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Abstract: The effects of each subtype-selective peroxisome proliferator activated receptor (PPAR)
agonist (α, β/δ, γ) on corneal epithelial wound healing were investigated using a rat corneal alkali
burn model. After the alkali burn, each PPAR agonist or vehicle ophthalmic solution was instilled
topically onto the rat’s cornea. Corneal epithelial healing processes were evaluated by fluorescein
staining. Pathological analyses and real-time reverse transcription polymerase chain reactions were
performed to evaluate Ki67 (proliferative maker) expression and inflammatory findings. The area
of the corneal epithelial defect at 12 h and 24 h after the alkali burn was significantly smaller in
each PPAR group than in the vehicle group. Ki67 mRNA expression was increased in the PPARβ/δ
group, whereas mRNA expressions of inflammatory cytokines were suppressed in all of the PPAR
agonist groups. Nuclear factor kappa B (NF-κB) was the most suppressed in the PPARγ group. The
accelerated corneal epithelial healing effects of each PPAR ligand were thought to be related to the
promotion of proliferative capacity and inhibition of inflammation.

Keywords: corneal epithelial wound healing; PPAR; alkali burn

1. Introduction

The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear recep-
tors belonging to the steroid hormone receptor superfamily [1–3]. PPARs consist of three
main subtypes: α, β/δ, and γ [1]. The PPARs are involved in glucose and lipid metabolism
in humans [1,2]. PPAR agonists play important roles in adipocyte differentiation and lipid
metabolism [4]. Whereas PPARα and PPARγ agonists are widely recognized as drugs for
dyslipidemia and diabetes [5,6], several studies have reported that PPARs not only have
roles in the transcriptional regulation of metabolism, but also in inflammation, angiogen-
esis, and fibrotic reactions [7,8]. Activation of all subtypes of PPARs has been reported
to suppress inflammation via inhibition of NF-κB [9,10]. In the field of ophthalmology,
we previously reported the anti-inflammatory and anti-neovascular effects of PPARα and
PPARγ in a corneal wound model [11–13]. On the other hand, our recent study showed that
PPARβ/δ promotes neovascularization while suppressing inflammation [14]. We reported
that each subtype of PPAR is localized differently in the eye [15]. Therefore, differences in
their localization are thought to be involved in PPAR functions. In terms of localization,
we found that all subtypes of PPARs are present in the corneal epithelium [15], and PPARα
and β/δ have been reported to play an important role in skin wounds [16,17]. Thus, in
the present study, the effects of each subtype of PPAR agonist on corneal epithelial wound
healing were examined in a rat alkali burn model.
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2. Results
2.1. Corneal Epithelial Wound Healing

Corneal epithelial defects were created by an alkali burn, and the vehicle ophthalmic
solution or one of each PPAR agonist (PPARα: 0.05% fenofibrate, PPARβ/δ: 0.05%
GW501516, PPARγ: 0.1% pioglitazone) was instilled onto the cornea immediately af-
ter injury and then every 6 h. Real-time RT-PCR showed upregulation of each PPAR by
instillation of corresponding agonists (Figure 1a–c), suggesting that the expressions of
PPARs were ligand-dependently increased. The corneal epithelial defects after the alkali
burn were observed consecutively by fluorescein staining (Figure 2a). The ratio of the
epithelial defected area to the original defected area at each time point was significantly
lower for the PPAR treatments after 12 h (p < 0.05) and even more pronounced at 24 h
(p < 0.01) (Figure 2b). The ratios of the defected area at 12 h after injury were as follows:
PPARα group (30.4% ± 11.5%), PPARβ/δ group (22.2% ± 9.2%), PPARγ group (25.5%
± 9.1%), and vehicle group (53.1% ± 3.3%). The ratios of corneal epithelial defects 24 h
after injury were as follows: PPARα group (11.7% ± 5.6%), PPARβ/δ group (5.0% ± 6.5%),
PPARγ group (8.0% ± 7.7%), and vehicle group (39.5% ± 20.5%).

Figure 1. Expression of PPARs. Instillation of each PPAR ligand increased the mRNA levels of
the corresponding PPARs in the cornea 6 h after the alkali burn (a–c). Data are expressed as mean
± standard error (n = 8 samples/group). ** p < 0.01, * p < 0.05.

Figure 2. Cont.
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Figure 2. Comparison of corneal epithelial healing processes. (a) Representative photographs of rat
ocular surfaces 0, 12, and 24 h after alkali injury. Green areas represent fluorescein-stained wounded
areas of the ocular surfaces. (b) The remaining area of the wound (percent of each initial wounded
area) is shown for 12 and 24 h after the alkali burn. At 12 and 24 h after the injury, the reduction rate
of the corneal epithelial defect was significantly higher in each PPAR group than in the vehicle group.
Data are expressed as mean ± standard error (n = 8 samples/group). ** p < 0.01, * p < 0.05.

2.2. Ki67 Expression

Next, Ki67 expression was investigated to evaluate the proliferative potential of
corneal epithelial cells. Since Ki67 and inflammation described later were investigated as
mechanisms for promoting corneal epithelial repair, their evaluations were performed 6 h
after injury, earlier than 12 h, when there was a significant difference (Figure 1). On im-
munostaining, Ki67 expressions appeared in corneal epithelium of all groups (Figure 3a–d).
The number of cells stained in the corneal epithelial cells was significantly higher in the
PPARβ/δ group than in the vehicle group (Figure 3e). Other PPAR groups were not signifi-
cantly different from the vehicle group. Real-time RT-PCR showed a significantly greater
increase of Ki67 mRNA in the PPARβ/δ group than in the other groups (Figure 3f).(fig 3)
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Figure 3. Evaluation of Ki67 expression. (a–d) Immunostaining of Ki67 in each group 6 h after the alkali burn. (e) The
number of cells expressing Ki67 in the corneal epithelial cells. The total number of Ki67-positive cells was counted at two
locations where the epithelium shown in half of the screen. (f) Ki67 mRNA expression 6 h after injury. Higher magnification
figures of the boxed area are also shown. Bar, 50 µm. The PPARβ/δ group has significantly more Ki67-positive cells than
the vehicle group. Ki67 mRNA expression is significantly higher in the PPARβ/δ group than in the other groups. Data are
expressed as mean ± standard error (n = 5 samples/group). * p < 0.05 or ** p < 0.01.
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2.3. Nuclear Factor Kappa B (NF-κB) and Kappa Light Polypeptide Gene Enhancer in the B-Cell
Inhibitor, Alpha (I-kBα) Expression

On immunostaining, NF-κB-positive inflammatory cells were observed at the corneal
limbus 6 h after alkali burn. Each member of the PPAR group showed a smaller degree of
inflammatory cell infiltration compared to the vehicle group (Figure 4a–d). The number of
cells expressing NF-κB in the nucleus was smaller in each PPAR group than in the vehicle
group. Real-time RT-PCR showed significant suppression of mRNA expression of NF-κB
in the PPARγ group compared to the vehicle group 6 h after the alkali burn (Figure 4f).(fig 4)
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Figure 4. Expression of NF-κB. (a–d) Immunostaining of NF-κB on the corneal periphery in each group 6 h after the alkali
burn. Higher magnification figures of the boxed area are also shown. Bar, 50 µm. (e) The number of cells expressing NF-κB
in the nucleus. (f) NF-κB mRNA expression 6 h after injury. The number of cells stained in the nucleus is significantly lower
in each PPAR group than in the vehicle group. NF-κB mRNA expression in the PPARγ group is significantly suppressed
compared to the vehicle group. Data are expressed as mean ± standard error (n = 8 samples/group). ** p < 0.01.

Similarly, the effect of each PPAR agonist on kappa light polypeptide gene enhancer
in the B-cell inhibitor alpha (I-kBα) expression, which is an inhibitory protein of NF-κB,
was investigated. I-κBα was strongly expressed in the cell nucleus in the PPARα and
PPARβ/δ groups 6 h after the alkali burn (Figure 5b,c). The number of I-κBα-positive
cells was larger in the PPARα and PPARβ/δ groups than in the vehicle group (Figure 5e).
Real-time RT-PCR showed significant upregulation of mRNA expression of I-κBα in the
PPARα and PPARβ/δ groups compared to the vehicle group at 6 h (Figure 5f). Double
immunofluorescence studies demonstrated that PPARα and PPARβ/δ were expressed in
I-κBα-positive cells (Figure 5g), suggesting that PPARα and PPARβ/δ expressions were
associated with the upregulation of I-κBα. There was no correlation between I-kBα and
PPARγ (data not shown). These results showed a difference in the involvement of NF-κB
and I-κBα in PPARα, PPARβ/δ, and PPARγ functions.
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Figure 5. Expression of I-κBα. (a–d) Immunostaining of I-κBα on the corneal periphery in each group 6 h after the alkali
burn. Higher magnification figures of the boxed area are also shown. Bar, 50 µm. (e) The number of cells expressing I-κBα
in the nucleus. (f) I-κBα mRNA expression 6 h after injury. (g) Double immunofluorescence studies using I-κBα and each
PPAR antibody. Bar, 50 µm. There is a significantly higher number of I-κBα-positive cells in the PPARα and PPARβ/δ
groups versus the vehicle group. I-κBα-stained invasive cells coincide with the positively stained PPARα or PPARβ/δ cells
(white arrows). Data are expressed as mean ± standard error (n = 8 samples/group). * p < 0.05 or ** p < 0.01.

2.4. Inflammatory Cytokines

Real-time RT-PCR was performed to compare the expressions of inflammatory cy-
tokines, including TNF-α, IL-1β, and IL-6, 6 h after the alkali injury. All PPAR treatments
suppressed the expression of TNF-α, IL-1β, and IL-6 (Figure 6a–c).
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Figure 6. Expression of proinflammatory cytokine mRNAs in the cornea 6 h after alkali injury. The mRNA expression levels
of TNF-α (a), IL-1β (b), and IL-6 (c) were measured. Treatment with all PPAR agonists suppressed the mRNA levels of
IL-1β, IL-6, and TNF-α. Data are expressed as mean ± standard error (n = 8 samples/group). ** p < 0.01, * p < 0.05.

3. Discussion

In ophthalmology, PPARs have recently been reported to affect inflammation, fibrosis,
and angiogenesis [13,14,18,19]. However, there are few reports of the effects of PPARs on
corneal epithelial wound healing. The involvement of PPARs in wound healing has often
been reported in the field of dermatology [16]. A previous study reported that PPARα
and PPARβ/δ expressions were upregulated during the repair process, whereas PPARγ
remained undetectable in the wounded murine interfollicular epidermis [20]. PPARα
activation was reported to induce skin healing via modulation of the inflammatory phase,
and PPARβ/δ activation was reported to protect the wound edge keratinocytes from
the TNF-a-induced apoptosis [17,21]. In addition, it was reported that wound healing
was delayed in mutant PPARα and PPARβ/δ mice [22]. In this study, the effects of each
subtype of PPAR agonist on corneal epithelial wound healing were investigated using a rat
corneal alkali burn model. Healing of epithelial defects was promoted in all PPAR groups
compared to the vehicle group.

In the present study, PPARβ/δ ligand increased the expression of Ki67, suggesting
that activation of PPARβ/δ promotes wound healing by improving proliferative ability.
However, contrary to the present results, Gu et al. reported that a PPARβ/δ agonist
suppressed Ki67, and a PPARβ/δ antagonist promoted Ki67 in the rat phototherapeutic
keratectomy model [23]. Since there are few reports of the involvement of PPARβ/δ in
corneal proliferative capacity, further studies using various wound models are needed.

NF-κB is a key regulator of immune development, immune responses, inflammation,
and cancer [24–26]. When inactivated, it is localized to the cytoplasm by I-κBα, the
suppressor protein that binds to NF-κB [24]. I-κBα inhibits NF-kB nuclear translocation
and restricts transcription downstream of the NF-κB signaling pathway [24]. Previous
studies have reported that PPARα and PPARβ/δ suppress NF-κB [9,11,14]. In the present
research, immunostaining and cell counting analyses showed that all PPAR subtypes
suppressed NF-κB expression. On the other hand, real-time RT-PCR analysis showed
that only PPARγ suppressed mRNA expression of NF-κB. The counts of cells that were
NF-κB-positive only in the nuclei were compared. In contrast, RT-PCR analysis measured
the total expressions of NF-κB mRNA in the cornea. From this result, it was thought
that PPARα and PPARβ/δ suppressed nuclear translocation; NF-κB was expressed in
the cytoplasm. Therefore, there appeared to be not much difference in the expressions
of NF-κB mRNA between each group compared to the cell count results. The results of
I-κBα expression support this. Administration of the PPARγ agonist did not promote the
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activation of I-κBα, suggesting that the PPARγ agonist suppresses NF-κB without involving
the I-κBα pathway. Interestingly, in that regard, it has been reported that PPARγ showed
an anti-inflammatory effect by inducing M2 macrophages that suppress inflammation [27].
On the other hand, immunostaining showed that PPARα and PPARβ/δ increased I-κBα
expression. Double immunofluorescence staining showed that PPARα and PPARβ/δ were
strongly expressed in I-κBα-positive cells. In addition, there was a significant upregulation
of mRNA expression of I-κBα in the PPARα and PPARβ/δ groups compared to the vehicle
group. These results suggest that PPARα and PPARβ/δ agonists suppress inflammation
by inhibiting translocation of NF-κB into the nucleus via the upregulation of I-κBα. The
mRNA levels of other inflammatory cytokines (TNF-α, IL-1β, and IL-6) were suppressed
in all PPAR groups. It has been reported that all PPAR subtypes have anti-inflammatory
effects [9,10]. The present results were similar to those previously reported. Nakamura et al.
reported that PPARβ/δ ligand promoted corneal epithelial wound healing, and they
suggested that the mechanism may involve suppression of corneal epithelial cell death
due to inflammation [28]. Since an alkali burn induces destructive inflammation in the
cornea [29], suppression of inflammatory cell death is thought to contribute strongly to
wound healing.

In summary, administration of agonists of all PPAR subtypes promoted corneal ep-
ithelial wound healing. Reductions of NFKB and TNF-α indicate anti-inflammatory effects,
as observed in all PPAR groups, which may be considered to be a factor promoting wound
healing. In addition, the PPARβ/δ agonists may accelerate healing by promoting prolifera-
tion. The mechanisms of the anti-inflammatory effects of PPARs seemed to be different for
each subtype. There may also be different mechanisms of action for each PPAR subtype in
the corneal epithelial wound healing process itself. Investigation of the roles of PPARs in
the field of ophthalmology has just started, and further research is needed.

4. Materials and Methods
4.1. Ethics Statement

All animal experiments were conducted in compliance with the Experimental Animal
Ethics Review Committee of Nippon Medical School (approval number: 29-055), Tokyo,
Japan, and all procedures conformed to the requirements of the Association for Research in
Vision and Ophthalmic and Visual Research.

4.2. Alkali Burn Model

Eight-week-old, male Wistar rats weighing 200 g were obtained from Sankyo Labora-
tory Service, Tokyo, Japan. A circular filter paper (diameter, 3.2 mm) that had been soaked
in 1 N NaOH was placed on the central cornea for 1 min with the animal under general
isoflurane anesthesia to create a corneal alkali burn on the right eye. The left eye remained
untreated as a control. The corneas were rinsed with 40 mL of physiological saline after
alkali exposure.

4.3. Treatment with Each PPAR Agonist

After alkali injury, each ophthalmic solution described below was administered. This
study used four kinds of ophthalmic solutions: a vehicle solution, a 0.05% fenofibrate
solution (PPARα; Wako Pure Chemical Industries, Osaka, Japan) [11], a 0.05% GW501516
solution (PPARβ/δ; Alexis Biochemicals, Lausanne, Switzerland) [28], and a 0.1% pioglita-
zone solution (PPARγ; Molekula Ltd., Dorset, UK) [12]. Ophthalmic vehicle solution was
prepared as previously described [11,12,15]. One of the ophthalmic solutions was topically
instilled onto the ocular surfaces of each rat’s eye. Topical administration was continued
in each group immediately after injury and every 6 h until the appropriate endpoint (6 h,
12 h, 24 h after alkali exposure) was reached. Rats reaching each endpoint were euthanized
by exsanguination under 3.5% isoflurane anesthesia.
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4.4. Evaluation of the Corneal Epithelial Defect Area

Corneal epithelial defects in each group were stained with fluorescein solution at 0 h,
12 h, and 24 h after the alkali injury. Then, macroscopic photographs were taken under
a blue filter. The green areas in the photographs were considered the corneal epithelium
defect areas. The area ratio of the green areas to the entire cornea was calculated using
Fiji software (Fiji, ImageJ, Wayne Rasband, National Institutes of Health, Bethesda, MD,
USA) [30]. The method for measuring the corneal epithelial defect area using Fiji software
was shown in Supplemental Figure S1.

4.5. Histological and Immunohistochemical Analyses

Histological and immunohistochemical analyses were performed as previously de-
scribed [11,12,15]. Primary antibodies used for the immunohistochemical analyses were:
(1) anti-rat Ki67 (Dako Cytomation, Glostrup, Denmark); (2) polyclonal rabbit anti-NF-
κB/P65 (Santa Cruz Biotechnology, Dallas, TX, USA); (3) monoclonal mouse anti-I-κBα
(Santa Cruz Biotechnology); (4) monoclonal rabbit anti-PPARα (Thermo Scientific, Pierce
Biotechnology, IL, USA); and (5) polyclonal rabbit anti-PPARβ/δ (Thermo Scientific).
Histofine Simple Stain Rat MAX-PO (Multi, Nichirei Bioscience, Tokyo, Japan) was used
as the secondary antibody in both immunostaining procedures. PPARα, PPARβ/δ, and
I-kBα were detected by examining frozen tissue sections using double immunofluorescence
staining for PPARα (mouse; Texas Red), PPARβ/δ (mouse; Texas Red), or I-kBα (goat;
fluorescein isothiocyanate)

4.6. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

For the RT-PCR analyses, dissected corneal tissues (n = 5 for each group at 6 h af-
ter corneal injury) were immediately placed into RNAlater solution (Life Technologies,
Carlsbad, CA, USA) and stored at −80 ◦C. Total RNA was extracted from the cornea using
an RNeasy FFPE Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s
protocol. An ND-1000 v3.2.1 spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA) was used to ensure RNA concentration and purity (A260/A280). Libraries of cDNA
were created from 4 µg of total RNA using a High-Capacity cDNA Reverse Transcription Kit
(Thermo Fisher Scientific) in accordance with the manufacturer’s protocol. Gene expression
levels were analyzed using 0.3 µL cDNA with real-time detection of accumulated fluores-
cence in accordance with the manufacturer’s manual (QuantStudioTM 3 Real-Time PCR
System, Thermo Fisher Scientific). Normalized values for mRNA expression in each sample
were calculated as the relative quantity of the housekeeping gene, β-actin. Primers used for
real-time RT-PCR included: mβ-actin, 5′-GCA GGA GTA CGA TGA GTC CG-3′ (forward)
and 5′-ACG CAG CTC AGT AAC AGT CC-3′ (reverse); mPPARα, 5′-TCG TGG AGT
CCT GGA ACT GA-3′ (forward) and 5′-GAG TTA CGC CCA AAT GCA CC -3′ (reverse);
mPPARβ/δ, 5′-GCC GCC CTA CAA CGA GAT CA -3′ (forward) and 5′-CCA CCA GCA
GTC CGT CTT TGT -3′ (reverse); mPPARγ, 5′-GCG AGG GCG ATC TTG ACA -3′ (forward)
and 5′- ATG CGG ATG GCC ACC TCT TT-3′ (reverse); mKi67, 5′- ATT TCA GTT CCG CCA
ATC C -3′ (forward) and 5′- GGC TTC CGT CTT CAT ACC TAA A -3′ (reverse); mTNF-α,
5′- AAA TGG GCT CCC TCT CAT CAG TTC-3′ (forward) and 5′- TCT GCT TGG TGG TTT
GCT ACG AC -3′ (reverse); mIL-1β, 5′-TAC CTA TGT CTT GCC CGT GGA G-3′ (forward)
and 5′- ATC ATC CCA CGA GTC ACA GAG G-3′ (reverse); mIL-6, 5′- GTC AAC TCC ATC
TGC CCT TCA G A-3′ (forward) and 5′-GGC AGT GGC TGT CAA CAA CAT-3′ (reverse);
mNF-κB, 5’-GGCAGCACTCCTTATCAA-3’ (forward) and 5’-GGTGTCGTCCCATCGTAG-
3’ (reverse); and mI-κBα, 5’-TGACCATGGAAGTGATTGGTCAG-3’ (forward) and 5’-
GATCACAGCCAAGTGGAGTGGA-3’ (reverse). The SDS 2.3 software program (Applied
Biosystems) was used for all quantifications.

4.7. Statistical Analyses

All results are reported as mean ± standard error. Groups were compared using one-
way analysis of variance followed by the Tukey–Kramer post hoc test. (GraphPad Prism,
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software version 8.4.2, GraphPad Software, San Diego, CA, USA). A value of p < 0.05 was
considered significant. All analyses were calculated by GraphPad Prism software (Version
8.4.2, GraphPad Software).

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-824
7/14/2/88/s1, Figure S1: Measurement of corneal epithelial defect area using Fuji software.
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