Supporting information

Synthesis of 1c and 1d

Scheme S1. Synthesis of compounds 1c and 1d.

Methyl 2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -]-2-deoxy-2-fluoro- α -D-mannopyranoside (5)

4,6-diol acceptor 2 and donor 4 were coupled to give trisaccharide 5 (55%). Rf 0.38 (toluene/EtOAc, 7:1). [α] $\frac{20}{D}$ -32.1 (*c* 1.0; CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.16 – 8.00 (m, 10H; H_{Ar}), 7.99 – 7.94 (m, 2H; H_{Ar}), 7.84 (m, 4H; H_{Ar}), 7.58 (m, 4H; H_{Ar}), 7.53 – 7.33 (m, 16H; H_{Ar}), 7.31 - 7.22 (m, 4H; H_{Ar}), 6.15 - 6.05 (m, 2H; H-4', H-4"), 6.01 - 5.93 (m, 2H; H-3', H-3"), 5.85 (dd, J_{2',3'} = 3.3 Hz, J_{2',1'} = 1.8 Hz, 1H; H-2'), 5.79 (dd, J_{2",3"} = 3.4 Hz, J_{2",1"} = 1.8 Hz, 1H; H-2"), 5.38 (d, J_{1',2'} = 1.8 Hz, 1H; H-1'), 5.23 (d, J_{1",2"} = 1.8 Hz, 1H; H-1"), 5.05 – 4.89 (m, 1H; H-2), 4.81 – 4.66 (m, 4H; H-1, H-5', H-6'a, H-6''a), 4.63 (ddd, J_{5",4"} = 10.1 Hz, J_{5",6"a} = 4.5 Hz, J_{5",6"b} = 2.5 Hz, 1H; H-5"), 4.53 (m, 2H; H-6'b, H-6"b), 4.12 (m, 2H; H-4, H-6a), 4.04 – 3.85 (m, 3H; H-6b, H-3, H-5), 3.45 – 3.36 (m, 3H; OCH₃), 3.32 ppm (d, J_{OH,4} = 3.5 Hz, 1H; OH-4). ¹³C NMR (126 MHz, CDCl₃) δ 166.24, 166.05, 165.62, 165.58, 165.51, 165.44, 165.38, 165.29 (8 COPh), 133.52, 133.46, 133.38, 133.33, 133.24, 133.07, 133.01, 129.96-128.25 (48 C_{Ar}), 99.95 (C-1'), 98.28 (d, J = 29.1 Hz; C-1), 97.63 (C-1"), 88.13 (d, J = 177.6 Hz; C-2), 81.42 (d, J = 17.1 Hz; C-3), 71.19 (C-5), 70.49 (C-2"), 70.33 (C-2'), 70.21, 70.07 (C-3", C-3'), 69.62 (C-5'), 68.85 (C-5"), 66.86 (C-6), 67.12, 66.69 (C-4', C-4''), 65.90 (C-4), 63.04, 62.97 (C-6", C-6'), 55.22 ppm (OCH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -203.00 ppm (ddd, $J_{F,2}$ = 49.2 Hz, $J_{F,3}$ = 29.4 Hz, $J_{F,1}$ = 7.5 Hz; 1F, F-2). HR-MS (ESI) [M+Na]⁺ m/z calcd for C₇₅H₆₅O₂₃FNa 1375.3798; found 1375.3844.

Methyl α -D-mannopyranosyl- $(1 \rightarrow 3)$ - $[\alpha$ -D-mannopyranosyl- $(1 \rightarrow 6)$ -]-2-deoxy-2-fluoro- α -D-mannopyranoside (**1c**)

Compound **5** was deacylated to give **1c** (91%). R_f 0.11 (EtOAc/MeOH/water, 7:2:1). $[\alpha]_D^{20} + 79.6$ (*c* 0.25; water). ¹H NMR (400 MHz, D₂O) δ 5.00 (as, 1H; H-1'), 4.92 – 4.74 (m, 3H; H-1, H-2, H-1''), 3.98 – 3.90 (m, 2H; H-2', 1H-6), 3.90 – 3.50 (m, 15H), 3.32 ppm (s, 3H; OCH₃). ¹³C NMR (101 MHz, D₂O) δ 102.45 (C-1'), 99.41 (C-1''), 98.00 (d, *J* = 29.3 Hz; C-1), 88.78 (d, *J* = 172.9 Hz; C-2), 77.92 (d, *J* = 16.8 Hz; C-3), 73.27, 72.65, 70.61, 70.53, 70.30, 69.87, 69.82, 66.61 (overlapping), 65.37, 64.82, 60.88, 60.86, 55.11 ppm (OCH₃). ¹⁹F NMR (376 MHz, D₂O) δ -204.15 ppm (ddd, *J*_{F,2} = 49.1 Hz, *J*_{F,3} = 32.9 Hz, *J*_{F,1} = 7.3 Hz; 1F, F-2). HR-MS (ESI) [M+Na]⁺ *m/z* calcd for C₁₉H₃₃O₁₅FNa 543.1701; found 543.1687.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro- α -D-mannopyranosyl- $(1\rightarrow 3)$ -[2,3,4,6-tetra-O-benzoyl- α -D-mannopyranosyl- $(1\rightarrow 6)$ -]-2-O-acetyl- α -D-mannopyranoside (6)

4,6-diol acceptor 3 and donor 4 were coupled to yield 6 (64%). Rf 0.31 (toluene/EtOAc, 2:1). $[\alpha]_{D}^{20}$ + 10.9 (c 1.0; CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.12 – 8.01 (m, 4H; H_{Ar}), 7.97 – 7.92 (m, 2H; H_{Ar}), 7.85 – 7.79 (m, 2H; H_{Ar}), 7.62-7.54 (m, 2H; H_{Ar}), 7.53-7.47 (m, 1H; H_{Ar}), 7.46-7.33 (m, 7H; H_{Ar}), 7.29 – 7.22 (m, 2H; H_{Ar}), 6.12 (at, $J_{4'',3''} = J_{4'',5''} = 10.0$ Hz, 1H; H-4''), 5.94 (dd, $J_{3'',4''} = 10.0$ Hz, $J_{3'',2''} = 3.2 \text{ Hz}, 1\text{H}; \text{H}-3''), 5.78 \text{ (dd}, J_{2'',3''} = 3.2 \text{ Hz}, J_{2'',1''} = 1.8 \text{ Hz}, 1\text{H}; \text{H}-2''), 5.40 \text{ (dd}, J_{1',F} = 7.3 \text{ Hz}, 10.4 \text{$ $J_{1',2'} = 1.3$ Hz, 1H; H-1'), 5.34 (at, $J_{4',3'} = J_{4',5'} = 10.1$ Hz, 1H; H-4'), 5.27 (d, $J_{1''-2''} = 1.8$ Hz, 1H; H-1''), 5.26 - 5.16 (m, 2H; H-2, H-3'), 4.88 (m, 1H; H-2'), 4.77 - 4.70 (m, 2H; H-6"a, H-1), 4.58 - 4.48 (m, 2H; H-5", H-6"b), 4.27 (dd, J_{6'a,6'b} = 12.3 Hz, J_{6'a,5'} = 5.7 Hz, 1H; H-6'a), 4.20 – 4.07 (m, 5H; H-5', H-6'b, H-6a, H-4, H-3), 3.95 (dd, J_{6b,6a} = 11.6 Hz, J_{6b,5} = 1.9 Hz, 1H; H-6b), 3.81-3.75 (m, 1H; H-5), 3.41 (s, 3H; OCH₃), 2.83 (d, J_{OH,4} = 4.6 Hz, 1H; OH-4), 2.16, 2.11, 2.09, 2.07 ppm (4s, 12 H; 4 OCOCH₃). ¹³C NMR (125 MHz, CDCl₃) δ 170.70, 170.56, 170.14, 169.56, (4 OCOCH₃), 166.30, 165.49, 165.46, 165.20 (4 COPh), 133.43, 133.41, 133.18, 133.08, 129.82 -128.29 (24 CAr), 98.86 (J = 29.9 Hz; C-1'), 98.51 (C-1), 98.07 (C-1''), 86.79 (J = 180.0 Hz; C-2'), 77.13, 71.65 (C-5), 71.25 (C-2), 70.30 (C-2"), 70.00 (C-3"), 69.85 (J = 16.8 Hz; C-3'), 69.43, 68.88 (C-5"), 67.12 (C-4"), 66.96, 66.39 (C-6), 65.56 (C-4'), 62.95 (C-6''), 62.18 (C-6'), 55.13 (OCH₃), 20.75, 20.73, 20.67, 20.59 ppm (4 OCOCH₃). ¹⁹F NMR (376 MHz, CDCl₃) δ -203.61 ppm (ddd, J_{F-2}' = 49.4 Hz, J_{F-3}' = 28.2 Hz, J_{F-1}' = 7.3 Hz; 1F, 2'-F). HR-MS (ESI) [M+Na]⁺ m/z calcd for C₅₅H₅₇O₂₃F 1127.3172; found 1127.3116.

Methyl 2-deoxy-2-fluoro- α -D-mannopyranosyl- $(1\rightarrow 3)$ - $[\alpha$ -D-mannopyranosyl- $(1\rightarrow 6)$ -]- α -D-mannopyranoside (1d)

Compound **6** was deacylated to give trisaccharide **1d** (80%). R_f 0.15 (EtOAc/MeOH/H₂O, 7:2:1). $\alpha]_{D}^{20}$ + 99.0 (*c* 0.5; water). ¹H NMR (500 MHz, D₂O) δ 5.16 (dd, $J_{1',F}$ = 8.0 Hz, $J_{1',2'}$ = 1.8 Hz, 1H; H-1'), 4.80 – 4.64 (m, 2H; H-1'', H-2'), 4.57 (as, 1H; H-1), 3.94 (as, 1H; H-2) 3.89 – 3.71 (m, 7H), 3.70 – 3.47 (m, 9H), 3.25 ppm (s, 1H; OCH₃). ¹³C NMR (126 MHz, D₂O) δ 100.96 (C-1), 99.44 (C-1''), 99.32 (d, *J* = 30.4 Hz; C-1'), 89.55 (d, *J* = 172.3 Hz; C-2'), 79.06, 73.27, 72.71, 70.81, 70.60, 69.96, 69.60 (d, *J* = 17.5 Hz; C-3'), 69.49, 66.73, 66.66, 65.52, 65.21, 60.95, 60.50, 54.85 ppm (OCH₃). ¹⁹F NMR (376 MHz, D₂O) -204.73 ppm (ddd, $J_{F,2'}$ = 49.3 Hz, $J_{F,3'}$ = 31.6 Hz, $J_{F,1'}$ = 8.0 Hz; 1F; F-2'). HR-MS (ESI) [M+Na]⁺ m/z calcd for C₁₉H₃₃O₁₅FNa 543.1701; found 543.1709.

NMR experiments

Table S2: 1H and 19F NMR assignment of compounds 1, 2 and 3

Position	Manl		Manll		ManIII	
	¹H	¹⁹ F	¹ H	¹⁹ F	¹ H	¹⁹ F
1	5.27		5.06		4.90	
2	4.81	-204.86	4.75	-205.97	4.89	-204.21
3	3.87		3.83		3.92	
4	3.66		3.66		3.86	
5	3.75		3.66		3.82	
6, 6'	3.82, 3.73		3.82, 3.73		4.03, 3.72	
Ме					3.37	

Table S2a. 2-F-Man₃, compound 1.

Table S2b. 2-F-Man_{2,α1-3}, compound **2**.

Position	Mani Manii		nIII	
	¹ H	¹⁹ F	¹ H	¹⁹ F
1	5.28		4.91	
2	4.81	-204.82	4.87	-204.03
3	3.87		3.92	
4	3.65		3.75	
5	3.75		3.65	
6, 6'	3.81, 3.73		3.83, 3.73	
Ме			3.37	

Table S2c. 2-F-Man_{2,α1-6}, compound **3**.

Position	Manl		ManIII	
	¹ H	¹⁹ F	¹ H	¹⁹ F
1	5.07		4.90	
2	4.75	-205.86	4.70	-206.00
3	3.83		3.76	
4	3.66		3.73	
5	3.66		3.75	
6, 6'	3.83, 3.73		4.00, 3.74	
Ме			3.37	

¹⁹F-R₂ filtered experiments

The K_D of compounds **1**, **1b-d**, **2** and **3** was estimated applying a ¹⁹F-R₂ filtered approach. 6-F-Man α OMe, which weakly binds to DC-SIGN, was selected as the spy molecule. Relaxation rates R₂ were determined employing a CPMG pulse sequence, by fitting the observed ¹⁹F signal intensity to the exponential decay curve:

$$I(t) = I_0 e^{-tR_2} = I_0 e^{-n2\tau R_2}$$
(1)

where I(t) refers to intensity at time t, I_0 is intensity at t = 0, and R_2 is the transversal relaxation rate ($R_2 = 1/T_2$).

In the limit of fast-exchange where the exchange contribution to the observed transversal relaxation rate $R_{2.obs}$ is insignificant (Figure S1, a)), the following equations apply:

$$R_{2,obs} = R_{2,f} + (R_{2,b} - R_{2,f})p_b$$
⁽²⁾

$$p_b = \frac{[P]_T + [L]_T + K_D - \sqrt{([P]_T + [L]_T + K_D)^2 - 4[P]_T [L]_T}}{2[L]_T}$$
(3)

where $[P]_T$ and $[L]_T$ are the total protein and ligand concentrarion respectively, $[R]_{2,f}$ and $[R]_{2,b}$ are the relaxation rates in the free and bound states, p_b is the fraction of bound ligand and K_D the dissociation constant of the protein-ligand complex. $[R]_{2,f}$ of 6-F-Man α OMe was measured in absence of the lectin, and Equation 2 was used to estimate K_D and $[R]_{2,b}$ for the complex (Figure S1, b)).

Then, K_I of compounds **1**, **1b-d**, **2** and **3** was measured in a competitive manner. $R_{2,obs}$ of 6-F-Man α OMe (spy molecule) in solution with DC-SIGN ECD was monitored at 5 different competitor concentrations ([*I*]) in each case with a fixed $[P]_T/[L]_T$ ratio (Figure S1, c)), to derive K_I by fitting to Equation 2 with p_b as defined in Equations (4) and (5) (Table 2):

$$p_b = \frac{2\cos(\theta/3)\sqrt{a^2 - 3b} - a}{3K_D + 2\cos(\theta/3)\sqrt{a^2 - 3b} - a}$$
(4)

$$\theta = \cos^{-1} \left(\frac{-2a^3 + 9ab - 27c}{2\sqrt{(a^2 - 3b)^3}} \right), a = K_D + K_I + [L]_T + [I]_T - [P]_T,$$

$$b = ([I]_T - [P]_T)K_D + ([L]_T - [P]_T)K_D + K_IK_D, c = -K_IK_D[P]_T$$
(5)

Figure S1. ¹⁹F-R₂ **filtered experiments.** a) Relaxation dispersion experiment for 6-F-Man α OMe (the spy molecule). R_{2,obs} of the ¹⁹F nucleus is measured for different values of ω_{CPMG} . Ligand and protein sample concentrations were: [6-F-Man α OMe] = 400 μ M, [DC-SIGN (CRDs)] = 10 μ M (counting concentration of CRDs, i.e, 4 CRDs per DC-SIGN ECD tetramer). For $\omega_{CPMG} > 1000 \text{ s}^{-1}$, there is virtually negligible exchange contribution to R₂. Therefore, all the subsequent R₂ filtered experiments were carried out with $\tau_{CPMG} = 1/\omega_{CPMG} = 1 \text{ ms. b}$ K_D determination of 6-F-Man α OMe with DC-SIGN. R_{2,obs} was measured for increasing amounts of [6-F-Man α OMe]/[DC-SIGN (CRDs)] (blue dots). K_D and R_{2,b} were obtained from fitting to Equation 2, which is valid in the fast-exchange regime (R_{ex} = 0) [39a]. The predicted values at each [6-F-Man α OMe]/[DC-SIGN (CRDs)] are shown as red stars for comparison c) Titration curves showing the variation in ¹⁹F-R_{2,obs} of the spy molecule 6-F-Man α OMe, when increasing amounts of the competitors (I) **1**, **1b-d**, **2** and **3** are added to a mixture [6-F-Man α OMe] = 400 μ M, [DC-SIGN (CRDs)] = 10 μ M.

MD simulations

Figure S2. **Conformational maps.** Density of conformers populations around ϕ/ψ torsion angles computed for **1** and **1b** during a 500 ns MD simulation in explicit TIP3P water. ϕ and ψ torsion angles are defined as O5(*i*)-C1(*i*)-On(*i*-1)-Cn(*i*-1)-Cn(*i*-1)-Cn(*i*-1)-C(*n*-1)(*i*-1) respectively, where *n* indicates ring position and *i* a given residue. For **1b**, the GLYCAM 06-j [40] forcefield was employed, whereas GAFF2 [44] was used for **1**. The MD protocol in both simulations is described in the Materials and Methods section. The maps are fairly similar, independently of the employed force field.

Figure S4. MD derived complexes association times: Box plot representation of association times observed in the MD simulations of the different ligand-protein complexes. The number of MD replicas ran in each case varies from 6 to 12, depending on the variability observed. Outliers are represented as red dots.

Figure S5. Ligand-protein interactions: Significant ligand-protein interactions computed during the MD replicas. The fraction axis shows the percentage of the simulation time that the interaction is found.

Hydrogen-bonds are accounted from the MD trajectories based on distance and angle criteria: $d_(A-H-D) < 3 \text{ Å}$ and $(A-H-D)^{3} < 130^{\circ}$, where H refers to the coordinates of the hydrogen atom, D and A the hydrogen bond donor and acceptor respectively. Similarly, CH-Pi interactions are accounted by the distance of the aromatic ring-center to the hydrogen atom involved in the interaction according to $d_(\text{Ring-H}) < 3 \text{ Å}$, as well as the C/H/Ring-center angle (C-H-Ring)^2120°. Van der Waals interactions are considered when the interatomic distance of the atoms involved is lower than 1.2 times the sum of the VdW radii of the atoms.

Other Interactions					
Туре	Ligand Group	Amino acid	Fraction (%)		
CH-Pi	ManIII_H1	Phe313	31		

Figure S6. Ligand-protein interactions for ligand 1b: Significant ligand-protein interactions computed during the MD of DC-SIGN bound to 1b *via* Manl_O3-O4. All interactions are accounted in the same way as described in Figure S5

CORCEMA-ST

The CORCEMA-ST script was ran sequentially for 400-800 frames extracted from each MD simulation trajectory. The same experimental parameters employed in the STD-NMR experiments were used in the calculations: [DC-SIGN] = 9.14 uM, [Ligand] = 1.4 mM, 2 s saturation time. Different k_{on} values in the range of 10^5 - 10^8 M⁻¹ s⁻¹ and K_D 0.5-3 mM were tested with all the complexes, giving rise to very similar normalized calculated STD profiles. Thus, a kon of $10^6 \,\text{M}^{-1} \,\text{s}^{-1}$, of the same order of other sugar-lectin systems [1,2], was used for all the models. K_D was set to 1 mM, similar to the observed K_D of other Man derivatives in complex with DC-SIGN [3-5]. An instantaneous irradiation of the aliphatic receptor residues Ile, Leu, and Val methylgroups to account for the selective on-resonance irradiation of the STD-NMR experiment, 0.85 ppm, was used. The size of the relaxation matrix was adjusted using a distance cutoff, d, of 10 Å away from any ligand atom, since virtually the same STD profiles were obtained for larger values, while some differences appeared when d < 10 Å. The value of the order parameter S² and the methyl group internal correlation time τ_m were set to 0.85 and 10 ps respectively, as previously described [6]. A typical value for the free ligand correlation time τ_{L} = 0.5 ns was used, whereas for the bound ligand a correlation time assuming a tetrameric protein of globular shape was estimated as τ_b = 85 ns.

Since CORCEMA-ST does not recognize ¹⁹F as an active nucleus in the relaxation matrix, the effect of the presence of an active nuclei at position C-2 in the 2-F compounds **1**, **2** and **3**, was assessed by substituting all fluorine atoms by hydrogens in each analogue, while keeping the original C-F distance. Then, CORCEMA-ST calculations were ran with the same parameters described in the previous paragraph. This way, the ¹H nucleus is used as a probe to simulate the most pronounced expectable effect (since it can give rise to homonuclear cross-relaxation) on the observed STD signals. Remarkably, it was found that the predicted best fitting models with *BM-Mixer* are in general unaffected by the presence of the active nucleus at C-2 for the three ligands (see Table S3).

Best-model STD fitting

BM-Mixer is able to find the best combination of frames (in %) from different MD trajectories explaining the experimental STD-NMR data. For the program to work properly, it is important to use a list of experimental STDs only containing reliable assigned peaks. In this work, we used the list provided in Table 1 in the main text, with the exception of compound **3**. For compound **3**, the experimental STD cross peak observed for Man III at 3.7 ppm could correspond to H-3, H-4, H-5 or H-6'. As accounting the measured STD intensity as the sum of the individual contribution from four H atom would potentially introduce noise in the search (see *CORCEMA-ST and best-model STD fitting* heading in the experimental section), the corresponding STD peak was not taken into account in the search for best-model fitting showed in Figure 4 and Table S2.

There are two main parameters that must be set in a *BM-Mixer* run: *mix_leap* and *search_iterator*. *mix_leap* defines the minimum percentage of frames to be used from each trajectory to explore the different combinations. For example, setting *mix_leap* = 5 allows the program to combine frames from different trajectories using a minimum of 5 % of the frames. Although it depends on the number of frames and binding modes (trajectories) to work with, typically a value of *mix_leap* = 10 is sufficient to get accurate enough results (according to NOE R-Factor_{Rel}) in a decent amount of time. *search_iterator* specify how many times the program is run before computing the final NOE R-Factor_{Rel} averages. Every time a new iteration start (when

search_iterator > 1), the frames used in each combination are randomly selected, so that the larger the value of *search_iterator*, the better sampling of the trajectory-space is done. In general, we have found that for the studied systems, when using 400-800 frames of each binding mode trajectory, best NOE R-Factor_{Rel} averages are similar when setting *search_iterator* > 15.

Table S1. Best-model STD fitting by *BM-Mixer*: Top 3 best-model STD fitting results for each ligand, found by *BM-Mixer*. For ligands **1** and **3**, 800 frames from each simulated binding mode were used in the calculations, while 400 frames were employed for **2**. *mix_leap* was set to 10 for ligands **1** and **3**, and to 5 for **2**; a *search_iterator* of 30 was used in all cases.

Ligand 1						
Manl_03-04 (%)	ManI_04-03 (%)	ManII_03-04 (%)	ManII_04-03 (%	6) NOE R-Factor _{Rel}		
60	0	0	40	0.2010		
50	0	0	50	0.2201		
40	0	10	50	0.2238		
Ligand 2						
Manl_03-04 (%)		Manl_04-03 (%)	1	IOE R-Factor _{Rel}		
65		35		0.1380		
60		40		0.1396		
70		30		0.1575		
Ligand 3						
Manll_03-04 (%) Manll_O4-0	D3 (%) Manl	II_03-04 (%)	NOE R-Factor _{Rel}		
50	10		40	0.1470		
50	0		50	0.1482		
40	10		50	0.1496		

Table S3. Best-model STD fitting by *BM-Mixer* with non-fluorinated control Top 3 best-model STD fitting results found by *BM-Mixer* for each ligand-control CORCEMA-ST calculated STD. Ligand-controls were built by substituting all fluorine atoms in the MD trajectories by hydrogens, and then computing CORCEMA-ST on those. The same *BM-Mixer* set up described in Table S2 was used.

		Ligand 1				
Manl_03-04 (%)	ManI_04-03 (%)	Manll_03-04 (%)	ManII_04-03 (%	6) NOE R-Factor _{Rel}		
60	0	0	40	0.2143		
40	0	10	50	0.2212		
40	0	10	50	0.2368		
Ligand 2						
Manl_03-04 (%)		Manl_04-03 (%)	1	IOE R-Factor _{Rel}		
70		30		0.1467		
65		35	0.1538			
75		25		0.1681		
Ligand 3						
ManII_03-04 (%) Manll_O4-0	03 (%) Manl	II_03-04 (%)	NOE R-Factor _{Rel}		
50	0		50	0.1555		
40	10		50	0.1645		
50	10		40	0.1654		

References

- 1. Scharenberg, M.; Jiang, X.; Pang, L.; Navarra, G.; Rabbani, S.; Binder, F.; Schwardt, O.; Ernst, B. Kinetic properties of carbohydrate-lectin interactions: FimH antagonists. *ChemMedChem* **2014**, *9*, 78–83.
- 2. Milton, J.D.; Fernig, D.G.; Rhodes, J.M. Use of a biosensor to determine the binding kinetics of five lectins for Galactosyl-N-acetylgalactosamine. *Glycoconj. J.* **2001**, *18*, 565–569.
- 3. Holla, A.; Skerra, A. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. *Protein Eng. Des. Sel.* **2011**, *24*, 659–669.
- Bordoni, V.; Porkolab, V.; Sattin, S.; Thépaut, M.; Frau, I.; Favero, L.; Crotti, P.; Bernardi, A.; Fieschi, F.; Di Bussolo, V. Stereoselective innovative synthesis and biological evaluation of new real carba analogues of minimal epitope Manα(1,2)Man as DC-SIGN inhibitors. *RSC Adv.* 2016, *6*, 89578–89584.
- 5. Reina, J.J.; Sattin, S.; Invernizzi, D.; Mari, S.; Martinez-Prats, L.; Tabarani, G.; Fieschi, F.; Delgado, R.; Nieto, P.M.; Rojo, J.; et al. 1,2-mannobioside mimic: Synthesis, DC-SIGN interaction by NMR and docking, and antiviral activity. *ChemMedChem* **2007**, *2*, 1030–1036.
- 6. Jayalakshmi, V.; Krishna. N.R. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. *J. Magn. Reson.* **2002**, *155*, 106–118.