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Abstract: Monoclonal antibodies (mAbs) have been known since the 1970s. However, their thera-
peutic potential in the medical field has recently emerged, with the advancement of manufacturing
techniques. Initially exploited mainly in the oncology field, mAbs have become increasingly relevant
in Infectious Diseases. Numerous mAbs have been developed against SARS-CoV 2 and have proven
their effectiveness, especially in the management of the mild-to-moderate disease. In this review, we
describe the monoclonal antibodies currently authorized for the treatment of the coronavirus disease
19 (COVID-19) and offer an insight into the clinical trials that led to their approval. We discuss the
mechanisms of action and methods of administration as well as the prophylactic and therapeutic
labelled indications (both in outpatient and hospital settings). Furthermore, we address the critical
issues regarding mAbs, focusing on their effectiveness against the variants of concern (VoC) and their
role now that a large part of the population has been vaccinated. The purpose is to offer the clinician
an up-to-date overview of a therapeutic tool that could prove decisive in treating patients at high
risk of progression to severe disease.
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1. Introduction

Since 1901, when Emil Adolf von Behring won the Nobel Prize in Medicine for the
application of animal-derived serum therapies, this approach has been attempted for
several emerging infectious diseases, based on the pivotal role of the serological immune
response against infectious diseases [1]. Antibodies are now a versatile tool for diagnostics
and therapy of various conditions in humans and hyperimmune sera can be replaced by
specific monoclonal antibodies (mAbs). MAbs were first described almost half a century
ago, deriving from mice’s vaccination with specific antigens followed by B cells harvesting
from mouse spleens. Now, antibodies have become significantly easier to develop and
produce whereby relevant antibodies can be identified directly from exposed persons.
Investigators are now able to use flow cytometry to distinguish memory B cells based on
their antigen-binding characteristics [2]. The variable regions of the antibody heavy and
light chains can be replicated, achieving monoclonal antibodies expression [3]. From these
initial procedures, candidates for mAbs development can be further selected according
to in vitro neutralization assays that assess their activity. Thanks to the above mentioned
progress in techniques, the necessary time to isolate and characterize antibodies has been
significantly reduced.

A mAb with potential therapeutic utility should fulfill the following three conditions
at least: (i) the antigen-binding fragment (Fab) domain must specifically bind to the appro-
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priate molecular target, (ii) efficient and precise effector functions activated by binding of
the constant crystallizable fragment (Fc) region to specific receptors of immune cells, and
(iii) good pharmacokinetic characteristics [1].

Initially, the application of mAbs was restricted to the development of diagnostic
techniques with limited therapeutic applications, because mAbs were of animal origin
exclusively, burdened by potential downsides in terms of high immunogenicity, limited
half-life, and scarce capacity of activating Fc-mediated effector functions after adminis-
tration. These problems were addressed by the engineering of the constant regions of an
antibody molecule leading first to chimeric (murine mAbs with a human Fc fragment) and
then to humanized antibodies (human mAbs, maintaining the complementarity determin-
ing regions of the original mouse mAbs) [4]. In the last two decades, novel techniques
introduced the possibility of dissecting directly the human “antibodyome,” allowing the
selection of fully human mAbs [4].

Advances in mAbs research and production could have an enormous impact in the
field of medicine. Although initially devised for infectious diseases prevention or treatment,
mAbs are now more extensively applied in other clinical areas as oncology or immunology.

Theoretically, mAbs could be employed against a broad variety of biologic agents,
encompassing bacterial and viral pathogens, fungi, and associated toxins, with their
action exerted either directly (e.g., preventing cell entry or neutralizing toxins) or via
indirect mechanisms (e.g., modulating inflammatory responses or promoting opsonic
phagocytosis) [5].

Palivizumab was the first mAb approved in Europe in 1999, licensed for prophylaxis
against the serious respiratory disease caused by respiratory syncytial virus (RSV) in infants
at high risk for severe manifestations. Palivizumab, which recognizes an epitope in the
fusion protein was shown to reduce hospitalization by 55% in both premature infants and
those with bronchopulmonary dysplasia [6,7]. Only twenty years later, bezlotoxumab
(which targets Clostridioides difficile toxin B), the second mAb in the field of infectious
diseases, was authorized in Europe to prevent recurrences of infection in adults at high
risk of repeated bouts [8].

Despite their potentially extensive impact, up to date, only few mAbs are licensed
against infectious agents or toxins. This important field of research is constantly expanding,
and new drugs are being licensed for therapeutic applications in the area of infectious
diseases. For example, the FDA approved raxibacumab and obiltoxaximab, for the treat-
ment and prophylaxis of inhalational anthrax, respectively, when alternative therapies
are not available or not appropriate [9,10]. Moreover, ibalizumab was recently licensed as
rescue therapy in heavily treatment-experienced adults with multidrug-resistant HIV-1
infection [11].

During the Ebola virus outbreak in West Africa in 2014–2016, several mAbs were in-
vestigated as a possible weapon against the virus. Several mAbs cocktails were developed,
including ZMapp (a combination of three chimeric mAbs produced in the plant Nicotiana
benthamiana), REGN-EB3 (a combination of three mAbs produced in humanized mice that
bind to non-overlapping epitopes of Ebola virus glycoprotein), and a single monoclonal
antibody (mAb114, which targets the receptor-binding domain of the virus glycoprotein).
Efficacy and tolerability were tested in the Pamoja Tulinde Maisha (PALM) trial: a ran-
domized, controlled trial, initiated in February 2015. However, as the incidence of Ebola
infection dropped, trial enrollment decreased, and the study failed to reach statistical
significance. Although limited, the data showed safeness and the possibility of a mortality
benefit. The interim results of the trial suggested a significant improvement of survival
for patients receiving mAb114 (64% survival rate) or REGN-EB3 (66.5% survival rate),
compared to those receiving ZMapp (49.5% survival rate) [12]. Notably, patients who
received early care and treatment fared better than those who were treated later.
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2. Antibodies Targeting SARS-CoV-2

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to
spread worldwide as a severe pandemic [13]. The development of therapeutic mAbs
is currently at the front line of fighting against the coronavirus disease 19 (COVID-19)
pandemic and hundreds of therapeutic antibodies are either in the preclinical stages or in
clinical trials [14]. Owing to the close relatedness of SARS-CoV-2 to SARS-CoV-1, initial
efforts of mAbs therapy against the former focused on repurposing anti-SARS-CoV-1 mAbs
with cross-neutralizing activity against SARS-CoV-2. Later, memory B cells specific to
the receptor-binding-domain (RBD) of SARS-CoV-2 spike protein were used to generate
SARS-CoV-2 specific IgG1 mAbs that exhibit potent neutralizing activity [15–18].

The spike (S) protein on the surface of SARS-CoV-2 binds the host cellular angiotensin-
converting enzyme 2 (ACE2) receptor, allowing the virus to infect host cells. The S protein
is a trimer, and each monomer comprises an N-terminal S1 subunit and a C-terminal S2
subunit. The S1 subunit further separates into the N-terminal domain (NTD), subdomain
1 (SD1), subdomain 2 (SD2) and RBD. The S2 subunit further divides into the fusion
peptide (FP), the heptad repeats 1 (HR1), and heptad repeat 2 (HR2) [Figure 1]. During the
virus entry phase, S1 is responsible for the receptor binding, while S2 is involved in the
membrane fusion.
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monomer of the S protein consists of a N-terminal S1 subunit [comprising the N-terminal domain (NTD), the receptor-
binding domain (RBD), subdomain 1 (SD1), and subdomain 2 (SD2)] and a C-terminal S2 subunit [comprising the fusion
peptide (FP), the heptad repeat 1 (HR1), the heptad repeat 2 (HR2) and the transmembrane domain (TM)]. The S1 subunit
binds the ACE2 receptor, while the S2 subunit is involved in membrane fusion during cell entry. Upon binding of the
trimer to the host cell receptor through the RBD, the S1 and S2 subunits are cleaved by the host transmembrane protease
serine 2 (TMPRSS2) at the S1/S2 junction; then, a second site within the S2 subunit, termed the S2′ site, is cleaved by serine
proteases or cathepsins and viral-host membranes fusion is initiated. (B) Interaction between the S protein and the host cell
receptor ACE2. Most therapeutic mAb targets the RBD of the S protein at positions required for the interaction with ACE2
(Bamlanivimab, Etesevimab, Casirivimab, Imdevimab, Cilgavimab, Tixagevimab, Regdanvimab) while Sotrovimab targets
the RBD, but does not compete with human ACE2 receptor binding. mAbs binding the NTD have been demonstrated to
neutralize SARS-CoV-2, and these could be developed for therapeutic purposes [15,19–26] (Created with BioRender.com).
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The S protein can be in a receptor inaccessible (closed, pre-fusion) or accessible (open,
post-fusion) state according to the position of the RDB. In its open conformation, the RBD
domain is exposed and able to bind ACE2; in the closed conformation, it is instead blocked.

Most neutralizing antibodies target S1, particularly the S1-RBD, due to its important
function as well as its significant immunogenicity [27,28].

Additionally, antibodies binding the N-terminal domain of the S-protein, or a distinct
proteoglycan epitope have been demonstrated to neutralize SARS-CoV-2, and could be
developed for therapeutic purposes [15,19–26]. Two mAbs developed against MERS-CoV,
G2 and 7D10, target the S1-NTD region blocking the interaction between the spike protein
and the host receptor DPP4. The coronavirus S2 subunit is more conserved than the S1, and
carries epitopes that may represent a potential target for broadly neutralizing antibodies
[Figure 1].

The antiviral effect of mAbs is the outcome of their two functional domains: Fab
that confers antigen specificity, responsible for virus neutralization, and the Fc that drives
effector functions. The majority of mAbs with activity against SARS-CoV-2 bind to the S1
subunit and inhibit the virus engagement to its cell surface receptor, ACE2, with their Fab
domain (neutralizing activity).

The Fc domain (constant domain) engages complement or Fc gamma receptors (FcγRs)
on leukocytes promoting immune-mediated cellular clearance, the enhancement of antigen
presentation and CD8+ T cell responses. Fc-FcγR interactions proved to be essential for
the in vivo antiviral activity of anti-SARS-CoV-2 mAbs. MAbs lacking Fc domain showed
reduced antiviral activity in vivo [29].

Additionally, the Fc domain can reshape inflammation through engagement of FcγRs
on specific cells [30]. In particular conditions, Fc-FcγR interactions may cause antibody-
dependent enhancement (ADE) of virus infection or pathological immune skewing. The ef-
fect of ADE mediated by the Fc receptor (FCR) mainly involves the interaction between the
Fc fragment of the antibody and the FcγR on the cell surface. This allows the virus and
antibody complex to combine with cells that express FcγR, causing the virus to adhere to
their surface and increase the risk of infection.

Current evidences do not support the hypothesis that SARS-CoV-2 infection, mAbs
against SARS-CoV-2 or vaccination may cause ADE effects. Although unlikely, the possibil-
ity of ADE compels a careful consideration on the role of the antibody Fc in SARS-CoV-2
therapeutic design [31].

The neonatal Fc receptor (FcRn) is an MHC class I like molecule associated with
beta-2-microglobulin (β2m) and it is involved in the IgG turnover regulating the antibody
half-life in vivo mediating bidirectional transcytosis of IgG across epithelial cells as well
as membrane recycling. Fc engineering has exploited the FcRn-mediated IgG recycling to
develop mAbs therapeutics with improved pharmacokinetic properties, allowing lowered
dosing by extending half-life and increased potency [32].

2.1. Principal mAbs against SARS-CoV-2

Several mAbs with neutralizing activity against SARS-CoV-2 have showed clinical
benefit in cases of mild to moderate COVID-19, reducing the risk of hospitalization and
severe disease. Nonetheless, their effectiveness in preventing disease complications or mor-
tality among COVID-19 hospitalized patients was limited. Hereafter, we briefly describe
SARS-CoV-2 RBD-specific neutralizing antibodies commercialized for clinical use.

2.1.1. Bamlanivimab

Bamlanivimab (also known as LY-CoV555 and LY3819253) is a recombinant neutraliz-
ing human IgG1k mAb, unmodified in the Fc region and produced by Eli Lilly. It targets the
receptor binding domain of the S-protein of SARS-CoV-2. It was originally derived from the
blood of one of the first U.S. patients who recovered from COVID-19. X-ray crystallography
and cryo-EM structural determination suggest that bamlanivimab binds the RBD of the S



Pharmaceuticals 2021, 14, 1272 5 of 17

protein at a position overlapping the ACE2 binding site, which is accessible in both the up
and down conformations of the RBD.

Bamlanivimab binds the spike protein with a dissociation constant KD = 0.071 nM
and blocks the S protein attachment to the human ACE2 receptor with an IC50 value of
0.025 µg/mL. The authorized dosage is a single intravenous infusion of 700 mg adminis-
tered within 10 days of symptoms onset [33].

In April 2021, the Food and Drug Administration (FDA) revoked the Emergency
Use Authorizations (EUA) for bamlanivimab alone, due to the increasing circulation of
SARS-CoV-2 variants [34].

2.1.2. Bamlanivimab and Etesevimab

Etesevimab (also known as LY-CoV016 and LY3832479 and JS016) is also an mAb
manufactured by Eli Lilly that binds to a different but overlapping epitope in the RBD of
the SARS-CoV-2 S protein. Etesevimab is a recombinant neutralizing human IgG1κ mAb
to the S protein of SARS-CoV-2, with amino acid substitutions in the Fc region (L234A,
L235A) to reduce effector function. Etesevimab binds the S protein with a dissociation
constant KD = 6.45 nM and blocks S protein attachment to the human ACE2 receptor with
an IC50 value of 0.32 nM (0.046 µg/mL) [35]. Bamlanivimab is able to bind RBD in both its
open and closed conformations, while etesevimab binds only to the open conformation.
Because of RBD fluctuation between its two configurations, targeting both allows for
greater neutralization.

Therefore, its use was initially approved in combination with bamlanivimab (dosage
of bamlanivimab/ etesevimab: 700/1400 mg), because employing both antibodies together
was expected to reduce the risk of viral resistance.

The authorized treatment dosage is 700 mg of bamlanvimab and 1400 mg of etese-
vimab administered together as a single intravenous infusion [36].

2.1.3. Casirivimab and Imdevimab

Casirivimab (previously REGN10933) and imdevimab (previously REGN10987) are
manufactured by Regeneron [37].

Casirivimab and imdevimab are two human immunoglobulin G-1 (IgG1) mAbs,
unmodified in the Fc regions. They bind distinct epitopes of the spike protein RBD of SARS-
CoV-2 with dissociation constants KD = 45.8 pM and 46.7 pM, respectively. They block
RBD attachment to the ACE2 receptor with IC50 values of 56.4 pM, 165 pM, respectively,
and prevent viral attachment to host cells.

The authorized treatment dosage is 600 mg of casirivimab and 600 mg of imdevimab
administered together as a single intravenous infusion. Moreover, if the intravenous
infusion is not achievable and would cause a treatment delay, subcutaneous injection is
authorized as an alternative route of administration [38].

2.1.4. Sotrovimab

Sotrovimab (previously VIR-7831 and also known as GSK4182136 and S309) is the
last mAb approved by FDA, produced by GlaxoSmithKline. It was originally identified in
2003 from a SARS-CoV survivor. It targets an epitope in the RBD of the S protein that is
conserved between SARS-CoV and SARS-CoV-2. It is a recombinant human IgG1-kappa
mAb that binds to a conserved epitope on the S protein RBD of SARS-CoV-2 (dissociation
constant KD = 0.21 nM), but does not compete with human ACE2 receptor binding (IC50
value > 33.6 nM [5 µg/mL]). Sotrovimab inhibits an as yet undefined step that takes place
after the virus attachment and before the fusion of the viral and cell membranes. The Fc
domain of sotrovimab includes two amino acid substitutions (LS modification), M428L
and N434S that prolong antibody half-life, but do not affect wild-type Fc-mediated effector
functions in cell culture.

The authorized dosage for sotrovimab is one single intravenous infusion of 500 mg [39].
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2.1.5. Cilgavimab and Tixagevimab

This is a long-acting antibody combination (AZD7442) manufactured by Astrazeneca,
constituted by cilgavimab (COV2-2130 or AZD1061) and tixagevimab (COV2-2196 or
AZD8895). These two non-competing antibodies synergistically neutralized SARS-CoV-2
in vitro and protected against SARS-CoV-2 infection in mouse models and a rhesus macaque
model when used separately or in combination [40,41]. Several phase 3 clinical trials are
ongoing to study this association for post-exposure prophylaxis (NCT04625972), prevention
(NCT04625725), outpatient (NCT04723394 and NCT04518410) and inpatient (NCT04501978)
treatment of COVID-19 [42].

This mAb cocktail is currently being tested in an early-therapy study and in a large
pre-exposure prophylactic study enrolling up to 5000 participants administered with a low
dose of the AZD8895/AZD1061 cocktail (0.15 + 0.15 g of each mAb) that is compatible
with intramuscular delivery. This trial will evaluate the incidence of SARS-CoV-2 PCR-
positive symptomatic illness against placebo for a period up to 6 months (trial number
NCT04625725). The results will be crucial to assess the optimal use of this combination in
prophylactic or therapeutic settings. The use of low doses is essential to allow the subcuta-
neous or intramuscular administration of low volumes of high concentration product.

In October 2021, Astrazeneca submitted a request to US FDA for EUA for AZD7442
for prophylaxis for COVID-19.

2.1.6. Regdanvimab

Regdanvimab (CT-P59) is a mAb produced by Celltrion Healthcare Hungari Kft.
It blocks interaction regions of RBD for ACE2 with an orientation that is notably different
from previously reported RBD-targeting mAbs. The therapeutic effects of CT-P59 were
assessed in animal models (ferret, hamster, and rhesus monkey), showing a considerable
decrease in viral titer as well as an improvement in clinical symptoms. Therefore, CTP59
may be a promising therapeutic candidate for COVID-19 [43].

In September 2021, the South Korea Ministry of Food and Drug Safety (MFDS) has
approved regdanvimab to treat mild COVID-19 in patients aged 50 years and above
with a minimum of one underlying medical condition, and moderate symptoms of the
disease in adults. This approval was based on the first part of a global phase 2/3 trial
showing that progression rates to severe COVID-19 were reduced by 54% for patients with
mild-to-moderate symptoms and 68% for patients aged 50 years and older [44].

In October 2021, the European Medical Agency (EMA) has started considering an
application for marketing authorization for this mAb to treat adults with COVID-19 who
do not require supplemental oxygen therapy and who are at increased risk of progressing
to severe COVID-19.

The dosage for regdanvimab is one single intravenous infusion of 40 mg/kg [45].
The phase 2 BLAZE-4 trial (NCT04634409) a double-blind, placebo-controlled ran-

domized trial is assessing the efficacy and safety of bamlanivimab (700 mg) with others
mAbs including sotrovimab (500 mg) for treatment of symptomatic low-risk COVID-19
non-hospitalized patients. Preliminary results showed that bamlanivimab/sotrovimab
(700/500 mg) demonstrated a 70% (p < 0.001) relative reduction in persistently high viral
load (>5.27; cycle threshold value <27.5 at day 7 compared to placebo) [46].

A recent study compared and rated according to “confidence in the evidence” all
published studies that assessed SARS-CoV-2-neutralising mAbs (alone or combined, com-
pared to an active comparator, placebo, or no intervention) to treat people with COVID-19
(excluding studies on prophylactic use). The authors concluded that the available evidence
is insufficient to draw meaningful conclusions regarding treatment with SARS-CoV-2-
neutralising mAbs [14].

2.2. MAbs Approved against SARS-CoV-2 by Emergency Use Authorizations (EUAs)

EUA of mAbs against SARS-COV-2 were due to the context declared emergency
without available alternatives. EUA is a mechanism used by the FDA to facilitate making
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products available quickly during a public health emergency; this differs from FDA Ap-
proval, which is an independent, scientifically reviewed approval for medical products,
drugs, and vaccines, based on substantial clinical data and evidence.

Three regimens currently have EUA from the FDA for the treatment of mild to moder-
ate COVID-19 in non-hospitalized adults and pediatric patients (12 years of age and older
weighing at least 40 kg) with laboratory-confirmed SARS-CoV-2 infection who are at high
risk for progression to severe disease and hospitalization. Risk factors for progression to
severe COVID-19 are reported in Table 1. The use of SARS-CoV 2 neutralising antibodies
has not been authorized by the FDA-EUAs for patient hospitalized for COVID-19 or for
those requiring oxygen therapy due to COVID-19 or patient who are on chronic oxygen
therapy due to an underlying condition not related to COVID-19 that require an increase
in oxygen flow rate from baseline. Furthermore, the FDA EUAs indicates that all approved
mAbs may be associated with worse clinical outcomes when administered to hospitalized
patients with COVID-19 requiring high flow oxygen or mechanical ventilation [34,36,38,39].

Table 1. Risk factors for progression to severe COVID-19 [47].

Age ≥ 65 years

Obesity or being overweight (e.g., adults with BMI > 25 kg/m2, or if age 12–17, have BMI ≥85th
percentile for their age and gender based on CDC growth charts)

Pregnancy

Chronic kidney diseases

Diabetes

Immunosuppressive diseases or immunosuppressive treatment

Cardiovascular disease (including congenital heart disease) or hypertension

Chronic lung diseases (e.g., chronic obstructive pulmonary disease, asthma, interstitial lung
disease, cystic fibrosis and pulmonary hypertension)

Sickle cell disease

Neurodevelopmental disorders (e.g., cerebral palsy) or other conditions that confer medical
complexity (for example, genetic or metabolic syndromes and severe congenital anomalies)

Medical-related technological dependence (e.g., tracheostomy, gastrostomy, or positive pressure
ventilation (not related to COVID-19))

The products currently approved with EUA are:

• Bamlanivimab 700 mg plus etesevimab 1400 mg (intravenous infusion, (iv));
• Casirivimab 600 mg plus imdevimab 600 mg (iv or subcutaneous injection);
• Sotrovimab 500 mg (iv).

The main randomized clinical trials supporting FDA EUAs are summarized in Table 2.
Phase 3 of BLAZE-1 trial (NCT04427501) is a double-blind, placebo-controlled ran-

domized trial. The study involved outpatients with mild to moderate COVID-19 who
were at high risk for progressing to severe COVID-19 and compared a single IV infusion
of bamlanivimab 2800 mg plus etesevimab 2800 mg versus placebo, administered within
3 days of a positive SARS-CoV-2 virologic test. In the bamlanivimab plus etesevimab arm,
the trial showed a 4.8% absolute reduction and a 70% relative reduction in hospitalizations
due to COVID-19 or deaths from any cause [48]. The authorized dosage of 700/1400 mg
lower than the dosage tested in BLAZE-1 is based on initial results from the ongoing
BLAZE-4 trial (NCT04634409) which demonstrate that bamlanivimab/etesevimab dosage
of 700/1400 mg provides viral load and pharmacodynamic/pharmacokinetic data similar
to the dose of 2800/2800 tested in BLAZE-1 trial [46].
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Table 2. Randomized clinical trials supporting mAbs approved by FDA EUAs.

mAb Study Design Methods Results

Bamlanivimab plus
etesevimab

(Trial Number
NCT04427501)

Double-blind, phase 3
randomized clinical trial in

outpatients with mild to
moderate COVID-19 who are
at high risk for progressing to

severe COVID-19 and/or
hospitalization [48].

Intervention:
Single intravenous infusion of:

- bamlanivimab 2800 mg +
etesevimab 2800 mg

- Placebo
Primary endpoint:

Proportion of participants
with COVID-19 related

hospitalization or death by
any cause by day 29

Number of Participants:
- bamlanivimab + etesevimab (n = 518)

- placebo (n = 517)
Primary outcome:

Proportion of participants with COVID-19 related
hospitalization or death by any cause by Day 29: 11 of

518 participants (2.1%) in the bamlanivimab +
etesevimab arm vs. 36 of 517 (7.0%) in the placebo arm

(absolute risk difference, −4.8
percentage points; 95% confidence interval (CI), −7.4

to −2.3; relative risk difference, 70%; p < 0.001).
Proportion of participants who had died from any
cause by Day 29: 0 of 518 participants (0%) in the

bamlanivimab + etesevimab arm vs. 10 of 517 (1.9%) in
the placebo arm (p< 0.001).

Casirivimab plus
imdevimab

(Trial Number
NCT04425629)

Double-blind, Phase 3 RCT in
outpatients with mild to

moderate COVID-19 [49,50].

Intervention:
Single intravenous infusion of:

- casirivimab 600 mg +
imdevimab 600 mg

- casirivimab 1200 mg +
imdevimab 1200 mg

- placebo
Endpoint:

Proportion of patients with
COVID-19-related

hospitalization or all-cause
death through Day 29

Number of participants:
- casirivimab 600 mg + imdevimab 600 mg (n = 736) vs.

placebo (n = 748)
- casirivimab 1200 mg + imdevimab 1200 mg (n = 1355)

vs. placebo (n = 1341)
Primary outcomes:

COVID-19-related hospitalization or all-cause death
through Day 29:

- 7 of 736 (1.0%) in casirivimab 600 mg plus imdevimab
600 mg arm vs. 24 of 748 (3.2%) in placebo arm

(relative risk reduction, 70.4%; 95% CI, 31.6 to 87.1;
p = 0.0024)

- 18 of 1355 (1.3%) in casirivimab 1200 mg plus
imdevimab 1200 mg arm vs. 62 of 1341 (4.6%) in

placebo arm (relative risk reduction 73%; CI 95%, 51.7
to 82.9; p < 0.001).

Sotrovimab
(Trial number
NCT04545060)

Double-blind, Phase 1/2/3
RCT in outpatients with mild
to moderate COVID-19 [51].

Interventions:
- sotrovimab 500 mg IV

- Placebo
Primary Endpoint:

Proportion of patients with
hospitalization or death from

any cause by Day 29

Number of Participants:
- sotrovimab (n = 291)

- placebo (n = 292)
Primary outcome:

There an 85% relative risk reduction in all-cause
hospitalizations or deaths in patients who received

sotrovimab compared to those who received placebo.
(All-cause hospitalization or death by Day 29: 3 of 291
(1%) in sotrovimab arm vs. 21 of 292 (7%) in placebo

arm (p = 0.002))

The EUA of intravenous casirivimab 600 mg plus imdevimab 600 mg is based on
the Phase 3 results from the Regeneron-COV-2067 trial (NCT04425629). This study is a
double-blind, placebo-controlled randomized trial in outpatients with mild to moderate
COVID-19 at risk for progression to severe COVID-19. An absolute reduction of 2.2%
and a 70% relative reduction in hospitalization or death was demonstrated among the
participants that received mAbs compared to those who received placebo. These findings
are similar to those observed for IV infusions of casirivimab 1200 mg plus imdevimab
1200 mg (3.3% absolute reduction and a 71% relative reduction in hospitalization or death
compared to the placebo arm) [49,50].

Sotrovimab is supported by the results coming from interim analysis of the ongoing,
multicenter, double-blind, phase 3 COMET-ICE trial (NCT04545060); 583 participants at
high risk for progression to severe disease were randomized to receive sotrovimab 500 mg
IV or placebo. The trial showed an 85% relative risk reduction in hospitalization or death
among those receiving sotrovimab instead of placebo. Moreover, serious adverse events
were fewer in the sotrovimab arm compared to the placebo arm [51].

The main limitation of these trials is their heterogenicity in settings and reported
outcomes that renders difficult the establishment of a proper comparison. Additionally,



Pharmaceuticals 2021, 14, 1272 9 of 17

important information on mAbs adverse effects and reports on the quality of life of the
treated patients are still lacking [14].

3. Therapeutic and Prophylactic Indications
3.1. Prophylactic Use of mAb against SARS-CoV-2

Vaccines undeniably represent the most effective way to provide protection from
COVID-19 for most individuals. For the last two years, the whole scientific community
focused on the research, development and, ultimately, production, of a safe and effective
vaccine, because it represented the only possible solution to further spreading and recur-
rence of SARS-CoV 2. [52]. Vaccine development can take years, or even decades, but the
aggressive efforts made to investigate several COVID-19 vaccine candidates concomitantly
may significantly reduce the amount of time generally required for the development pro-
cess [53]. MAbs currently represent an alternative route of prevention for COVID-19 and
could offer short-term protection to those who are not yet vaccinated or who lack a proper
response to vaccination, such as immunocompromised patients. Additionally, mAbs could
prove helpful during times when circulating variant viruses are not adequately covered by
vaccines protection [54].

Moreover, because a certain time is required after vaccination to develop a proper
immune response, the benefits of passive immunization are evident in numerous settings
where outbreaks are frequent, such as health care facilities and households [55].

Several ongoing prophylaxis studies evaluated the potential role of mAbs for preven-
tion of infection or symptomatic disease, with interesting data from nursing homes and
households that demonstrated their beneficial role in post-exposure prophylaxis.

The phase 3 BLAZE-2 trial (NCT04497907) was a randomized, double-blind, placebo-
controlled trial designed to evaluate the efficacy and safety of bamlanivimab (4200 mg, iv)
alone or in combination with other mAbs in preventing COVID-19 in skilled nursing and
assisted living facility residents and staff. The trial enrolled residents and staff at 74 skilled
nursing and assisted living facilities in the United States that had at least 1 confirmed case
of SARS-CoV-2. Bamlanivimab reduced the incidence of COVID-19 among participants
at high risk of severe disease while also lowering the rates of infection in resident and
individuals at high risk. Deaths attributed to COVID-19 during the course of the trial
occurred only among the participants of the placebo group. However, no significant
difference was found regarding the incidence of COVID-19 or SARS-CoV-2 infection in
low-risk staff participants in the bamlanivimab arm compared with the placebo arm [56].
These findings are in accordance to the hypothesis that mAbs administration is especially
effective in older and high risk individuals.

Part A of the Regeneron trial (NCT04452318) consists of a randomized, double-blind,
placebo- controlled trial to assess the efficacy and safety of the subcutaneous administration
of casirivimab plus imdevimab (600/600 mg) in preventing SARS-CoV-2 infection among
previously uninfected household contacts of infected persons without previous or ongoing
infection. Symptomatic SARS-CoV-2 infection developed in 1.5% of participants in the
casirivimab/imdevimab arm and in 7.8% in the placebo arm (relative risk reduction, 81.4%;
odds ratio, 0.17; p < 0.001) [57].

In September 2021, and following the results of these trials, the FDA issued EUAs to
allow the emergency use of bamlanivimab/etesevimab (iv) and casirivimab/imdevimab
(iv or subcutaneous) for post-exposure prophylaxis of COVID-19 in individuals at high
risk of progression to severe COVID-19, hospitalization or death, (patients who have not
yet completed a full vaccination course or who are not expected to develop an appropriate
immune response vaccination, i.e., immunocompromised individuals) who have been
exposed to SARS-CoV-2 infection (close contact with an individual infected with SARS-
CoV-2) or who are at high risk of exposure to an individual infected with SARS-CoV-2
because of occurrence of SARS-CoV-2 infection in other individuals in the same institutional
setting (e.g., nursing homes, prisons) [36,38,58].
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Preliminary and interesting results in preventing SARS-CoV-2 infection in a rhesus
macaque model are associated to the combination of two long-acting antibodies (cilgav-
imab + tixagevimab), developed from the B-cells of a convalescent donor after the in-
fection [40,42]. These mAb have been engineered to have a longer half-life, to provide
an expected 6–12 months of protection after a single intramuscular administration. Two
clinical trials are ongoing in both pre- and post-exposure prophylaxis setting (PROVENT
trial (NCT04625725); STORM CHASER trial (NCT04625972)) [59,60]. The PROVENT trial
was conducted among participants who would supposedly benefit from prevention with
long-acting antibodies due to an increased risk of inadequate response to active immu-
nization or an increased risk of SARS-COV 2 infection, including those whose locations or
circumstances put them at appreciable risk of exposure to the SARS-CoV [60]. It is likely
that this population will be the most eligible for the use of long-acting mAbs.

3.2. Use of mAb in Patient Hospitalized for COVID-19

Data supporting the use of casirivimab 4000 mg plus imdevimab 4000 mg in hospital-
ized patients with COVID-19 and with a negative serology for the anti-S protein antibody
come from the RECOVERY study. No difference was found in 28-day all-cause mortality
between standard of care and standard of care with intravenous casirivimab/imdevimab.
However, in the subgroup of patients seronegative for the anti-S protein antibody, a signifi-
cant reduction in 28-day all-cause mortality was found in the casirivimab plus imdevimab
arm: 396 of 1633 patients (24%) died in the casirivimab plus imdevimab arm compared to
451 of 1520 patients (30%) in the standard of care arm (rate ratio 0.80; 95% CI, 0.70–0.91;
p = 0.001) [61].

4. Challenges for Using mAbs against SARS-CoV-2
4.1. Activity against SARS-CoV-2 Variants

Viruses, including SARS-CoV-2, change over time. Most changes have a negligible
impact; however, some may affect several characteristics of the virus, such as how easily it
spreads, the associated disease severity, or the performance of the existing vaccines against
it. Mutations in the SARS-CoV-2 spike protein could affect mAbs efficacy. Different phylo-
genetic nomenclatures have been used for the currently circulating SARS-CoV-2 variants.
The S protein has different hotspots of mutation and deletion: those eminently involved in
the immune escape process are within the RBD, such as K417N/T, N439K, L452R, Y453F,
S477N, E484D/K/Q, and N501Y. It is not clear how frequently these mutations occur in
mAbs-treated-patients or how they influence virus clearance.

Convergent evolution has led to different combinations of mutations among differ-
ent variants. Therefore, monitoring mutations is necessary to forecast and re-adapt the
inventory of therapeutic solutions [62].

The World Health Organization (WHO) has been monitoring and assessing the evo-
lution of SARS-CoV-2 since January 2020. Although the mutation rate of SARS-CoV-2
is lower than other RNA viruses such as the influenza virus, probably due to the viral
internal proofreading mechanism, a timely detection of these mutations and their impact
on treatment efficacy, or pandemic countermeasures, are very important.

The established nomenclature systems for naming and tracking SARS-CoV-2 genetic
lineages by GISAID, Nextstrain, and Pango are currently and will remain in use by scientists
and in scientific research. At the present time, WHO experts recommend using letters of the
Greek Alphabet, i.e., Alpha, Beta, Gamma, Delta, which will be easier and more practical
to be discussed by non-scientific audiences. SARS-CoV-2 variants associated with “clinical
evidence” of greater transmissibility, altered virulence, or the ability to escape natural
infection- and vaccine-mediated immunity or current diagnostic tests are called Variants of
Concern (VoC). Other variants that posed a “potentially increased risk” to global public
health are called Variants of Interest (VoI). During late 2020, the emergence of variants
posing a threat to global public health prompted the characterization of specific VoCs and
VoIs. See Tables 3 and 4 for the currently designated VoC and VoI [63].
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Table 3. Currently designated Variants of Concern (VoC) [63].

WHO Label Pango
Lineage *

GISAID
Clade

Nextstrain
Clade

Additional
Aamino Acid

Changes
Monitored ◦

Earliest
Documented

Samples

Date of
Designation

Alpha B.1.1.7 # GRY 20I (V1) +S:484K
+S:452R

United
Kingdom,
Sep-2020

18 December 2020

Beta B.1.351 GH/501Y.V2 20H (V2) +S:L18F South Africa,
May-2020 18 December 2020

Gamma P.1 GR/501Y.V3 20J (V3) +S:681H Brazil,
Nov-2020 11 January 2021

Delta B.1.617.2 § G/478K.V1 21A, 21I, 21J +S:417N India, Oct-2020 VOI: 4 April 2021
VOC: 11 May 2021

+ Relative changes in global prevalence of VOCs can be visualized in the COVID-19 Weekly Epidemiological Updates, available here:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 15 November 2021). * Includes
all descendent lineages. The full list of Pango lineages can be found here: https://cov-lineages.org/lineage_list.html (accessed on 15
November 2021); for FAQ, visit: https://www.pango.network/faqs/ (accessed on 15 November 2021). ◦ only found in a subset of
sequences. # includes all Q* lineages (in the Pango nomenclature system, Q is an alias for B.1.1.7). § includes all AY* lineages (in the Pango
nomenclature system, AY is an alias for B.1.617.2).

Table 4. Currently designated Variants of Interest (VoI) [63].

WHO Label § Pango Lineage * GISAID Clade Nextstrain Clade Earliest Documented
Samples

Date of
Designation

Lambda C.37 GR/452Q.V1 21G Peru, December 2020 14 June 2021

Mu B.1.621 GH 21H Colombia, January 2021 30 August 2021

* includes all descendent lineages. The full list of Pango lineages can be found here: https://cov-lineages.org/lineage_list.html; for
FAQ, visit: https://www.pango.network/faqs/ (accessed on 15 November 2021). § Former VOIs currently designated as VUMs: Kappa:
B.1.617.1; Iota: B.1.526; Eta: B.1.525; Epsilon: B.1.427/B.1.429. Former VOIs no longer designated as VUMs: Zeta: P.2; Theta: P.3.

Monitoring resistance to mAbs among the new variants will be key to defining whether
some of the newly developed mAbs should be discontinued or if different combinations
should be investigated [64].

Hereafter, we report the susceptibility of the currently designated VoC to the mAb in
clinical use:

• Alpha (B.1.1.7) variant: This VoC maintains in vitro susceptibility to all the mAbs
against SARS-CoV-2 that are currently approved through EUAs [36,38].

• Beta (B.1.351) variant: This VoC includes the E484K and K417N mutations, which
results in a reduction in in vitro susceptibility to bamlanivimab and etesevimab [36,65].
In vitro studies also suggest that this variant has markedly reduced susceptibility to
casirivimab, although the combination of casirivimab and imdevimab appears to
retain activity; sotrovimab appears active as well against this VoC [38,39].

• Gamma (P.1) variant: This VoC includes the E484K and K417T mutations, which
results in a marked reduction in in vitro susceptibility to bamlanivimab and etese-
vimab [36,66]. Additionally, this variant shows reduced susceptibility to casirivimab,
although the combination of casirivimab and imdevimab appears to retain activity;
sotrovimab appears to retain activity as well [38,39].

• Delta (B.1.617.2) variant: This is the prevalent VoC in the United States. It contains the
L452R mutation, which results in a modest decrease in in vitro susceptibility to the
combination of bamlanivimab and etesevimab, although the clinical implications of
this finding are not fully known. Sotrovimab and casirivimab plus imdevimab appear
to maintain activity [38,39,67].

A recent study by Vellas et al. evaluated the impact of neutralizing mAbs therapy
on the nasopharyngeal viral load and the emergence of SARS-CoV-2 variants. Thirty-

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://cov-lineages.org/lineage_list.html
https://www.pango.network/faqs/
https://cov-lineages.org/lineage_list.html
https://www.pango.network/faqs/


Pharmaceuticals 2021, 14, 1272 12 of 17

two SARS-CoV-2 infected patients were treated with neutralizing mAbs, 17/32 were im-
munocompromised (including 11 solid organ transplant patients). Most patients (31.97%)
harbored the B.1.1.7 variant; one had the B.1, clade 20A. Four patients were given Bam-
lanivimab, 23 were given Bamlanivimab/ Etesevimab, and 5 were given Casirivimab/
Imdevimab. The analysis of the SARS-CoV-2 S protein evolution in infected patients treated
with mAbs indicated that key mAb activity-reducing mutations (Q493R/K, 139 E484K)
appeared in 5 immunocompromised patients treated with Bamlanivimab/Etesevimab,
suggesting that immunosuppression could impair virus elimination, enhancing the risk
of viral mutation under mAbs. No new key mutations in patients treated with Casiriv-
imab/Imdevimab patients were found [68].

Mutations of SARS-CoV-2 Spike protein in VoC and resistance profile of clinical mAbs
are summarized in Table 5.

Table 5. Mutations of SARS-CoV-2 S in VOC and resistance profile of clinical mAbs [69].

Casirivimab
Indevimab

Bamlanivimab
Etesevimab Sotrovimab Cilgavimab

Tixagevimab Regdanvimab

B.1.1.7 (UK) S
S

S
S S S

S S

B.1.351 (South Africa) R
S

R
R S S

S I/R

P.1 (Brazil) R
S

R
R S S

S Pot I/R

B.1.429 (California) S
S

R
S S S

S I/R

B.1.1.258 (Scotland) S
R

S
U S U

U Pot S

B.1.525 (Nigeria) Pot I/R
Pot S

Pot I/R
Pot S S Pot S

Pot S U

B.1.526 (New York) Pot I/R
Pot S

Pot I/R
Pot S S Pot S

Pot S U

B.1.617.1 (India) S
S

R
S S Pot S

Pot S U

S = neutralized (<10-fold loss of neutralization). I/R = poorly or not-neutralized (>10-fold loss of neutralization). Pot S = potential S. Pot
I/R = potential I/R. U = Unknown.

4.2. Innovative Way of mAbs Administration

Another major mAbs hurdle, in both ambulatory outpatient and prophylaxis settings,
is represented by the route of administration. MAbs currently approved by the FDA for
treatment of COVID-19 are administered by intravenous infusion. Subcutaneous injection
is a possible alternative for the combination casirivimab plus imdevimab exclusively, when
intravenous infusion is not feasible and would lead to delay in treatment [38]. Part B
of the Regeneron trial (NCT04452318) evaluated the efficacy and safety of subcutaneous
casirivimab and imdevimab combination to prevent progression from early asymptomatic
SARS-CoV-2 infection to COVID-19. This combination significantly prevented progression
from asymptomatic to symptomatic disease compared with placebo (31.5% relative risk
reduction)). The authors concluded that subcutaneous administration of this mAb pre-
vented progression from asymptomatic SARS-CoV-2 infection to COVID-19 and was well
tolerated [57].

Specific infusion centers, pop-up sites, or in-home visits may be safer from a public
health context while offering more convenient services to the patient [54]. Several studies
are focusing on mAbs administration via nasal sprays or aerosolized formulations [70–76].
Early clinical studies have confirmed that this approach is safe and can be used to prevent
and treat SARS-CoV-2 infection [77]. The preclinical study on COVID-19-inhaled mAb
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demonstrated their therapeutic efficacy in animal models (mice and hamsters), significantly
reducing the viral burden in SARS-CoV-2-infected animals when used either prophylac-
tically or therapeutically [70,78]. Regarding the ongoing clinical trials, researchers are
studying foralumab (administered by nasal spray) to treat COVID-19. Foralumab is a fully
human second generation anti-CD3 mAb with a modified Fc unit composed of two heavy
chains with an immunoglobulin region and two light chains with a kappa constant region.

In a Brazilian study, it was observed that in 39 patients with mild to moderate
COVID-19, intranasal foralumab may be of benefit in modulating immune reactivity and
in reducing pulmonary inflammation [79]. Moreover, adeno-associated virus vectors may
offer opportunities for delivering mAb-expressing gene therapy constructs [54,73].

5. Global Access

At the beginning of the SARS-CoV-2 pandemic, obtaining antibodies from patients
with COVID-19 was considered a fruitful strategy to recover human specialized neutraliz-
ing antibodies. However, there has been little discussion on mAbs production technologies
and how to obtain quality mAbs that are safe, efficient, and accessible to the global pop-
ulation [80,81]. An important limitation to the use of mAbs in clinical settings is their
high cost [82]. Furthermore, a major barrier to global mAbs access is that many of these
innovative products are not even available in many low- and middle-income countries.
Advancements in antibody optimization, manufacturing technologies, and packaging and
delivery have the potential to lower mAbs production costs and increase efficiency [83].
Therefore, identifying the patients who could receive the highest benefit from these mAbs
shall become a priority, to maximize the appropriate use of resources [84].

6. Conclusions

So far, almost 200 million people have been fully vaccinated in the US, about 56% of the
population [85]. Globally, more than 6 billion vaccine doses have been administered [86].

Now that vaccines are being widely deployed, the question is what could be the most
appropriate role for monoclonal antibodies. MAbs should be reserved for individuals
at high risk of developing a serious COVID-19 illness despite the SARS-Cov-2 vaccina-
tion, such as immunocompromised patients (primary or secondary immunodeficiencies).
Additionally, mAbs could prove helpful for people who cannot become vaccinated due
to medical contraindications or personal choice and those who remain at risk of severe
SARS-CoV-2 infection due to certain medical conditions (e.g., obesity, diabetes, and COPD)
with low level or absence of neutralizing antibodies.

SARS-COV-2 is constantly changing, and mutations in its surface spike proteins may
render it unrecognizable to the immune system of the host. Therefore, it is crucial that the
scientific research community perseveres in meticulously monitoring these changes and in
developing treatments and vaccines to tackle troublesome variants of concern.

7. Research Strategy and Selection Criteria

References for this review were identified from PubMed, Embase, and Cochrane with
the research terms: “monoclonal antibodies”, “SARS-CoV-2”, “COVID-19”, “prophylaxis”,
“therapy” and “variants” with several combinations. Only papers in English were included.
The final reference list was generated based on timeline, originality, and relevance to the
scope of this review.
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