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Abstract: Selpercatinib is a targeted, FDA-approved, oral, small-molecule inhibitor for the treatment
of rearranged during transfection (RET) proto-oncogene mutation-positive cancer. Using genetically
modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1
and ABCG2, the OATP1A/1B uptake transporters, and the drug-metabolizing CYP3A complex in
selpercatinib pharmacokinetics. Selpercatinib was efficiently transported by hABCB1 and mAbcg2,
but not hABCG2, and was not a substrate of human OATP1A2, -1B1 or -1B3 in vitro. In vivo, brain
and testis penetration were increased by 3.0- and 2.7-fold in Abcb1a/1b-/- mice and by 6.2- and
6.4-fold in Abcb1a/1b;Abcg2-/- mice, respectively. Oatp1a/1b deficiency did not alter selpercatinib
pharmacokinetics. The ABCB1/ABCG2 inhibitor elacridar boosted selpercatinib brain penetration
in wild-type mice to the levels seen in Abcb1a/1b;Abcg2-/- mice. Cyp3a-/- mice showed a 1.4-fold
higher plasma AUC0–4h than wild-type mice, which was then 1.6-fold decreased upon transgenic
overexpression of human CYP3A4 in liver and intestine. In summary, ABCG2, and especially ABCB1,
limit brain and testis penetration of selpercatinib. Elacridar coadministration could mostly reverse
these effects, without causing acute toxicity. CYP3A-mediated metabolism can limit selpercatinib
oral exposure and hence its tissue concentrations. These insights may be useful in the further clinical
development of selpercatinib.

Keywords: selpercatinib; cytochrome P450-3A; oral exposure; rearranged during transfection (RET)
receptor kinase; Slco1a/1b; p-glycoprotein/ABCB1; brain accumulation

1. Introduction

The rearranged during transfection (RET) proto-oncogene encodes a receptor tyrosine
kinase for members of the glial cell line-derived neurotrophic factor (GDNF) family of
extracellular signaling molecules [1]. Mutations in the RET genes can lead to a number
of human diseases. The loss of RET functions can irreversibly induce a syndrome charac-
terized by intestinal obstruction known as Hirschsprung’s disease. However, mutations
causing increased activity of RET functions can result in tumor formation [2]. RET tyrosine
kinase receptors can be oncogenically activated by gene fusions or point mutations. RET
fusions occur in different types of cancers, including lung cancers (1–2%) and papillary
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thyroid cancers (10–20%) [3], whereas RET mutations affect mostly medullary thyroid
cancers (MTCs) [4]. Next-generation sequencing (NGS) analysis for numerous different
types of patient tumors has uncovered that RET alterations can also occur in other tumor
types (albeit at low frequency), including ovarian epithelial carcinoma and salivary gland
adenocarcinoma [5].

Until recently, some multikinase inhibitors (MKIs) with nonselective RET-inhibitory
activity have been available for patients with RET-altered cancers. For example, there were
some clinical trials with cabozantinib for RET-mutant MTCs [6,7] and RET fusion-positive
lung cancers [8], but results were underwhelming with considerable side effects. Similar
modest activity results were found for another drug, vandetanib, in advanced or metastatic
medullary thyroid cancer [9] and advanced non-small-cell lung cancer [10]. Other MKIs
with potential RET activity include sunitinib, sorafenib, alectinib, nintedanib, and ponatinib.
However, it is unclear if these drugs are likely to achieve improved responses compared to
cabozantinib and vandetanib [11,12]. To some extent, the low activity of these inhibitors
may be due to the low affinity and/or specificity for RET inhibition and substantial ‘off-
target’ side effects would limit the RET-inhibition functions [13]. Thus, the limitations
of these MKIs may prevent potent RET-pathway inhibition and subsequently yield poor
pharmacokinetic (PK) properties and weak anti-RET positive tumor efficacy.

Unlike these nonspecific inhibitors, selpercatinib (LOXO-292, RETEVMO, Compound
CID: 134436906) is a novel, highly selective, ATP-competitive small-molecule RET inhibitor,
which has nanomolar potency against diverse RET alterations. In a clinical phase 1 study,
it showed a 77% overall response rate in RET fusion-positive cancers, with intracranial
activity and a 45% overall response rate in RET-mutant medullary thyroid cancer [14]. In
May 2020, selpercatinib (RETEVMO, Eli Lilly Company) was approved by the FDA for
metastatic RET fusion-positive non-small cell lung cancer (NSCLC) in adult patients and
advanced or metastatic RET-mutant medullary thyroid cancer (MTC) in adult and pediatric
(≥12 years old) patients [15]. However, the information on the pharmacokinetic properties
of selpercatinib is still limited.

Multidrug efflux transporters of the ATP-binding cassette (ABC) protein family, espe-
cially P-glycoprotein (P-gp; ABCB1) and breast cancer resistance protein (BCRP; ABCG2),
and influx transporters such as the organic anion transporting polypeptides (OATPs) can
affect drug absorption, distribution, metabolism and excretion (ADME). They have a broad
substrate specificity and can thus influence the safety and efficacy profiles of many specific
drugs [16–18]. ABCB1 and ABCG2 are highly expressed in the apical membrane of epithelia
in a variety of tissues, including small intestine, liver and kidney. Additionally, they are
abundant in the luminal membrane of physiological barriers, such as the blood–brain
barrier (BBB), blood–testis barrier (BTB) and blood–placenta barrier (BPB) [19]. Therefore,
the intestinal absorption, biliary and urinary excretion and also the accumulation in the
central nervous system of many antitumor drugs, including numerous tyrosine kinase
inhibitors (TKIs), are restricted by ABCB1 and/or ABCG2. This interaction often results in
reduced systemic exposure after oral administration (in short oral exposure) or poor brain
penetration [20,21]. As brain metastases can occur in different tumor types, especially lung
cancer, the potential interaction between selpercatinib and ABCB1/ABCG2 in vivo may
not only limit selpercatinib oral exposure but also its brain accumulation, and thus affect
therapeutic efficacy for brain metastases in lung cancer patients.

Besides the ABC efflux transporters, OATP uptake transporters, encoded by SLCO
genes, are sodium-independent transmembrane uptake transporters [22–25]. With high
expression in the main detoxification organ, the liver, and possibly the small intestine,
both primary locations for first-pass drug metabolism, they mediate the tissue uptake
of many endogenous substrates, as well as exogenous compounds, such as hormones,
toxins, and numerous drugs [16,24–27]. As a member of the OATP uptake transporters, the
SLCO1A/1B transporters are of particular interest considering their high expression in the
liver [24] and their key roles in hepatic uptake and hence plasma clearance of several drug
substrates, including may antitumor drugs [26,28,29]. Thus, it is important to investigate
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whether selpercatinib is a substrate of the SLCO1A/1B transporters and whether this can
influence selpercatinib oral exposure and organ distribution.

The multidrug-metabolizing Cytochrome P450 3A (CYP3A) enzyme complex is the
most abundant CYP enzyme in human liver, the main detoxification organ, but also in
the small intestine. It therefore plays a significant role in the oxidative metabolism of
approximately half of the drugs currently in clinical use. As metabolic breakdown is
one of the main elimination pathways for drugs, CYP3A activity can markedly affect
the plasma exposure and thus tissue levels of certain drugs [30]. Consequently, the oral
exposure, therapeutic efficacy, and the potential toxicity of drugs may be influenced by the
high degree of inter- and intra-individual variation that is known to occur for the CYP3A
enzyme.

The primary aim of this study was to investigate ABCB1/ABCG2 and SLCO1A/1B
(OATP1A/1B) transport functions in vitro by transepithelial transport and uptake assays,
respectively, and clarify the in vivo impact of ABCB1/ABCG2, SLCO1A/1B and CYP3A
enzymes on selpercatinib pharmacokinetic behavior, including oral exposure and organ
distribution, by using appropriate genetically modified mouse models. We also further
studied the effect of coadministration of the ABCB1 and ABCG2 inhibitor elacridar on
selpercatinib plasma exposure and tissue distribution.

2. Results
2.1. In Vitro Transport of Selpercatinib

We tested in vitro transepithelial transport of selpercatinib using polarized monolayers
of Madin-Darby Canine Kidney (MDCK-II) parental cells and its subclones overexpressing
human (h) ABCB1, hABCG2, or mouse (m) Abcg2. Selpercatinib (5 µM) was not transported
in the apical direction in the parental MDCK-II cell line with or without ABCB1 inhibitor
zosuquidar (r = 1.0, Figure 1A and r = 0.9, Figure 1B), suggesting that selpercatinib transport
could not be mediated by the low amount of endogenous canine ABCB1 present in the
MDCK-II cells [31]. In MDCK-II cells transduced with hABCB1, there was clear apically
directed transport of selpercatinib (r = 6.8, Figure 1C), which was completely inhibited by
zosuquidar (r = 1.0, Figure 1D).

To suppress any potential confounding influence of endogenous canine ABCB1 activity,
the following experiments on ABCG2-mediated transport were conducted in the presence
of the inhibitor zosuquidar. In addition, the ABCG2 inhibitor Ko143 was used to inhibit the
transport activity of hABCG2 and mAbcg2. In MDCK-II cells transduced with hABCG2,
there was no active apically directed transport of selpercatinib (r = 1.0, Figure 1E), and this
was not changed upon Ko143 addition (r = 0.9, Figure 1F). We observed strong apically
directed transport of selpercatinib in cells overexpressing mouse Abcg2 (r = 8.8) and this
was abrogated by addition of Ko143 (r = 1.0, Figure 1G,H).

Selpercatinib thus appears to be efficiently transported by hABCB1 and mAbcg2, but
not by hABCG2 or canine ABCB1.

2.2. Impact of ABCB1, ABCG2 and SLCO1A/1B on Selpercatinib Plasma Pharmacokinetics and
Tissue Disposition

In order to study whether the ABCB1A/1B, ABCG2 and OATP1A/1B transporters
affect selpercatinib systemic exposure after oral administration (oral exposure) and subse-
quent tissue disposition in vivo, we performed a 4 h pharmacokinetic pilot study in male
wild-type Abcb1a/1b; Abcg2-/- and Slco1a/1b-/- mice using oral administration of 10 mg/kg
selpercatinib. This dose in mice results in systemic selpercatinib exposure of the same
order of magnitude as seen in patients. As shown in Figure 2A,B and Table 1, after rapid
initial absorption, it took around one to two hours to reach the maximum plasma con-
centration of selpercatinib in all tested strains, with a slow transition to elimination up
to 4 h. Mice with a combined knockout of Abcb1a/1b (Mdr1) and Abcg2 (Bcrp) had a
similar plasma Cmax (8582 ± 2160 ng/mL) as wild-type mice, but mOatp1a/1b deficiency
led to significantly increased selpercatinib concentrations in plasma with a 1.5-fold higher
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Cmax compared to wild-type mice (11,625 ± 1614 vs. 7862 ± 1814 ng/mL, p < 0.05). How-
ever, plasma exposures of selpercatinib over 4 h (AUC0–4h) in both Abcb1a/1b; Abcg2-/-

(30,188 ± 7632 ng/mL*h) and Slco1a/1b-/- (36,197 ± 5255 ng/mL*h) mice were not signifi-
cantly different from those in wild-type mice (26,649 ± 6360 ng/mL*h).

Figure 1. Transepithelial transport of selpercatinib (5 µM) assessed in MDCK-II cells either nontrans-
duced (A,B), transduced with hABCB1 (C,D), hABCG2 (E,F) or mAbcg2 (G,H) cDNA. At t = 0 h,
drug was applied in the donor compartment and the concentrations in the acceptor compartment at
t = 1, 2, 4 and 8 h were measured and plotted as cumulative amount of selpercatinib transported per
well (pmol) in the graphs (n = 3). (B,D–H): Zosuquidar (Zos, 5 µM) was applied to inhibit human
and/or endogenous canine ABCB1. (F,H): the ABCG2 inhibitor Ko143 (5 µM) was applied to inhibit
ABCG2/Abcg2-mediated transport. r, relative transport ratio. AB (•), translocation from the apical
to the basolateral compartment; BA (�), translocation from the basolateral to the apical compartment.
Points, mean; bars, S.D.
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Figure 2. Plasma concentration–time curves (A), plasma AUC0–4h (B), brain concentration (C), brain-to-plasma ratio
(D), testis concentration (E) and testis-to-plasma ratio (F) of selpercatinib in male wild-type, Abcb1a/1b; Abcg2-/- and
Slco1a/1b-/-mice over 4 h after oral administration of 10 mg/kg selpercatinib. Data are given as mean ± S.D. (n = 6–7).
Statistical analysis was applied after log-transformation of linear data. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to
wild-type mice. Statistical analysis was applied after log-transformation of linear data.



Pharmaceuticals 2021, 14, 1087 6 of 22

Brain, liver, kidney, small intestine (SI), small intestine contents (SIC), testis, lung
and spleen concentrations of selpercatinib 4 h after oral administration were analyzed.
Notably, the selpercatinib brain-to-plasma ratio (0.030) in wild-type mice was quite low,
suggesting poor brain penetration of selpercatinib at 4 h (Table 1). The brain concentrations
and brain-to-plasma ratios in Abcb1a/1b; Abcg2-/- mice were increased by 18.6-fold and
15.3-fold, respectively, compared to those in wild-type mice (Figure 2C,D and Table 1). The
Slco1a/1b-/- mice also showed enhanced brain concentrations and brain-to-plasma ratios by
factors of 1.5-fold and 1.3-fold, respectively. However, these increases were quite limited
compared to those in the Abcb1a/1b; Abcg2-/- mice. We further observed similar results
in testis, with low testis-to-plasma ratio (0.12) in wild-type mice, a significant increase
up to 0.76 (6.3-fold) in Abcb1a/1b; Abcg2-/- mice and a limited increase to 0.15 (1.3-fold) in
Slco1a/1b-/- mice (Figure 2E,F and Table 1).

Whereas the other tissue-to-plasma ratios, including liver, kidney, lung and spleen,
were not meaningfully altered between the three strains (liver shown in Figure 3A,B
and Table 1, other data shown in Supplemental Figure S2), we observed markedly lower
small intestine contents-to-plasma ratios in Abcb1a/1b/Abcg2-/- mice compared to wild-type
mice (0.30-fold, Figure 3E,F and Table 1). A lower small intestine contents percentage
of total dose was also observed in Abcb1a/1b/Abcg2-/- mice (Figure 3G,H). These results
may therefore point to more rapid absorption of intestinal selpercatinib in the absence of
Abcb1a/1b and Abcg2, or to reduced hepatobiliary excretion of the absorbed selpercatinib,
or to a combination of both processes.

Table 1. Plasma and organ pharmacokinetic parameters of selpercatinib in male wild-type, Abcb1a/1b;
Abcg2-/- and Slco1a/1b-/- mice over 4 h after oral administration of 10 mg/kg selpercatinib.

Parameter
Genotype

Wild-Type Abcb1a/1b;Abcg2-/- Slco1a/1b-/-

AUC0–4h, ng/mL*h 26,649 ± 6360 30,188 ± 7632 36,197 ± 5255
Fold change AUC0–4h 1.0 1.1 1.4
Cmax, ng/mL 7862 ± 1814 8582 ± 2160 11,625 ± 1614 *
Tmax, h 1.8 ± 1.2 1.6 ± 1.2 1.7 ± 0.52
Cbrain, ng/g 186 ± 23 3454 ± 855 *** 278 ± 42 **
Fold increase Cbrain 1.0 18.6 1.5
Brain-to-plasma ratio 0.030 ± 0.004 0.46 ± 0.04 *** 0.038 ± 0.005 **
Fold increase ratio 1.0 15.3 1.3
Cliver, ng/g 17,593 ± 3471 19,077 ± 2696 19,916 ± 3174
Fold increase Cliver 1.0 1.1 1.1
Liver-to-plasma ratio 2.8 ± 0.4 2.6 ± 0.3 2.7 ± 0.4
Fold increase ratio 1.0 0.93 1.0
CSIC, ng/g 91,051 ± 22,029 34,929 ± 16,659 * 140,998 ± 48,076
Fold change CSIC 1.0 0.38 1.5
SIC-to-plasma ratio 14.9 ± 4.1 4.5 ± 1.8 *** 19.0 ± 5.3
Fold increase ratio 1.0 0.30 1.3
Ctestis, ng/g 730 ± 103 5726 ± 1535 *** 1121 ± 107 **
Fold increase Ctestis 1.0 7.8 1.5
Testis-to-plasma ratio 0.12 ± 0.02 0.76 ± 0.13 *** 0.15 ± 0.01 *
Fold increase ratio 1.0 6.3 1.3

AUC0–4h, area under plasma concentration–time curve; Cmax, maximum concentration in plasma; Tmax, time
point (h) of maximum plasma concentration; Cbrain, brain concentration; Cliver, liver concentration; SIC, small
intestine contents; CSIC, small intestine contents concentration; Ctestis, testis concentration; Data are given as
mean ± S.D. (n = 6–7). *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to wild-type mice. Statistical analysis was
applied after log-transformation of linear data.
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Figure 3. Liver, small intestine and small intestine contents concentrations (A,C,E), liver, small
intestine- and small intestine contents-to-plasma ratios (B,D,F), small intestine contents as percentage
of dose (G) and small intestine contents percentage of dose-to-plasma ratio (H) of selpercatinib in
male wild-type, Abcb1a/1b; Abcg2-/- and Slco1a/1b-/- mice over 4 h after oral administration of 10 mg/kg
selpercatinib. SI: small intestine. Data are given as mean ± S.D. (n = 6–7). *, p < 0.05; **, p < 0.01; ***,
p < 0.001 compared to wild-type mice. Statistical analysis was applied after log-transformation of
linear data.

It is worth noting that in wild-type mice, most tissue-to-plasma ratios for liver, kidney,
and small intestine (all >1) were far higher than observed for the brain (0.030) and even
testis (0.12), suggesting a strong impact of the blood–brain barrier (BBB) and blood–testis
barrier (BTB) on tissue accumulation of selpercatinib. Despite the dramatically increased
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selpercatinib brain levels in Abcb1a/1b; Abcg2-/- mice, we did not observe any abnormal
external behavior in these mice. This contrasts with the TKI drug brigatinib, for which we
observed severe and even lethal acute toxicity in Abcb1a/1b; Abcg2-/- mice [21]. Additionally,
Slco1a/1b-/- mice did not show any abnormal external behavior due to selpercatinib.

2.3. In Vitro Uptake of Selpercatinib

In the pilot study, we observed a relatively higher plasma concentration of selper-
catinib in Slco1a/1b-/- mice. There is high expression of OATP1A/1B transporters in the
liver, and they have clear effects on tissue distribution and elimination of a variety of
substrates [20]. We therefore evaluated whether selpercatinib can be transported by human
OATP1A2, OATP1B1 or OATP1B3 in vitro using HEK293 cells transduced with cDNAs
for these transporter proteins. However, we did not observe any significant increase in
the uptake of selpercatinib in any of these transgenic cell lines compared to their vector
control cells (Figure 4A). Rosuvastatin, as a positive control substrate, was efficiently taken
up by all the OATP-overexpressing cell lines, demonstrating that all the OATP proteins
transduced in the HEK293 cells are functional (Figure 4B). Taken together, these results
indicate that selpercatinib is not a substantial transport substrate of human OATP1A2, -1B1
or -1B3 as measured in HEK293 cells in vitro.

Figure 4. In vitro uptake of selpercatinib (A) and positive control rosuvastatin (B) by human OATP1A2, OATP1B1 and
OATP1B3. Uptake of 5 µM selpercatinib and 0.2 µM rosuvastatin were measured after 2.5 min incubation using vector-
transfected (control) or OATP1A2-, OATP1B1- or OATP1B3- overexpressing HEK293 cells. n = 3, data are given as
mean ± S.D. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to control group.

2.4. ABCB1 and ABCG2 Limit Selpercatinib Brain and Testis Exposure

We next performed a more extensive main experiment and studied the separate and
combined functions of Abcb1a/1b and Abcg2 in selpercatinib pharmacokinetic behavior,
including oral exposure and tissue distribution. In order to assess tissue distribution at
a comparatively high plasma exposure, 10 mg/kg selpercatinib was administered orally
to wild-type, Abcb1a/1b-/-, Abcg2-/-, and Abcb1a/1b/Abcg2-/- mice, and the experiment was
terminated at 4 h. Single deficiency of either mAbcb1 or mAbcg2 resulted in higher
selpercatinib plasma exposure, with the plasma AUC0–4h increased in both Abcb1a/1b-/-

(37,024 ± 9634 ng/mL*h, 1.6-fold, p < 0.01) and Abcg2-/- mice (39,056 ± 6710 ng/mL*h,
1.7-fold, p < 0.01) (Figure 5 and Table 2). In Abcb1a/1b/Abcg2-/- mice, the selpercatinib plasma
AUC0–4h was also increased up to 1.6-fold compared with wild-type mice
(38,986 ± 4711 ng/mL*h vs. 23,670 ± 2469 ng/mL*h, p < 0.01). This result contrasts
somewhat with the pilot study, where Abcb1a/1b/Abcg2-/- mice did not show a significantly
higher plasma exposure than wild-type mice. This difference was mainly due to a higher
plasma concentration in Abcb1a/1b/Abcg2-/- mice in the main study, where the Cmax was
increased from 8582 ng/mL in the pilot study up to 11,015 ng/mL. However, the difference
between these two sets of data was small and did not alter tissue penetration effects of
Abcb1 and Abcg2, especially in brain and testis.
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Figure 5. Plasma concentration–time curves (A), plasma AUC0–4h (B), brain concentration (C), brain-to-plasma ratio (D),
testis concentration (E) and testis-to-plasma ratio (F) of selpercatinib in male wild-type, Abcb1a/1b-/-, Abcg2-/- and Abcb1a/1b;
Abcg2-/- mice over 4 h after oral administration of 10 mg/kg selpercatinib. Data are given as mean ± S.D. (n = 6). *, p < 0.05;
**, p < 0.01; ***, p < 0.001 compared to wild-type mice; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 compared to Abcb1a/1b; Abcg2-/-

mice. Statistical analysis was applied after log-transformation of linear data.

In spite of this modest discrepancy, the single Abcb1a/1b deficiency, but not Abcg2
deficiency, profoundly increased the brain concentration by 4.8-fold compared w wild-type
mice. However, this increase was even larger in mice with a combination deficiency of
both Abcb1a/1b and Abcg2 (10.2-fold) compared to wild-type mice. The brain-to-plasma
ratio of selpercatinib was again very low (0.077) in wild-type mice, but was increased to
0.23 (3.0-fold) by single mAbcb1 deficiency and further up to 0.48 (6.2-fold) by combined
mAbcb1 and mAbcg2 deficiency (Figure 5C,D; Table 2). Notably, due to the higher brain
concentration of selpercatinib in wild-type mice in the main study, this difference (6.2-fold)
was lower than that observed in the pilot study (15.3-fold). Nonetheless, these results reveal
that Abcb1a/1b can restrict selpercatinib brain accumulation and the further increased
drug exposure in Abcb1a/1b/Abcg2-/- brains demonstrates that, in the absence of Abcb1a/1b
activity, Abcg2 still limits selpercatinib brain penetration. Qualitatively similar results were
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obtained for selpercatinib testis penetration. Although the wild-type testis-to-plasma ratio
was substantially higher (0.15) than for brain, the relative increased ratios in Abcb1a/1b-/-

(2.7-fold) and Abcb1a/1b/Abcg2-/- (6.4-fold) mice were similar to those for brain (Figure 5E,F;
Table 2). The data indicate that Abcb1a/1b, and to a lesser extent Abcg2, can strongly
reduce the brain accumulation of selpercatinib, while testis accumulation was similarly
affected.

Table 2. Plasma and organ pharmacokinetic parameters of selpercatinib in male wild-type, Abcb1a/1b -/-, Abcg2-/- and
Abcb1a/1b; Abcg2-/- mice over 4 h after oral administration of 10 mg/kg selpercatinib.

Parameter
Genotype

Wild-Type Abcb1a/1b-/- Abcg2-/- Abcb1a/1b;Abcg2-/-

AUC0–4h, ng/mL*h 23,670 ± 2469 37,024 ± 9634 ** 39,056 ± 6710 *** 38,986 ± 4711 ***
Fold change AUC0–4h 1.0 1.6 1.7 1.6
Cmax, ng/mL 6908 ± 761 10,338 ± 2641 ** 11,447 ± 2155 *** 11,015 ± 1653 **
Tmax, h 1.6 ± 1.4 1.8 ± 1.3 1.4 ± 0.74 1.5 ± 1.3
Cbrain, ng/g 420 ± 66 1998 ± 233 ***### 418 ± 102 ### 4263 ± 853 ***
Fold change Cbrain 1.0 4.8 1.0 10.2
Brain-to-plasma ratio 0.077 ± 0.018 0.23 ± 0.04 ***### 0.052 ± 0.011 *### 0.48 ± 0.07 ***
Fold change ratio 1.0 3.0 0.68 6.2
CLiver, ng/g 25,737 ± 3219 34,014 ± 7169 ## 19,334 ± 3483 * 23,157 ± 3900
Fold increase Cliver 1.0 1.3 0.75 0.90
Liver-to-plasma ratio 4.7 ± 0.7 3.9 ± 1.0 # 2.4 ± 0.3 *** 2.6 ± 0.5 ***
Fold change ratio 1.0 0.83 0.51 0.55
CSI, ng/g 21,649 ± 26,731 16,952 ± 2729 12,967 ± 3639 11,576 ± 734
Fold increase CSI 1.0 0.83 0.60 0.53
SI-to-plasma ratio 3.7 ± 4.3 2.0 ± 0.6 1.6 ± 0.4 1.3 ± 0.1
Fold change ratio 1.0 0.54 0.43 0.35
CSIC, ng/g 98,083 ± 38,906 69,396 ± 15,655 ## 91,686 ± 35,700 ### 27,386 ± 3533 ***
Fold increase CSIC 1.0 0.71 0.93 0.28
SIC-to-plasma ratio 18.2 ± 8.5 8.1 ± 2.9 *## 11.4 ± 3.9 ### 3.1 ± 0.68 ***
Fold change ratio 1.0 0.45 0.63 0.17
SIC percentage of dose, % 2.3 ± 0.9 1.1 ± 0.3 1.6 ± 0.7 # 0.69 ± 0.52 ***
Fold change ratio 1.0 0.48 0.70 0.30
Ctestis, ng/g 810.8 ± 148.4 3477 ± 634.1 ***### 1049 ± 192.2 ### 8328 ± 934.8 ***
Fold change Ctestis 1.0 4.3 1.3 10.3
Testis-to-plasma ratio 0.15 ± 0.02 0.39 ± 0.06 ***### 0.13 ± 0.03 ### 0.94 ± 0.10 ***
Fold change ratio 1.0 2.7 0.90 6.4

Data are given as mean ± S.D. (n = 6). AUC0–4h, area under the plasma concentration–time curve; Cmax, maximum concentration in
plasma; Tmax, time point (h) of maximum plasma concentration; Cbrain, brain concentration; Cliver, liver concentration; SI, small intestine
(tissue); CSI, small intestine tissue concentration; SIC, small intestine contents; CSIC, small intestine contents concentration; Ctestis, testis
concentration; *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to wild-type mice; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 compared to
Abcb1a/1b;Abcg2-/- mice. Statistical analysis was applied after log-transformation of linear data.

In the main experiment, we observed significantly lower liver-to-plasma ratios in
Abcg2-/- and Abcb1a/1b/Abcg2-/- mice (Figure 6A,B), which had not been obvious in
Abcb1a/1b/Abcg2-/- mice in the pilot study. In theory it could be that the ABC transporters
normally concentrate selpercatinib in the intrahepatic bile, and that loss of this process
results in relatively reduced overall liver levels of the drug in the knockout strains. Indeed,
the concentrations, the tissue-to-plasma ratios and the percentage of dose of selpercatinib in
the small intestinal contents were reduced in Abcb1a/1b-/- and especially Abcb1a/1b; Abcg2-/-

mice compared to wild-type mice (Figure 6 and Table 2). This finding was consistent with
the pilot results and could again suggest a more rapid and extensive absorption of selper-
catinib across the intestinal wall in the absence of intestinal Abcb1a/1b activity (essentially
because of loss of an intestinal excretion process), or reduced hepatobiliary recirculation
of absorbed selpercatinib through biliary excretion mediated by Abcb1a/1b in the bile
canaliculi of the liver, or a combination of both processes. No meaningful differences were
found in the other tissues analyzed (Supplemental Figure S3).
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Figure 6. Liver, small intestine and small intestine contents concentrations (A,C,E), liver, small
intestine- and small intestine contents-to-plasma ratios (B,D,F), small intestine contents as percentage
of dose (G) and small intestine contents percentage of dose-to-plasma ratio (H) of selpercatinib
in male wild-type, Abcb1a/1b-/-, Abcg2-/- and Abcb1a/1b; Abcg2-/- mice 4 h after oral administration
of 10 mg/kg selpercatinib. SI: small intestine. Data are given as mean ± S.D. (n = 6). *, p < 0.05;
**, p < 0.01; ***, p < 0.001 compared to wild-type mice; #, p < 0.05; ##, p < 0.01; ###, p < 0.001
compared between Abcb1a/1b;Abcg2-/- and Slco1a/1b-/- mice. Statistical analysis was applied after
log-transformation of linear data.
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2.5. Effect of the Dual ABCB1 and ABCG2 Inhibitor Elacridar on Selpercatinib
Brain Accumulation

In view of the poor selpercatinib penetration into wild-type brain and the potential
therapeutic benefit of enhancing selpercatinib brain accumulation, we investigated to
what extent the dual ABCB1 and ABCG2 inhibitor elacridar could increase the brain
accumulation of selpercatinib. We also assessed whether elacridar influences selpercatinib
disposition and distribution in other tissues. Oral elacridar has a Tmax of about 4 h in
mice. To ensure complete inhibition of the BBB ABC transporters, elacridar (50 mg/kg) or
vehicle was administered orally 2 h prior to oral selpercatinib administration (10 mg/kg)
to wild-type and Abcb1a/1b; Abcg2-/- mice. Plasma and brain selpercatinib levels were
assessed 2 h after selpercatinib administration. The selpercatinib plasma concentration was
still high at this time point, making the impact of the BBB transporters especially relevant.
In the vehicle-treated strains, the selpercatinib plasma AUC0–2h was not significantly
different between the strains, and pretreatment with elacridar did not result in meaningful
alterations (Figure 7A,B and Table 3). In the absence of elacridar, the brain concentration
and brain-to-plasma ratio of selpercatinib were 22.5-fold and 17-fold higher in Abcb1a/1b;
Abcg2-/- mice than in wild-type mice, respectively (p < 0.001). Elacridar pretreatment
markedly increased these values in wild-type mice by 13.2- and 11.5-fold, respectively
(p < 0.001), resulting in levels close to those observed in Abcb1a/1b; Abcg2-/- mice with or
without elacridar pretreatment (Figure 7C,D and Table 3). Since these parameters were not
significantly altered by elacridar in Abcb1a/1b; Abcg2-/- mice, the pharmacokinetic effect
of elacridar appears to be specifically mediated by the inhibition of mAbcb1a/1b and
mAbcg2 in the BBB. Qualitatively similar but more modest differences were seen in testis,
suggesting elacridar inhibition functions also applied in the BTB (Figure 7E,F). Unlike for
the brain and testis, the liver distribution of selpercatinib was not noticeably affected by
elacridar treatment in either mouse strain (Table 3). Additionally, other tissues tested did
not show marked differences concerning tissue-to-plasma ratios (Supplemental Figure S4).

2.6. Impact of CYP3A on Selpercatinib Plasma Exposure and Tissue Distribution

Many drugs and prodrugs are metabolized by CYP3A, which can therefore restrict
their oral exposure. To assess the impact of CYP3A on selpercatinib in vivo, we next
performed an 8 h pharmacokinetic study in female wild-type, Cyp3a-/- and Cyp3aXAV
mice (with human CYP3A4 specific transgene expression in liver and intestine in a mouse
Cyp3a-deficient background). Selpercatinib (10 mg/kg) was administered orally after
2–3 h of fasting, blood samples were taken at several time points and organs were col-
lected at the last time point (8 h). The oral selpercatinib plasma AUC0–8h in Cyp3a-/- mice
was significantly higher (72,243 ± 5642 ng/mL*h, 1.4-fold, p < 0.01) than that in wild-
type mice (52,251 ± 6922 ng/mL*h), while Cyp3aXAV mice showed a plasma AUC0–8h
(45,755 ± 3460 ng/mL*h) which was reduced again to roughly the levels seen in wild-type
mice (Figure 8 and Table 4). However, regarding the tissue distribution at 8 h, the observed
differences in absolute tissue concentrations for brain, liver, kidney, small intestine, testis,
lung and spleen among the strains reflected the plasma AUC0–8h differences, without sub-
stantial alterations in corresponding tissue-to-plasma ratios (Supplemental Figures S5 and S6
and Table 4). Collectively, these results indicate that selpercatinib is substantially metabo-
lized by mouse CYP3A and human CYP3A4, which markedly affects the oral exposure,
and consequently, the tissue levels of selpercatinib.
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Figure 7. Plasma concentration–time curves (A), plasma AUC0–4h (B), brain concentration (C), brain-
to-plasma ratio (D), testis concentration (E) and testis-to-plasma ratio (F) of selpercatinib in male
wild-type and Abcb1a/1b;Abcg2-/- mice over 2 h after oral administration of 10 mg/kg selpercatinib
with or without coadministration of elacridar. Data are given as mean ± S.D. (n = 6). *, p < 0.05;
**, p < 0.01; ***, p < 0.001 compared to vehicle-treated wild-type mice; #, p < 0.05; ##, p < 0.01;
###, p < 0.001 compared to elacridar-treated wild-type mice. Statistical analysis was applied after
log-transformation of linear data.
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Table 3. Plasma and organ pharmacokinetic parameters of selpercatinib in male wild-type and Abcb1a/1b; Abcg2-/- mice over
2 h after oral administration of 10 mg/kg selpercatinib with or without elacridar.

Parameter

Genotype/Groups

Vehicle Elacridar

Wild-Type Abcb1a/1b;Abcg2-/- Wild-Type Abcb1a/1b;Abcg2-/-

AUC0–2h, ng/mL*h 14,092 ± 2816 15,098 ± 1503 12,928 ± 3121 17,294 ± 1513 #
Fold change AUC0–2h 1.0 1.1 0.92 1.2
Cmax, ng/mL 8739 ± 1560 8865 ± 792 7466 ± 1848 9617 ± 776 #
Tmax, h 0.75 ± 0.27 1.0 ± 0.0# 0.50 ± 0.27 0.79 ± 0.33
Cbrain, ng/g 210 ± 40 4726 ± 638 ***### 2765 ± 851 *** 4713 ± 484 ***###
Fold increase Cbrain 1.0 22.5 13.2 22.4
Brain-to-plasma ratio 0.041 ± 0.009 0.68 ± 0.18 ***### 0.46 ± 0.03 *** 0.54 ± 0.06 ***
Fold increase ratio 1.0 17 11.5 13.5
CLiver, ng/g 18,134 ± 2604 21,445 ± 2330 20,028 ± 4435 23,628 ± 4827
Fold increase Cliver 1.0 1.2 1.1 1.3
Liver-to-plasma ratio 3.5 ± 0.8 3.1 ± 0.7 3.4 ± 0.3 2.7 ± 0.4
Fold change ratio 1.0 0.89 1.0 0.77
CSI + SIC, ng/g 37,604 ± 13,607 18,845 ± 3628 ** 26,630 ± 6802 21,226 ± 929 *
Fold increase CSI + SIC 1.0 0.50 0.71 0.56
SI + SIC-to-plasma ratio 7.0 ± 1.9 2.7 ± 0.8 ***## 4.6 ± 1.3 * 2.4 ± 0.2 ***##
Fold change ratio 1.0 0.39 0.66 0.34
Ctestis, ng/g 788 ± 159 7020 ± 664 *** 5709 ± 1744 *** 9202 ± 856 ***###
Fold increase Ctestis 1.0 8.9 7.2 11.7
Testis-to-plasma ratio 0.15 ± 0.03 1.0 ± 0.2 *** 0.94 ± 0.08 *** 1.1 ± 0.05 ***
Fold change ratio 1.0 6.7 6.3 7.3

Data are given as mean ± S.D. (n = 6). AUC0–2h, area under the plasma concentration–time curve; Cmax, maximum concentration in
plasma; Tmax, time point (h) of maximum plasma concentration; Cbrain, brain concentration; Cliver, liver concentration; SI, small intestine
(tissue); SIC, small intestine contents; CSI+SIC, small intestine tissue together with small intestine contents concentration; Ctestis, testis
concentration; *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared to vehicle-treated wild-type mice; #, p < 0.05; ##, p < 0.01; ###, p < 0.001
compared to elacridar-treated wild-type mice; ˆ, p < 0.05; ˆˆ, p < 0.01; ˆˆˆ, p < 0.001 compared between vehicle-treated Abcb1a/1b;Abcg2-/- and
elacridar-treated Abcb1a/1b;Abcg2-/- mice. Statistical analysis was applied after log-transformation of linear data.

Figure 8. Plasma concentration–time curves (A) and plasma AUC0–8h (B) of selpercatinib in female wild-type, Cyp3a-/- and
Cyp3aXAV mice 8 h after oral administration of 10 mg/kg selpercatinib. Data are given as mean ± S.D. (n = 6–7). *, p < 0.05;
**, p < 0.01; ***, p < 0.001 compared to wild-type mice; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 compared between Cyp3a-/- and
Cyp3aXAV mice. Statistical analysis was applied after log-transformation of linear data.
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Table 4. Plasma and organ pharmacokinetic parameters of selpercatinib in female wild-type, Cyp3a-/- and Cyp3aXAV mice
over 8 h after oral administration of 10 mg/kg selpercatinib.

Parameter
Genotype

Wild-Type Cyp3a-/- Cyp3aXAV

AUC0–8h, ng/mL*h 52,251 ± 6922 72,243 ± 5642 *** 45,755 ± 3460 ###
Fold change AUC0–8h 1.0 1.4 0.88
Cmax, ng/mL 8556 ± 1299 12,295 ± 1311 *** 9477 ± 548 ##
Tmax, h 1.5 ± 1.3 1.4 ± 1.3 0.29 ± 0.10 *#
Cbrain, ng/g 82.4 ± 16.8 86.2 ± 24.2 51.0 ± 15.2 *##
Fold change Cbrain 1.0 1.0 0.62
Brain-to-plasma ratio 0.021 ± 0.002 0.022 ± 0.002 0.022 ± 0.002
Fold change ratio 1.0 1.0 1.0
CLiver, ng/g 8255 ± 1615 7896 ± 1274 4386 ± 755 ***###
Fold change Cliver 1.0 1.0 0.53
Liver-to-plasma ratio 2.1 ± 0.3 2.1 ± 0.2 2.0 ± 0.2
Fold change ratio 1.0 1.0 1.0
CSI, ng/g 7302 ± 1116 6384 ± 930 5030 ± 347 ***#
Fold change CSI 1.0 0.87 0.69
SI-to-plasma ratio 1.9 ± 0.4 1.7 ± 0.3 2.3 ± 0.6
Fold change ratio 1.0 0.89 1.2
CSIC, ng/g 83,866 ± 51,955 44,922 ± 15,127 48,515 ± 13,654
Fold change CSIC 1.0 0.54 0.58
SIC-to-plasma ratio 20.0 ± 7.9 11.5 ± 3.3 * 22.3 ± 7.5 ##
Fold change ratio 1.0 0.58 1.1
SIC percentage of dose, % 2.5 ± 0.9 1.4 ± 0.6 * 1.5 ± 0.5
Fold change % 1.0 0.56 0.60

Data are given as mean ± S.D. (n = 6–7). AUC0–8h, area under plasma concentration–time curve; Cmax, maximum concentration in plasma;
Tmax, time point (h) of maximum plasma concentration; Cbrain, brain concentration. Cliver, liver concentration; SI, small intestine (tissue);
CSI, small intestine tissue concentration; SIC, small intestine contents; CSIC, small intestine contents concentration; *, p < 0.05; **, p < 0.01;
***, p < 0.001 compared to wild-type mice; #, p < 0.05; ##, p < 0.01; ###, p < 0.001 compared between Cyp3a-/- and Cyp3aXAV mice. Statistical
analysis was applied after log-transformation of linear data.

3. Discussion

In the current study, we found that the RET inhibitor selpercatinib is efficiently trans-
ported by human ABCB1 and mouse Abcg2 in vitro. The brain-to-plasma ratio of selperca-
tinib was found to be low (0.030–0.077) in wild-type mice, indicating relatively poor brain
penetration of selpercatinib. This could be increased by a factor as high as 17-fold (ranging
from 6.2- to 17-fold) in Abcb1a/1b; Abcg2-/- mice. We obtained qualitatively similar results
for the impact of the ABC transporters on limiting selpercatinib testis penetration, with
increases as high as 6.7-fold upon deficiency of both Abcb1 and Abcg2. Thus, our results
demonstrate that ABCB1 and ABCG2 in the blood–brain barrier (BBB) could profoundly
limit the brain penetration of selpercatinib, although ABCG2 showed a more modest ef-
fect. Similar functions of ABCB1 and ABCG2 also showed up in the blood–testis barrier
(BTB), albeit somewhat less pronounced. Oral coadministration of the ABCB1/ABCG2
inhibitor elacridar could further mostly reverse these functions. Despite the increased
plasma and tissue exposure, we did not observe any abnormal external behavior indica-
tive of acute toxicity caused by selpercatinib in the Abcb1a/1b; Abcg2-/- mice (nor in the
Slco1a/1b-/- and Cyp3a-/- mice). Slco1a/1b deficiencies did not significantly alter selperca-
tinib pharmacokinetics. Of note, at the dose used in our study (10 mg/kg), the relative
pharmacokinetic parameters, including average Tmax (~2 h), Cmax (~8000 ng/mL) and
AUC0–8h (52,251 ng/mL*h) of selpercatinib in wild-type mice, were of the same order of
magnitude as those observed in patients (Tmax is 2 h with average Cmax 2980 ng/mL and
AUC0–24h 51,600 ng/mL*h).

In the small intestine contents, we further observed a clearly decreased concentration
and SIC-to-plasma ratio of selpercatinib in the absence of Abcb1a/1b, and these values
were even lower when both Abcb1a/1b and Abcg2 were deficient (p < 0.01). As explained
earlier, this suggests that both Abcb1a/1b and Abcg2, but mainly Abcb1a/1b, can either
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reduce net intestinal uptake by mediating direct efflux of selpercatinib across the intestinal
wall back into the intestinal lumen, or the hepatobiliary excretion of selpercatinib, or a
combination of both processes. No notable changes in tissue distribution were observed
in other tissues due to the ABC transporter deficiencies, including liver, kidney, lung and
spleen.

Oncogenic RET fusions occur infrequently in diverse types of cancer, including NSCLC
(1–2%), and more frequently in papillary thyroid cancers (10–20%). Frequencies in other
rare solid tumors are even lower. Although infrequent, RET fusions appear to be associated
with a high risk of brain metastases, which was demonstrated by the finding that the
cumulative incidence of CNS lesions in RET-positive NSCLC patients is higher than that
in ROS1-positive patients [32]. Thus, it is worthwhile to investigate whether selpercatinib
can achieve high intrinsic BBB permeability, and the potential effects due to interaction
of selpercatinib with ABCB1 and ABCG2 in the BBB. While this project was ongoing, the
FDA approved selpercatinib (Food and Drug Administration, 2020) [15]. According to its
guidelines, selpercatinib is a substrate of ABCB1 and ABCG2. However, in our in vitro
results, selpercatinib was a good substrate of human ABCB1 and mouse Abcg2, but not of
human ABCG2. Despite this, the guidelines appear in accordance with our in vivo data,
especially in the BBB and BTB, where ABCB1 displayed a main protective function, while
ABCG2 had a smaller effect.

The observed strong interactions of selpercatinib with ABCB1 and ABCG2 could well
result in poor brain penetration in humans too, potentially limiting therapeutic efficacy.
So far, there is little direct documentation about human selpercatinib brain penetration or
accumulation. Drilon et al. (2020) reported that selpercatinib was designed to penetrate the
central nervous system (CNS) and had been shown in preclinical models to have antitumor
activity in the brain. In the Phase 1–2 clinical trial, 38 of 105 patients had investigator-
assessed CNS metastasis at baseline and 11 patients were deemed to have measurable
lesions. Among these 11 patients, the percentage with an objective intracranial response
was 91% (10 of 11 patients; 95% CI, 59 to 100) according to independent review, including 3
complete responses (27%), 7 partial responses (64%), and 1 stable disease [33]. However,
our results show that selpercatinib indeed has a poor brain penetration in wild-type mice,
mainly due to the activity of ABCB1 in the BBB. This ABCB1 P-glycoprotein function may
be of relevance for further increasing therapeutic efficacy against brain metastases in RET-
mutated NSCLC, in case ABCB1 in the human brain has a similar impact as in the mouse
brain. If so, looking ahead for a broader clinical use of selpercatinib, we could also use
this insight to improve (boost) brain concentration of selpercatinib using pharmacological
inhibitors of P-glycoprotein, such as elacridar. From our results, oral co-administration of
elacridar did not alter the overall plasma exposure of selpercatinib. Importantly, however,
brain distribution of selpercatinib was profoundly improved in wild-type mice by elacridar
(from 0.041 to 0.46, 11.5-fold) without any abnormal external behavior, albeit not to as
high a level as seen in vehicle-treated Abcb1a/1b; Abcg2-/- mice (0.68, 17.0-fold). We thus
demonstrated that extensive inhibition of Abcb1 in the BBB could be achieved using a
clinically realistic coadministration schedule.

However, more drug accumulation in the brain may also induce CNS toxicity, as we ob-
served in a previous study with the ALK/EGFR inhibitor brigatinib. We found sometimes
severe and lethal toxicity of oral brigatinib in mice with genetic knockout or pharmacologi-
cal inhibition of mAbcb1a/1b and mAbcg2 [21]. Related to this, recently selpercatinib was
also being investigated in combination with previously registered anticancer drugs such as
crizotinib in patients with RET-positive NSCLC to overcome MET mutated resistance [34].
According to the FDA documentation and our previous study [35,36], crizotinib is a sub-
strate and also an inhibitor of ABCB1. Given the marked drug–drug interaction between
selpercatinib and elacridar, any attempt to apply efficacious ABCB1/ABCG2 inhibitors
in patients together with selpercatinib should be carefully monitored, even though no
noticeable signs of acute selpercatinib CNS toxicity were observed in our study.
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We further found that selpercatinib oral exposure in mice was modestly restricted by
mouse Cyp3a (1.4-fold) and similarly by human CYP3A4 when compared to wild-type mice.
This demonstrates that the metabolic clearance of selpercatinib is substantially influenced
by human CYP3A4. Despite the clear differences in tissue concentrations among mouse
strains, we did not observe any meaningful changes in corresponding tissue-to-plasma
ratios. This suggests that mouse Cyp3a and human CYP3A4 have little effect on relative
selpercatinib tissue distribution and that the absolute tissue concentration differences only
reflected the plasma concentration differences among the mouse strains. Consistent with
the FDA declaration, our results indicate a clear in vivo interaction of selpercatinib and
CYP3A. Thus, the body exposure and metabolic clearance of selpercatinib would likely
be noticeably affected by variable CYP3A activity in patients, due to either drug–drug
interactions or genetic polymorphisms, potentially compromising its therapeutic effect
and safety. This further emphasizes the importance of critically monitoring clinical dosing
of selpercatinib due to individual CYP3A activity variation and/or when administering
selpercatinib together with CYP3A inducers and/or inhibitors.

Our study provides insights into in vivo functions of detoxifying systems with respect
to selpercatinib pharmacokinetics. Still, it is useful to keep in mind that while mouse
studies can be used to obtain qualitative insights into the functions of various detoxifying
proteins, their exact impact in patients always needs to be investigated in their own right
in human studies.

4. Materials and Methods
4.1. Cell Lines and Transport Assays

Polarized Madin-Darby Canine Kidney (MDCK-II) cell lines and subclones stably
transduced with either human (h) ABCB1, hABCG2, or mouse (m) Abcg2 cDNA were
generated in The Netherlands cancer institute between 1995 and 2005. The characteristic
growth and drug transport properties of the cell lines, including inhibitor sensitivity,
were regularly checked. They are continually used in our recent studies, and the proper
identity and functionality of these polarized epithelial cells has been confirmed [20,37].
The transepithelial transport experiments were performed as described previously [20].
Briefly, transepithelial transport assays were performed on microporous polycarbonate
membrane filters (3.0 µm pore size, 12 mm diameter, Transwell 3402, Corning, NY, USA).
The parental cells and subclones were seeded at a density of 2.5 × 105 cells per well and
cultured for 3 days to allow formation of an intact monolayer. Membrane tightness was
assessed by measurement of transepithelial electrical resistance (TEER) before and after the
transport phase.

In the inhibition experiments, 5 µM zosuquidar (ABCB1 inhibitor) and/or 5 µM
Ko143 (ABCG2/Abcg2 inhibitor) were used during the transport experiments. Cells
were preincubated with one or a combination of the inhibitors for 1 h in both apical and
basolateral compartments. The transport phase was started (t = 0) by replacing the medium
in either the apical or the basolateral compartment with fresh DMEM including 10% (v/v)
fetal bovine serum (FBS) and selpercatinib at 5 µM, as well as the appropriate inhibitor (s).
Plates then were kept at 37 ◦C in 5% (v/v) CO2 during the experiment, and 50 µL aliquots
were taken from the acceptor compartment at 1, 2, 4, and 8 h (h), and stored at −30 ◦C
until LC–MS/MS measurement of the selpercatinib concentrations. Experiments were
performed in triplicate and the mean transport is shown in the figure. Active transport was
expressed using the transport ratio (r), which is defined as the amount of apically directed
drug transport divided by basolaterally directed drug translocation after 8 h.

4.2. Cellular Uptake Assays

HEK293 cells, vector-transfected or human (h)SLCO1A2, hSLCO1B1 or hSLCO1B3
cDNA-transfected were kind gifts from Prof. Werner Siegmund and Dr. Markus Keiser
(University of Greifswald, Greifswald, Germany) [38]. All the HEK293 cell lines were
maintained in DMEM supplemented with 10% (v/v) FBS, 1% penicillin–streptomycin
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mix at 37 ◦C in 5% (v/v) CO2 and 500 µg/mL G418. Cells were first seeded in 12-well
plates [coated with 50 mg/L poly (l-lysine) and 50 mg/L poly (l-ornithine)] at a density
of 1.0 × 105 cells/well. For the uptake study, in order to induce the expression of OATP
transporters, the cell culture medium was replaced with culture medium supplemented
with 5 mM sodium butyrate 24 h before performing the uptake assay.

The uptake transport study was performed as described previously [20]. Briefly, cells
were first washed twice and preincubated with Krebs–Henseleit solution at 37 ◦C for 15 min,
then uptake was initiated by adding Krebs–Henseleit buffer containing 5 µM selpercatinib
or 0.2 µM rosuvastatin as a positive control. The Krebs–Henseleit solution was prepared
from Krebs–Henseleit-buffer modified powder and supplemented with 25 mM NaHCO3
and 2.5 mM CaCl2 adjusted to pH 6.4 with 1 M HCL. At 2.5 min, the incubation buffer was
removed, and uptake was terminated by adding 1 mL of ice-cold Krebs–Henseleit buffer,
followed by two times washing with 1 mL of ice-cold Krebs–Henseleit buffer. Afterwards,
cells were lysed with 150 µL of 0.2 N NaOH for 15 min at room temperature, and cell
lysates were transferred into 1.5 mL Eppendorf tubes and stored at −30 ◦C until the next
day. The cellular protein amount was determined by the Bradford method using 10 µL of
the cell lysates with bovine serum albumin as a standard. LC–MS/MS measurements of the
selpercatinib and rosuvastatin concentrations were performed for cell lysates. Experiments
were performed in independent triplicates and the mean transport is shown in the figure.
Similarly to in the transepithelial transport assay, n = 3 was considered sufficient for the
selpercatinib and rosuvastatin uptake results.

4.3. Animals

Mice were housed and handled according to institutional guidelines complying with
Dutch and EU legislation. All experimental animal protocols were evaluated and approved
by the institutional animal care and use committee. Wild-type, Abcb1a/1b-/-, Abcg2-/-,
Abcb1a/1b; Abcg2-/-, Slco1a/1b-/- male mice, and Cyp3a-/- and Cyp3aXAV female mice, all of
a >99% FVB genetic background, were used between 9 and 16 weeks of age. These mouse
strains are continually used for pharmacokinetic studies with various drugs, confirming
their proper identity and functionality [20,39] and ongoing studies. Animals were kept
in a temperature-controlled environment with a 12 h light and 12 h dark cycle, and they
received a standard diet (Transbreed, SDS Diets, Technilab-BMI, Someren, The Netherlands)
and acidified water ad libitum. All experimental animal protocols (WP9450, 9669, 9760),
including power calculations, designed under the nationally approved DEC/CCD project
AVD301002016595, were evaluated and approved by the institutional animal care and use
committee of The Netherlands Cancer Institute.

4.4. Drug Solutions

For oral administration, selpercatinib was dissolved in dimethyl sulfoxide (DMSO) at
a concentration of 20 mg/mL and further diluted with polysorbate 20, 100% ethanol and
5% glucose water, resulting in a final working solution of 1 mg/mL [DMSO:polysorbate
20:100% ethanol:5% glucose water = 5:15:15:65, (v/v/v/v)]. Elacridar hydrochloride was
dissolved in DMSO (53 mg/mL) in order to obtain 50 mg elacridar base per mL DMSO.
The stock solution was further diluted with a mixture of polysorbate 20, 100% ethanol
and 5% glucose water to yield a concentration of 5 mg/mL elacridar [DMSO:polysorbate
20:100% ethanol:5% glucose water = 10:15:15:60, (v/v/v/v)]. All dosing solutions were
prepared freshly on the day of the experiment.

4.5. Plasma and Organ Pharmacokinetics of Selpercatinib in Ice

In order to minimize variation in absorption due to of oral administration, mice
were first fasted for 3 h before selpercatinib (10 mg/kg) was administered orally, using
a blunt-ended needle. For the 4 h transporter experiments, tail-vein blood samples were
collected at 0.125, 0.25, 0.5, 1, and 2 h time points after oral administration, respectively.
For the CYP3A 8 h experiments, tail-vein blood sampling was performed at 0.25, 0.5, 1, 2,
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and 4 h, respectively. While for elacridar inhibition experiments, tail-vein blood samples
were collected at 0.125, 0.25, 0.5, and 1 h time points after oral administration, respectively.
Blood sample collection was performed using microvettes containing dipotassium EDTA.
At the last time point in each experiment (2, 4 or 8 h), mice were anesthetized with 5%
isoflurane and blood was collected by cardiac puncture. Blood samples were collected in
Eppendorf tubes containing heparin as an anticoagulant. The mice were then sacrificed by
cervical dislocation and brain, liver, kidney, lung, small intestine and testis were rapidly
removed. Plasma was isolated from the blood by centrifugation at 9000× g for 6 min at 4 ◦C,
and the plasma fraction was collected and stored at −30 ◦C until analysis. Organs were
homogenized with 4% (w/v) bovine serum albumin and stored at −30 ◦C until analysis.
Relative tissue-to-plasma ratio after oral administration was calculated by determining the
selpercatinib tissue concentration relative to selpercatinib plasma concentration at the last
time point.

4.6. LC–MS/MS Analysis

Selpercatinib concentrations in DMEM/FBS (9/1, v/v) (Invitrogen, Waltham, MA,
USA) cell culture medium, plasma samples, and organ homogenates were determined
using a validated liquid chromatography–tandem mass spectrometry assay [40].

4.7. Materials

Selpercatinib was purchased from Chemgood (Glen Allen, VA, USA). Zosuquidar
and elacridar HCl were obtained from Sequoia Research Products (Pangbourne, UK).
Ko143 was from Tocris Bioscience (Bristol, UK). Bovine Serum Albumin (BSA) Fraction
V was obtained from Roche Diagnostics GmbH (Mannheim, Germany). Glucose water
5% w/v was from B. Braun Medical Supplies, Inc. (Melsungen, Germany). Isoflurane was
purchased from Pharmachemie (Haarlem, The Netherlands) and heparin (5000 IU mL−1)
was from Leo Pharma (Breda, The Netherlands). Other chemicals used in the selpercatinib
detection assay were described before [40]. All other chemicals and reagents were obtained
from Sigma-Aldrich (Steinheim, Germany).

4.8. Data and Statistical Analysis

Pharmacokinetic parameters were calculated by noncompartmental methods using the
PK solver software [41]. The area under the plasma concentration–time curve (AUC) was
calculated using the trapezoidal rule, without extrapolating to infinity. The peak plasma
concentration (Cmax) and the time of maximum plasma concentration (Tmax) were estimated
from the original (individual mouse) data. One-way analysis of variance (ANOVA) was
used when multiple groups were compared and the Tukey post hoc correction was used to
accommodate multiple testing. The two-sided unpaired Student’s t-test was used when
treatments or differences between two specific groups were compared using the software
GraphPad Prism 8 (GraphPad Software Inc., La Jolla, CA, USA). All the data were log-
transformed before statistical tests were applied. Differences were considered statistically
significant when p < 0.05. All data are presented as geometric mean ± SD.

5. Conclusions

In summary, ABCG2 and especially ABCB1 can limit the oral exposure and brain and
testis penetration of selpercatinib, as well as its intestinal disposition. To the best of our
knowledge, this is the first study documenting that elacridar can improve selpercatinib
brain accumulation. Additionally, CYP3A-mediated metabolism can markedly reduce
selpercatinib oral exposure and thus its tissue concentrations. The obtained insights and
principles may potentially be used to further enhance the therapeutic application and
efficacy of selpercatinib, especially for brain metastases in RET fusion/mutation-positive
NSCLC patients.
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