Supporting information

Synthesis of 1c and 1d

Scheme S1. Synthesis of compounds 1c and 1d.
Methyl 2,3,4,6-tetra-O-benzoyl- α-D-mannopyranosyl-(1 $\rightarrow 3$)-[2,3,4,6-tetra-O-benzoyl- α-D-mannopyranosyl-(1 $\rightarrow 6$)-]-2-deoxy-2-fluoro- $\alpha-$-D-mannopyranoside

4,6-diol acceptor 2 and donor 4 were coupled to give trisaccharide 5 (55\%). $R_{f} 0.38$ (toluene/EtOAc, 7:1). [$\alpha]_{D}^{20}-32.1\left(c 1.0 ; \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.00(\mathrm{~m}, 10 \mathrm{H}$; $\mathrm{H}_{\text {Ar }}$), $7.99-7.94\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}_{\text {Ar }}\right), 7.84\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\text {Ar }}\right), 7.58\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\mathrm{Ar}}\right), 7.53-7.33\left(\mathrm{~m}, 16 \mathrm{H} ; \mathrm{H}_{\text {Ar }}\right), 7.31$ $-7.22\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\mathrm{Ar}}\right), 6.15-6.05\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-4^{\prime}, \mathrm{H}-4^{\prime \prime}\right), 6.01-5.93\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-3^{\prime}, \mathrm{H}-3^{\prime \prime}\right), 5.85\left(\mathrm{dd}, \mathrm{J}_{2^{\prime}, 3^{\prime}}\right.$ $\left.=3.3 \mathrm{~Hz}, \mathrm{~J}_{2^{\prime}, 1^{\prime}}=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\prime}\right), 5.79\left(\mathrm{dd}, \mathrm{J}_{2^{\prime \prime}, 3^{\prime \prime}}=3.4 \mathrm{~Hz}, J_{2^{\prime \prime}, 1^{\prime \prime}}=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}\right), 5.38\left(\mathrm{~d}, \mathrm{~J}_{1^{\prime}, 2^{\prime}}=\right.$ $\left.1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\prime}\right), 5.23$ (d, $\left.J_{1^{\prime \prime}, 2^{\prime \prime}}=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}\right), 5.05-4.89(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-2), 4.81-4.66(\mathrm{~m}, 4 \mathrm{H} ;$ $\left.\mathrm{H}-1, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{H}-6^{\prime \prime} \mathrm{a}\right), 4.63$ (ddd, $J_{5^{\prime \prime}, 4^{\prime \prime}}=10.1 \mathrm{~Hz}, J_{5^{\prime \prime}, 6^{\prime \prime}}=4.5 \mathrm{~Hz}, J_{5^{\prime \prime}, 6^{\prime \prime} \mathrm{b}}=2.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5^{\prime \prime}$), 4.53 (m, 2H; H-6'b, H-6' ${ }^{\prime}$ b), 4.12 (m, 2H; H-4, H-6a), $4.04-3.85$ (m, 3H; H-6b, H-3, H-5), $3.45-3.36$ $\left.\left(\mathrm{m}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.32 \mathrm{ppm}\left(\mathrm{d}, \mathrm{J}_{\text {он, } 4}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}-4\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz} \mathrm{CDCl}_{3}\right) \delta 166.24,166.05$, 165.62, 165.58, 165.51, 165.44, 165.38, 165.29 (8 COPh), 133.52, 133.46, 133.38, 133.33, $133.24,133.07,133.01,129.96-128.25$ ($48 C_{\text {Ar }}$), 99.95 ($\mathrm{C}-1^{\prime}$), 98.28 ($\mathrm{d}, \mathrm{J}=29.1 \mathrm{~Hz} ; \mathrm{C}-1$), 97.63 (C$1^{\prime \prime}$), 88.13 ($d, J=177.6 \mathrm{~Hz} ; \mathrm{C}-2$), 81.42 ($\mathrm{d}, \mathrm{J}=17.1 \mathrm{~Hz} ; \mathrm{C}-3$), 71.19 (C-5), 70.49 (C-2"), 70.33 (C2^{\prime}), 70.21, 70.07 (C-3", C-3'), 69.62 (C-5'), 68.85 (C-5"), 66.86 (C-6), 67.12, 66.69 (C-4', C-4"), 65.90 (C-4), 63.04, 62.97 (C-6", C-6'), $55.22 \mathrm{ppm}\left(\mathrm{OCH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-203.00$ ppm (ddd, $J_{F, 2}=49.2 \mathrm{~Hz}, J_{F, 3}=29.4 \mathrm{~Hz}, J_{F, 1}=7.5 \mathrm{~Hz} ; 1 \mathrm{~F}, \mathrm{~F}-2$). HR-MS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{75} \mathrm{H}_{65} \mathrm{O}_{23} \mathrm{FNa} 1375.3798$; found 1375.3844.

Methyl α-D-mannopyranosyl-(1 $\rightarrow 3$)-[α-D-mannopyranosyl-(1 $\rightarrow 6$)-]-2-deoxy-2-

 fluoro- α-D-mannopyranoside (1c)Compound 5 was deacylated to give $1 \mathrm{c}(91 \%)$. $\mathrm{Rf}_{\mathrm{f}} 0.11$ (EtOAc/MeOH/water, 7:2:1). $[\alpha]_{D}^{20}+79.6$ (c 0.25 ; water). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.00$ (as, $1 \mathrm{H} ; \mathrm{H}-\mathrm{1}^{\prime}$), $4.92-4.74$ ($\mathrm{m}, 3 \mathrm{H} ; \mathrm{H}-1, \mathrm{H}-2, \mathrm{H}-\mathrm{l}^{\prime \prime}$), $3.98-3.90\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2^{\prime}, 1 \mathrm{H}-6\right), 3.90-3.50(\mathrm{~m}, 15 \mathrm{H}), 3.32 \mathrm{ppm}\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{D}_{2} \mathrm{O}$) $\delta 102.45$ (C-1'), 99.41 (C-1"), $98.00(\mathrm{~d}, \mathrm{~J}=29.3 \mathrm{~Hz} ; \mathrm{C}-1), 88.78(\mathrm{~d}, \mathrm{~J}=172.9 \mathrm{~Hz} ; \mathrm{C}-2), 77.92$ (d, J = $16.8 \mathrm{~Hz} ; \mathrm{C}-3$), $73.27,72.65,70.61,70.53,70.30,69.87,69.82,66.61$ (overlapping), 65.37, $64.82,60.88,60.86,55.11 \mathrm{ppm}\left(\mathrm{OCH}_{3}\right) .{ }^{99} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta-204.15 \mathrm{ppm}\left(\mathrm{ddd}, \mathrm{J}_{\mathrm{F}, 2}=49.1\right.$ $\left.\mathrm{Hz}, \mathrm{J}_{\mathrm{F}, 3}=32.9 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{F}, 1}=7.3 \mathrm{~Hz} ; 1 \mathrm{~F}, \mathrm{~F}-2\right)$. HR-MS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{15} \mathrm{FNa} 543.1701$; found 543.1687.

Methyl 3,4,6-tri-O-acetyl-2-deoxy-2-fluoro- α-D-mannopyranosyl-(1 $\rightarrow 3$)-[2,3,4,6-tetra-O-benzoyl- α-D-mannopyranosyl-(1-6)-]-2-O-acetyl- $\alpha-D-m a n n o p y r a n o s i d e ~$ (6)

4,6-diol acceptor 3 and donor 4 were coupled to yield 6 (64\%). Rf 0.31 (toluene/EtOAc, 2:1). ${ }_{[\alpha]}{ }_{D}^{20}+10.9\left(c 1.0 ; \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12-8.01\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\mathrm{Ar}}\right), 7.97-7.92(\mathrm{~m}$, $2 \mathrm{H} ; \mathrm{H}_{\text {Ar }}$, $7.85-7.79\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{Ar}}\right), 7.62-7.54\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}_{\text {Ar }}\right), 7.53-7.47\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}_{\mathrm{Ar}}\right), 7.46-7.33(\mathrm{~m}, 7 \mathrm{H} ;$ $\mathrm{H}_{\text {Ar }}$), $7.29-7.22\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{Ar}}\right), 6.12\left(\mathrm{at}, \mathrm{J}_{4^{\prime \prime}, 3^{\prime \prime}}=\mathrm{J}_{4^{\prime \prime}, 5^{\prime \prime}}=10.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\prime \prime}\right), 5.94\left(\mathrm{dd}, J_{3^{\prime \prime}, 4^{\prime \prime}}=10.0 \mathrm{~Hz}\right.$, $J_{3^{\prime \prime}, 2^{\prime \prime}}=3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\prime \prime}$), 5.78 (dd, $\left.\mathrm{J}_{2^{\prime \prime}, 3^{\prime \prime}}=3.2 \mathrm{~Hz}, J_{2^{\prime \prime}, 1^{\prime \prime}}=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\prime \prime}\right), 5.40\left(\mathrm{dd}, \mathrm{J}_{1^{\prime}, \mathrm{F}}=7.3 \mathrm{~Hz}\right.$, $\left.J_{1^{\prime}, 2^{\prime}}=1.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\prime}\right), 5.34\left(\mathrm{at}, J_{4^{\prime}, 3^{\prime}}=J_{4^{\prime}, 5^{\prime}}=10.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\prime}\right), 5.27\left(\mathrm{~d}, J_{1^{\prime \prime}-2^{\prime \prime}}=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\prime \prime}\right)$, $5.26-5.16\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2, \mathrm{H}-\mathrm{3}^{\prime}\right), 4.88\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{z}^{\prime}\right), 4.77-4.70\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-6^{\prime \prime} \mathrm{a}, \mathrm{H}-1\right), 4.58-4.48$ (m, $\left.2 \mathrm{H} ; \mathrm{H}-5^{\prime \prime}, \mathrm{H}-6^{\prime \prime} \mathrm{b}\right), 4.27$ (dd, $\left.\mathrm{J}_{\sigma^{\prime} \mathrm{a}, \mathrm{c}^{\prime} \mathrm{b}}=12.3 \mathrm{~Hz}, \mathrm{~J}_{6^{\prime}, 5^{\prime}}=5.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.20-4.07\left(\mathrm{~m}, 5 \mathrm{H} ; \mathrm{H}-5^{\prime}, \mathrm{H}-\right.$ 6 'b, H-6a, H-4, H-3), 3.95 (dd, $\left.\mathrm{J}_{6 \mathrm{~b}, 6 \mathrm{a}}=11.6 \mathrm{~Hz}, \mathrm{~J}_{6,5}=1.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}\right), 3.81-3.75$ (m, 1H; H-5), 3.41 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}$), $2.83\left(\mathrm{~d}, \mathrm{~J}_{\text {он, } 4}=4.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{OH}-4\right), 2.16,2.11,2.09,2.07 \mathrm{ppm}\left(4 \mathrm{~s}, 12 \mathrm{H} ; 4 \mathrm{OCOCH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8170.70,170.56,170.14,169.56$, ($4 \mathrm{OCOCH}_{3}$), 166.30, 165.49, 165.46, 165.20 (4 COPh), 133.43, 133.41, 133.18, 133.08, $129.82-128.29$ ($24 \mathrm{C}_{\text {Ar }}$), 98.86 ($\mathrm{J}=29.9 \mathrm{~Hz}$ C C1^{\prime}), 98.51 ($\mathrm{C}-1$), 98.07 ($\mathrm{C}-1^{\prime \prime}$), $86.79\left(J=180.0 \mathrm{~Hz} ; \mathrm{C}-2^{\prime}\right), 77.13,71.65(\mathrm{C}-5), 71.25(\mathrm{C}-2), 70.30(\mathrm{C}-$ $2^{\prime \prime}$), 70.00 (C-3"), 69.85 (J = 16.8 Hz C-3'), 69.43, 68.88 (C-5"), 67.12 (C-4"), $66.96,66.39$ (C-6), 65.56 ($\left.\mathrm{C}-4^{\prime}\right), 62.95$ (C-6"), 62.18 (C-6'), $55.13\left(\mathrm{OCH}_{3}\right), 20.75,20.73,20.67,20.59 \mathrm{ppm}\left(4 \mathrm{OCOCH}_{3}\right)$. ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-203.61 \mathrm{ppm}\left(\mathrm{ddd}, \mathrm{J}_{\mathrm{F}-\mathbf{2}^{\prime}}=49.4 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{F}-\mathrm{-}^{\prime}}=28.2 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{F}-\mathbf{1}^{\prime}}=7.3 \mathrm{~Hz} ; 1 \mathrm{~F}, 2^{\prime}-\right.$ F). HR-MS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{55} \mathrm{H}_{57} \mathrm{O}_{23} \mathrm{~F}$ 1127.3172; found 1127.3116.

Methyl 2-deoxy-2-fluoro- α-D-mannopyranosyl-(1 $\rightarrow 3$)-[α-D-mannopyranosyl(1 $\rightarrow 6$)-]- α-D-mannopyranoside (1d)

Compound 6 was deacylated to give trisaccharide 1d (80\%). $\mathrm{Rf}_{\mathrm{f}} 0.15$ ($\mathrm{EtOAc} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}, 7: 2: 1$). $\alpha{ }_{D}^{20}+99.0\left(c 0.5\right.$; water). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 5.16$ (dd, $J_{1^{\prime}, \mathrm{F}}=8.0 \mathrm{~Hz}, \mathrm{~J}_{1^{\prime}, 2^{\prime}}=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ $\left.1^{\prime}\right), 4.80-4.64$ (m, 2H; H-1"', H-2'), 4.57 (as, 1H; H-1), 3.94 (as, 1H; H-2) $3.89-3.71$ (m, 7H), 3.70 - 3.47 (m, 9H), $3.25 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H} ; \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 100.96$ (C-1), 99.44 (C-1"), 99.32 (d, J = $30.4 \mathrm{~Hz} ; \mathrm{C}-1^{\prime}$), 89.55 (d, J = $172.3 \mathrm{~Hz} ; \mathrm{C}-2^{\prime}$), 79.06, 73.27, 72.71, 70.81, 70.60, 69.96, $69.60\left(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz} ; \mathrm{C}-3^{\prime}\right), 69.49,66.73,66.66,65.52,65.21,60.95,60.50,54.85 \mathrm{ppm}\left(\mathrm{OCH}_{3}\right)$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) -204.73 ppm (ddd, $\mathrm{J}_{\mathrm{F}, 2^{\prime}}=49.3 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{F}, 3^{\prime}}=31.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{F}, 1^{\prime}}=8.0 \mathrm{~Hz} ; 1 \mathrm{~F} ; \mathrm{F}-2^{\prime}$). HR-MS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{15} \mathrm{FNa} 543.1701$; found 543.1709.

NMR experiments

Table S2: 1H and 19F NMR assignment of compounds 1, 2 and 3
Table S2a. 2-F-Man ${ }_{3}$, compound 1.

Position	ManI		ManII		ManIII	
	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$
$\mathbf{1}$	5.27		5.06	4.90		
$\mathbf{2}$	4.81	-204.86	4.75	-205.97	4.89	-204.21
$\mathbf{3}$	3.87	3.83	3.92			
$\mathbf{4}$	3.66	3.66	3.86			
$\mathbf{5}$	3.75	3.66	3.82			
$\mathbf{6 , 6}$	$3.82,3.73$	$3.82,3.73$	$4.03,3.72$			
$\mathbf{M e}$			3.37			

Table S2b. 2-F-Man ${ }_{2, \alpha 1-3}$, compound 2.

Position	ManI		ManIII	
	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$
$\mathbf{1}$	5.28		4.91	
$\mathbf{2}$	4.81	-204.82	4.87	-204.03
$\mathbf{3}$	3.87		3.92	
$\mathbf{4}$	3.65	3.75		
$\mathbf{5}$	3.75	3.65		
$\mathbf{6 , 6} \mathbf{6}$	$3.81,3.73$	$3.83,3.73$		
$\mathbf{M e}$		3.37		

Table S2c. 2-F-Man ${ }_{2, \alpha 1-6}$, compound 3.

Position	ManI		ManIII	
	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$	${ }^{1} \mathrm{H}$	${ }^{19} \mathrm{~F}$
$\mathbf{1}$	5.07		4.90	
$\mathbf{2}$	4.75	-205.86	4.70	-206.00
$\mathbf{3}$	3.83		3.76	
$\mathbf{4}$	3.66	3.73		
$\mathbf{5}$	3.66	3.75		
$\mathbf{6 , 6} \mathbf{6}$	$3.83,3.73$	$4.00,3.74$		
$\mathbf{M e}$		3.37		

${ }^{19} \mathrm{~F}-\mathrm{R}_{2}$ filtered experiments

The K_{D} of compounds $\mathbf{1}, \mathbf{1 b}-\mathbf{d}, \mathbf{2}$ and $\mathbf{3}$ was estimated applying a ${ }^{19} \mathrm{~F}$ - R_{2} filtered approach. 6-FManaOMe, which weakly binds to DC-SIGN, was selected as the spy molecule. Relaxation rates R_{2} were determined employing a CPMG pulse sequence, by fitting the observed ${ }^{19} \mathrm{~F}$ signal intensity to the exponential decay curve:

$$
\begin{equation*}
I(t)=I_{0} e^{-t R_{2}}=I_{0} e^{-n 2 \tau R_{2}} \tag{1}
\end{equation*}
$$

where $I(t)$ refers to intensity at time t, I_{0} is intensity at $t=0$, and R_{2} is the transversal relaxation rate ($R_{2}=1 / T_{2}$).

In the limit of fast-exchange where the exchange contribution to the observed transversal relaxation rate $R_{2, o b s}$ is insignificant (Figure S1, a)), the following equations apply:

$$
\begin{gather*}
R_{2, o b s}=R_{2, f}+\left(R_{2, b}-R_{2, f}\right) p_{b} \tag{2}\\
p_{b}=\frac{[P]_{T}+[L]_{T}+K_{D}-\sqrt{\left([P]_{T}+[L]_{T}+K_{D}\right)^{2}-4[P]_{T}[L]_{T}}}{2[L]_{T}} \tag{3}
\end{gather*}
$$

where $[P]_{T}$ and $[L]_{T}$ are the total protein and ligand concentrarion respectively, $[R]_{2, f}$ and $[R]_{2, b}$ are the relaxation rates in the free and bound states, p_{b} is the fraction of bound ligand and K_{D} the dissociation constant of the protein-ligand complex. $[R]_{2, f}$ of $6-\mathrm{F}-\mathrm{Man} \mathrm{\alpha OMe}$ was measured in absence of the lectin, and Equation 2 was used to estimate K_{D} and $[R]_{2, b}$ for the complex (Figure S1, b)).

Then, K_{I} of compounds $\mathbf{1}, \mathbf{1 b}-\mathbf{d}, \mathbf{2}$ and $\mathbf{3}$ was measured in a competitive manner. $R_{2, o b s}$ of 6-FManaOMe (spy molecule) in solution with DC-SIGN ECD was monitored at 5 different competitor concentrations ($[I]$) in each case with a fixed $[P]_{T} /[L]_{T}$ ratio (Figure S1, c)), to derive K_{I} by fitting to Equation 2 with p_{b} as defined in Equations (4) and (5) (Table 2):

$$
\begin{gather*}
p_{b}=\frac{2 \cos (\theta / 3) \sqrt{a^{2}-3 b}-a}{3 K_{D}+2 \cos (\theta / 3) \sqrt{a^{2}-3 b}-a} \tag{4}\\
\theta=\cos ^{-1}\left(\frac{-2 a^{3}+9 a b-27 c}{2 \sqrt{\left(a^{2}-3 b\right)^{3}}}\right), a=K_{D}+K_{I}+[L]_{T}+[I]_{T}-[P]_{T}, \tag{5}\\
b=\left([I]_{T}-[P]_{T}\right) K_{D}+\left([L]_{T}-[P]_{T}\right) K_{D}+K_{I} K_{D}, c=-K_{I} K_{D}[P]_{T}
\end{gather*}
$$

Figure S1. ${ }^{19} \mathrm{~F}-\mathrm{R}_{2}$ filtered experiments. a) Relaxation dispersion experiment for 6 - $\mathrm{F}-\mathrm{Man} \mathrm{\alpha OMe}$ (the spy molecule). $\mathrm{R}_{2, \text { obs }}$ of the ${ }^{19} \mathrm{~F}$ nucleus is measured for different values of $\omega_{\text {CPMG. }}$. Ligand and protein sample concentrations were: [6-F-Man α OMe] $=400 \mu \mathrm{M}$, [DC-SIGN (CRDs)] $=10 \mu \mathrm{M}$ (counting concentration of CRDs, i.e, 4 CRDs per DC-SIGN ECD tetramer). For $\omega_{\text {CPMG }}>1000 \mathrm{~s}^{-1}$, there is virtually negligible exchange contribution to R_{2}. Therefore, all the subsequent R_{2} filtered experiments were carried out with tCPMG $=$ $1 / \omega_{\text {CPMG }}=1 \mathrm{~ms}$. b) KD determination of $6-$ F-Man α OMe with DC-SIGN. R2,obs was measured for increasing amounts of [6-F-Man $\alpha \mathrm{OMe}$]/[DC-SIGN (CRDs)] (blue dots). Kd and $\mathrm{R}_{2, \mathrm{~b}}$ were obtained from fitting to Equation 2, which is valid in the fast-exchange regime $\left(R_{e x}=0\right)$ [39a]. The predicted values at each [6-FMan $\alpha \mathrm{OMe}] /[\mathrm{DC}-\mathrm{SIGN}$ (CRDs)] are shown as red stars for comparison c) Titration curves showing the variation in ${ }^{19} \mathrm{~F}-\mathrm{R}_{2}$,obs of the spy molecule $6-\mathrm{F}-\mathrm{Man} \alpha \mathrm{OMe}$, when increasing amounts of the competitors (I) $\mathbf{1 , 1 b} \mathbf{d}, \mathbf{2}$ and $\mathbf{3}$ are added to a mixture $[6-\mathrm{F}-\mathrm{Man} \alpha \mathrm{OMe}]=400 \mu \mathrm{M},[$ DC-SIGN $($ CRDs $)]=10 \mu \mathrm{M}$.

MD simulations

Figure S2. Conformational maps. Density of conformers populations around ϕ / ψ torsion angles computed for $\mathbf{1}$ and $\mathbf{1 b}$ during a 500 ns MD simulation in explicit TIP3P water. ϕ and ψ torsion angles are defined as $05(i)-\mathrm{C1}(i)-\mathrm{On}(i-1)-\mathrm{Cn}(i-1)$ and $\mathrm{C1}(i)-\mathrm{On}(i-1)-\mathrm{Cn}(i-1)-\mathrm{C}(n-1)(i-1)$ respectively, where n indicates ring position and i a given residue. For 1b, the GLYCAM $06-j$ [40] forcefield was employed, whereas GAFF2 [44] was used for 1. The MD protocol in both simulations is described in the Materials and Methods section. The maps are fairly similar, independently of the employed force field.

Figure S3. Selected MD frames: Representative optimized structures of each proposed binding mode for $\mathbf{1 , 2}$ and $\mathbf{3}$ in complex with DC-SIGN after system minimization of the first MD replica.

Ligand 1
Association Time (ns)

Ligand 2
Association Time (ns)

Ligand 3

Figure S4. MD derived complexes association times: Box plot representation of association times observed in the MD simulations of the different ligand-protein complexes. The number of MD replicas ran in each case varies from 6 to 12 , depending on the variability observed. Outliers are represented as red dots.

Figure S5. Ligand-protein interactions: Significant ligand-protein interactions computed during the MD replicas. The fraction axis shows the percentage of the simulation time that the interaction is found.

Hydrogen-bonds are accounted from the MD trajectories based on distance and angle criteria: d_(A-H-D) $<3 \AA$ and ($A-H-D)^{\prime}<130^{\circ}$, where H refers to the coordinates of the hydrogen atom, D and A the hydrogen bond donor and acceptor respectively. Similarly, CH-Pi interactions are accounted by the distance of the aromatic ring-center to the hydrogen atom involved in the interaction according to d_(Ring-H) < 3 A., as well as the $\mathrm{C} / \mathrm{H} /$ Ring-center angle ($\mathrm{C}-\mathrm{H}$-Ring) $\gg 120^{\circ}$. Van der Waals interactions are considered when the interatomic distance of the atoms involved is lower than 1.2 times the sum of the VdW radii of the atoms.

Figure S6. Ligand-protein interactions for ligand 1b: Significant ligand-protein interactions computed during the MD of DC-SIGN bound to 1b via Manl_O3-O4. All interactions are accounted in the same way as described in Figure S5

b)

Figure S7. Conformational population comparisons: Comparison the populations around ϕ / ψ torsion angles (a)) and the RMSD (b)) of the ligands computed in a 500 ns MD simulation of $\mathbf{1}$ and $\mathbf{1 b}$ bound via Manl_O3-O4 to DC-SIGN. It can be observed the larger mobility of the glycomimetic $\mathbf{1}$ with respect to the natural trimannose $\mathbf{1 b}$ at the binding site when bound through the same pose.

CORCEMA-ST

The CORCEMA-ST script was ran sequentially for 400-800 frames extracted from each MD simulation trajectory. The same experimental parameters employed in the STD-NMR experiments were used in the calculations: [DC-SIGN] $=9.14 \mathrm{uM}$, [Ligand] $=1.4 \mathrm{mM}, 2 \mathrm{~s}$ saturation time. Different $k_{\text {on }}$ values in the range of $10^{5}-10^{8} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ and $\mathrm{K}_{D} 0.5-3 \mathrm{mM}$ were tested with all the complexes, giving rise to very similar normalized calculated STD profiles. Thus, a kon of $10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, of the same order of other sugar-lectin systems [1,2], was used for all the models. K_{D} was set to 1 mM , similar to the observed K_{D} of other Man derivatives in complex with DCSIGN [3-5]. An instantaneous irradiation of the aliphatic receptor residues Ile, Leu, and Val methylgroups to account for the selective on-resonance irradiation of the STD-NMR experiment, 0.85 ppm , was used. The size of the relaxation matrix was adjusted using a distance cutoff, d, of 10 Å away from any ligand atom, since virtually the same STD profiles were obtained for larger values, while some differences appeared when $d<10 \AA$. The value of the order parameter S^{2} and the methyl group internal correlation time τ_{m} were set to 0.85 and 10 ps respectively, as previously described [6]. A typical value for the free ligand correlation time $\tau_{L}=0.5 \mathrm{~ns}$ was used, whereas for the bound ligand a correlation time assuming a tetrameric protein of globular shape was estimated as $\tau_{b}=85 \mathrm{~ns}$.

Since CORCEMA-ST does not recognize ${ }^{19} \mathrm{~F}$ as an active nucleus in the relaxation matrix, the effect of the presence of an active nuclei at position C-2 in the $2-\mathrm{F}$ compounds $\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$, was assessed by substituting all fluorine atoms by hydrogens in each analogue, while keeping the original C-F distance. Then, CORCEMA-ST calculations were ran with the same parameters described in the previous paragraph. This way, the ${ }^{1} \mathrm{H}$ nucleus is used as a probe to simulate the most pronounced expectable effect (since it can give rise to homonuclear cross-relaxation) on the observed STD signals. Remarkably, it was found that the predicted best fitting models with $B M$-Mixer are in general unaffected by the presence of the active nucleus at C-2 for the three ligands (see Table S3).

Best-model STD fitting

BM-Mixer is able to find the best combination of frames (in \%) from different MD trajectories explaining the experimental STD-NMR data. For the program to work properly, it is important to use a list of experimental STDs only containing reliable assigned peaks. In this work, we used the list provided in Table 1 in the main text, with the exception of compound 3. For compound 3, the experimental STD cross peak observed for Man III at 3.7 ppm could correspond to $\mathrm{H}-3, \mathrm{H}-4$, H-5 or H-6'. As accounting the measured STD intensity as the sum of the individual contribution from four H atom would potentially introduce noise in the search (see CORCEMA-ST and bestmodel STD fitting heading in the experimental section), the corresponding STD peak was not taken into account in the search for best-model fitting showed in Figure 4 and Table S2.

There are two main parameters that must be set in a BM-Mixer run: mix_leap and search_iterator. mix_leap defines the minimum percentage of frames to be used from each trajectory to explore the different combinations. For example, setting mix_leap = 5 allows the program to combine frames from different trajectories using a minimum of 5% of the frames. Although it depends on the number of frames and binding modes (trajectories) to work with, typically a value of mix_leap = 10 is sufficient to get accurate enough results (according to NOE R-Factor $r_{\text {Rel }}$) in a decent amount of time. search_iterator specify how many times the program is run before computing the final NOE R-Factor ${ }_{\text {Rel }}$ averages. Every time a new iteration start (when
search_iterator > 1), the frames used in each combination are randomly selected, so that the larger the value of search_iterator, the better sampling of the trajectory-space is done. In general, we have found that for the studied systems, when using 400-800 frames of each binding mode trajectory, best NOE R-Factor ${ }_{\text {Rel }}$ averages are similar when setting search_iterator >15.

Table S1. Best-model STD fitting by BM-Mixer: Top 3 best-model STD fitting results for each ligand, found by BM-Mixer. For ligands 1 and 3, 800 frames from each simulated binding mode were used in the calculations, while 400 frames were employed for 2. mix_leap was set to 10 for ligands $\mathbf{1}$ and $\mathbf{3}$, and to 5 for 2; a search_iterator of 30 was used in all cases.

Ligand 1				
Manl_03-04 (\%)	Manl_O4-O3 (\%)	Manll_O3-04 (\%)	Manll_O4-O3 (\%)	NOE R-Factorrel
60	0	0	40	0.2010
50	0	0	50	0.2201
40	0	10	50	0.2238
Ligand 2				
Manl_O3-O4 (\%)		Manl_O4-03 (\%)	NOE R-Factor ${ }_{\text {Rel }}$	
65		35	0.1380	
60		40	0.1396	
70		30	0.1575	
Ligand 3				
Manll_O3-04 (\%)	Manll_O4	3 (\%) Manil	03-04 (\%)	NOE R-FactorRel
50	10		40	0.1470
50	0		50	0.1482
40	10		50	0.1496

Table S3. Best-model STD fitting by BM-Mixer with non-fluorinated control Top 3 best-model STD fitting results found by BM-Mixer for each ligand-control CORCEMA-ST calculated STD. Ligand-controls were built by substituting all fluorine atoms in the MD trajectories by hydrogens, and then computing CORCEMA-ST on those. The same BM-Mixer set up described in Table S2 was used.

Ligand 1				
Manl_O3-04 (\%)	Manl_O4-O3 (\%)	Manll_O3-04 (\%)	Manll_O4-03 (\%)	NOE R-Factor ${ }_{\text {Rel }}$
60	0	0	40	0.2143
40	0	10	50	0.2212
40	0	10	50	0.2368
Ligand 2				
Manl_O3-04 (\%)		Manl_O4-O3 (\%)	NO	R-Factorrel
70		30		0.1467
65		35		0.1538
75		25		0.1681
Ligand 3				
Manll_O3-04 (\%)	Manll_O4-O3 (\%) Manl		O3-04 (\%)	NOE R-Factor ${ }_{\text {Rel }}$
50	0		50	0.1555
40	10		50	0.1645
50	10		40	0.1654

References

1. Scharenberg, M.; Jiang, X.; Pang, L.; Navarra, G.; Rabbani, S.; Binder, F.; Schwardt, O.; Ernst, B. Kinetic properties of carbohydrate-lectin interactions: FimH antagonists. ChemMedChem 2014, 9, 78-83.
2. Milton, J.D.; Fernig, D.G.; Rhodes, J.M. Use of a biosensor to determine the binding kinetics of five lectins for Galactosyl-N-acetylgalactosamine. Glycoconj. J. 2001, 18, 565-569.
3. Holla, A.; Skerra, A. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. Protein Eng. Des. Sel. 2011, 24, 659-669.
4. Bordoni, V.; Porkolab, V.; Sattin, S.; Thépaut, M.; Frau, I.; Favero, L.; Crotti, P.; Bernardi, A.; Fieschi, F.; Di Bussolo, V. Stereoselective innovative synthesis and biological evaluation of new real carba analogues of minimal epitope Man $\alpha(1,2)$ Man as DC-SIGN inhibitors. RSC Adv. 2016, 6, 89578-89584.
5. Reina, J.J.; Sattin, S.; Invernizzi, D.; Mari, S.; Martinez-Prats, L.; Tabarani, G.; Fieschi, F.; Delgado, R.; Nieto, P.M.; Rojo, J.; et al. 1,2-mannobioside mimic: Synthesis, DC-SIGN interaction by NMR and docking, and antiviral activity. ChemMedChem 2007, 2, 1030-1036.
6. Jayalakshmi, V.; Krishna. N.R. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes. J. Magn. Reson. 2002, 155, 106-118.
