; McLendon, R.E.; Pegram, C.N.; Provenzale, J.M.; Quinn, J.A.; et al. Salvage radioimmunotherapy with murine iodine-131-labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. J. Clin. Oncol. 2006, 24, 115–122. [Google Scholar] [CrossRef] [PubMed]
  514. Królicki, L.; Kunikowska, J.; Bruchertseifer, F.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Rola, R.; Morgenstern, A.; Rosiak, E.; et al. 225Ac- and 213Bi-Substance P Analogues for Glioma Therapy. Semin. Nucl. Med. 2020, 50, 141–151. [Google Scholar] [CrossRef] [PubMed]
  515. Müller, C.; Schibli, R. Prospects in folate receptor-targeted radionuclide therapy. Front. Oncol. 2013, 3, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Figure 1. Overview of receptor tyrosine kinase inhibitors (RTKI) for the treatment of glioblastoma (GB).
Figure 1. Overview of receptor tyrosine kinase inhibitors (RTKI) for the treatment of glioblastoma (GB).
Pharmaceuticals 14 00626 g001
Figure 2. Overview of RTKI radiopharmaceuticals in GB. Info on organic radionuclides and radiometals commonly used for nuclear imaging and therapy purposes can be found in Table 1 and Table 2.
Figure 2. Overview of RTKI radiopharmaceuticals in GB. Info on organic radionuclides and radiometals commonly used for nuclear imaging and therapy purposes can be found in Table 1 and Table 2.
Pharmaceuticals 14 00626 g002
Figure 3. Chemical structures of the selected SM TKIs. The structure–activity relationship and potential radionuclide attachment sites are indicated.
Figure 3. Chemical structures of the selected SM TKIs. The structure–activity relationship and potential radionuclide attachment sites are indicated.
Pharmaceuticals 14 00626 g003
Table 1. Organic radionuclides commonly used for nuclear imaging and therapy purposes. Adapted from ref. [32].
Table 1. Organic radionuclides commonly used for nuclear imaging and therapy purposes. Adapted from ref. [32].
RadionuclideHalf-LifeEnergy (keV)Function
11C20.4 min960 (β+)PET
13N9.96 min1190 (β+)PET
15O2.07 min1720 (β+)PET
18F119 min640 (β+)PET
123I13.2 h159 (γ)SPECT
125I60.1 h15 (Auger)Therapy
131I8 d365 (γ), 606 (β)SPECT and Therapy
Table 2. Radiometals commonly used for nuclear imaging and therapy purposes. Adapted from ref. [30,33].
Table 2. Radiometals commonly used for nuclear imaging and therapy purposes. Adapted from ref. [30,33].
RadionuclideHalf-LifeEnergy (keV)Function
Diagnostic
64Cu12.7 h656 (β+)PET
67Ga78.3 h6.26 (Auger);SPECT (Therapy)
93, 184, 300, 393 (γ)
68Ga67.7 min1899 (β+)PET
86Y14.7 h1221 (β+)PET
89Zr78.4 h902 (β+)PET
99mTc6.02 h140 (γ)SPECT
111In67.2 h6.75 (Auger); 171, 245 (γ)SPECT (Therapy)
44Sc3.97632 (β+)PET
Therapeutic
67Cu2.58 d141 (β)β-Therapy
91, 93, 185 (γ)
89Sr52.7 d1463 (β)β-Therapy
90Y64 h2280 (β)β-Therapy
117mSn13.6 d150 (β)β-Therapy
153Sm46.5 h640; 710; 808 (β)β-Therapy
103 (γ)
161Tb6.89 d154 (β)β/AE-Therapy
49, 75 (γ)
≤50 (AE)
166Ho26.8 h665 (β)β-Therapy
81 (γ)
169Er9.4 d350 (β)β-Therapy
177Lu6.75 d176, 384, 497 (β)β-Therapy
113; 208 (γ)
186Re3.7 d1069 (β)β-Therapy
137 (γ)
188Re17 h2120 (β)β-Therapy
155 (γ)
211At7.2 h5870 (α)α-Therapy
212Pb10.2 h570 (β);α-Therapy
6050, 6090 (α—from 212Bi daughter)
238, 300 (γ)
213Bi45.6 min5558, 5875 (α)α-Therapy
324 (γ)
223Ra11.4 d5433 (α)α-Therapy
144, 154, 269, 324, 338 (γ)
225Ac10 d5830, 5792, 5790, 5732 (α)α-Therapy
86, 440 (γ)
47Sc3.35 d162 (β)β-Therapy
Table 6. Clinical trials in GB targeting the platelet-derived growth factor receptor.
Table 6. Clinical trials in GB targeting the platelet-derived growth factor receptor.
CompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined Therapy)Reference
Olaratumab (IMC-3G3)mAbII (completed-no results) (ramucirumab)NCT00895180 [67]
II (+/−) (bevacizumab)[228]
Tandutinib (MLN518)SMI/II (−)[296]
Nilotinib (AMN107)SMII (completed, no results)NCT01140568 [67,297]
Imatinib (Gleevec)SM Pharmaceuticals 14 00626 i002See Table 9
Dasatinib (BMS-354825)SM
RegorafenibSM
SorafenibSM
SunitinibSM
PonatinibSM
Nintedanib (BIBF 1120)SM
Lenvatinib (E7080)SM
Dovitinib (TKI258)SM
Pazopanib (GW786034)SM
Table 7. Clinical trials in GB targeting the fibroblast growth factor receptor.
Table 7. Clinical trials in GB targeting the fibroblast growth factor receptor.
CompoundTypeClinical Trials: Phase, Overall Conclusion (+) or (−), (Combined Therapy)Reference
Erdafitinib (JNJ-42756493)SMI (+)[321]
I (+) (advanced or refractory solid tumors)[325]
Futibatinib (TAS-120)SMI (+) (advanced solid tumors)[323]
I/II (active, not recruiting)NCT02052778 [67]
Infigratinib (BGJ398)SMII (completed, no results)NCT01975701 [67]
AZD4547SMI/II (completed, no results)NCT02824133 [67]
Ponatinib (AP24534)SM Pharmaceuticals 14 00626 i003See Table 9
Dovitinib (TKI258)SM
Nintedanib (BIBF 1120)SM
Lenvatinib (E7080)SM
Anlotinib (AL3818)SM
Regorafenib (BAY73-4506)SM
Table 10. Selection criteria for potential novel TRT of GB.
Table 10. Selection criteria for potential novel TRT of GB.
Inclusion Criteria
  • TKI was studied in clinical trials for GB
  • TKI is a mAb that can be conjugated to a chelator for use with metallic therapeutic isotopes, whereby the targeting/uptake will not be affected
OR
  • TKI is a SM that
    • Contains a halogen which indicates a position that can potentially be radioiodinated
    • Has a potential site for attachment of a chelator that will not drastically affect the structure–activity relationship of the inhibitor with the receptor binding site
Exclusion Criteria
  • TKI (SM and mAbs) has already been radiolabeled (diagnostic or therapeutic radionuclide)
  • TKI SM does not contain a halogen or any possible site for chelator attachment
  • Clinical trials results exclusion criteria:
    • If results of clinical trials in GB patients reveal unwanted safety/tolerability issues, serious adverse events that were irreversible or responsible for treatment discontinuation
    • If results of clinical trials in GB patients reveal unfavorable pharmacokinetic properties
    • If results of clinical trials in GB patients did not result in a significant improved PFS and/or OS
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Bolcaen, J.; Nair, S.; Driver, C.H.S.; Boshomane, T.M.G.; Ebenhan, T.; Vandevoorde, C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals 2021, 14, 626. https://doi.org/10.3390/ph14070626

AMA Style

Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals. 2021; 14(7):626. https://doi.org/10.3390/ph14070626

Chicago/Turabian Style

Bolcaen, Julie, Shankari Nair, Cathryn H. S. Driver, Tebatso M. G. Boshomane, Thomas Ebenhan, and Charlot Vandevoorde. 2021. "Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma" Pharmaceuticals 14, no. 7: 626. https://doi.org/10.3390/ph14070626

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics