SUPPORTING INFORMATION

Mantonico and Pecorello grape seed extracts: chemical characterization and evaluation of *in vitro* wound-healing and anti-inflammatory activities

Gabriele Carullo¹, Fabio Sciubba², Paolo Governa³, Sarah Mazzotta^{1,4}, Luca Frattaruolo¹, Giorgio Grillo⁵, Anna Rita Cappello¹, Giancarlo Cravotto⁵, Maria Enrica Di Cocco² and Francesca Aiello^{1,*}

- ¹ Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Edificio Polifunzionale, 87036, Rende (CS), Italy.
- ² Department of Chemistry, University "La Sapienza" Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
- ³ Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
- ⁴ Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, C/O Prof. Garcia Gonzalez, 41071, Seville, Spain.
- ⁵ Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
- * Correspondence: <u>francesca.aiello@unical.it</u>; Tel.: +39 0984 493154

INDEX

Figure S1. Monodimensional 1H spectrum of CM

Figure S2. Bidimensional 1H-1H TOCSY spectrum of CM

Figure S3. Bidimensional ¹H-¹³C HSQC spectrum of CM

Figure S4. Monodimensional ¹H spectrum of CP

Figure S5. Monodimensional ¹H spectrum of HM

Figure S6. Monodimensional ¹H spectrum of HP

Figure S7. Bidimensional 1H-1H TOCSY spectrum of HP

Figure S8. Bidimensional ¹H-¹³C HSQC spectrum of HP

Table S1. Table of resonance assignments

Figure S9. GC-MS qualitative analysis for CM extract

Table S2. Identification of CM peaks

Figure S10. GC-MS qualitative analysis for CP extract

Table S3. Identification of CP peaks

Figure S11. GC-MS qualitative analysis for HM extract

Table S4. Identification of HM peaks

Figure S12. GC-MS qualitative analyses for HP extract

Table S5. Identification of HP peaks

Figure S13. HaCaT cell viability assay

Figure S1. Monodimensional ¹H spectrum of CM

Figure S3. Bidimensional ¹H-¹³C HSQC spectrum of CM

Figure S4. Monodimensional ¹H spectrum of CP

Figure S5. Monodimensional ¹H spectrum of HM

Figure S6. Monodimensional ¹H spectrum of HP

Figure S7. Bidimensional ¹H-¹H TOCSY spectrum of HP

Figure S8. Bidimensional ¹H-¹³C HSQC spectrum of HP

Table S1. Table of resonance assignments

Compound ¹	Assignment ²	¹ H δ (ppm)	Multiplicity ³	¹³ C δ (ppm)
	CH ₃	0.87	t	14.05
	n-CH ₂	1.26	m	29.32
Stearic acid	C <u>H</u> 2-CH2-CO2 ⁻	1.62	m	24.61
	CH2-CO2-	2.30	t	33.52
	CH ₃	0.88	t	14.07
	n-CH ₂	1.27	m	29.35
	CH2-CH=CH	2.03	m	27.14
Oferc acid	CH=CH	CH=CH 5.35 m		129.84; 127.43
	C <u>H</u> 2-CH2-CO2 ⁻	1.62	m	24.61
	CH ₂ -CO ₂ -	2.31	t	33.96
	CH ₃	0.86	t	14.06
	n-CH ₂	1.36	m	29.37
	С <u>Н</u> 2-СН=СН	2.04	m	29.45
Linoleic acid	CH=CH	5.37	m	130.29; 128.45
	=CH-C <u>H</u> 2-CH=	2.76	t	25.68
	C <u>H</u> 2-CH2-CO2 ⁻	2.06	m	24.75
	CH ₂ -CO ₂ -	2.31	t	34.05
	CH2	3.65-3,55	dd	65.45
Monoacylglycerol	CH ₂	4.05-4.15	dd	70.32
	СН	3.82	m	75.12
Trialmonida	СН	5.13-5.21	m	77.45
Ingrycende	2 CH ₂	4.15 -4.29	dd	68.23
	CH2-1	0.85	t	45.4
	CH2-2	1.44	m	24.5
	CH-3	3.60	m	76.7
	CH-5	0.66	m	54.6
Oleanoic acid	CH2-6	1.30	m	28.8
	CH2-7	1.63	m	28.9
	CH-9	1.44	m	46.8
	CH2-11	1.82	d	22.6
	CH-12	5.16	bs	121.4

	CH2-16	1.63	m	24.5
	CH2-17	1.44	m	24.5
	CH-18	2.76	m	34.2
	CH-19	1.63	m	45.8
	CH2-21	1.30	m	13.8
	CH2-22	1.44	m	29.3
	CH3-23,24	0,87	t	11.4
	CH3-25,26	0.66	m	13.8
	CH3-27	1.10	m	25.4
	CH3-29	0.87	t	31.8
	CH3-30	0.87	t	22.5
	CH2-2,2′	1.47	m	39.62
	CH2-3,3'	1.62	m	19.27
	CH2-4,4′	2.02	m	33.18
	CH-7,7′	6.15	d	126.68
	CH-8,8'	6.14	d	137.78
	CH-10,10′	6.14	d	130.88
Carotenoids	CH-11,11′	6.68	m	125.04
	CH-12,12′	6.35	d	137.26
	CH-14,14'	6.25	d	132.45
	CH-15,15′	6.63	m	130.02
	CH3-16,16',17,17'	1.03	S	29.01
	CH3-18,18'	1.72	S	21.77
	CH ₃ -19,19′	1.97	S	12.81
Phenols	Aromatic moieties	6.8-7.0	m	130-140
Aldehydes	СНО	9.76	bs	204.01

¹ Metabolites identified in the ¹H NMR spectrum of the chloroform (C) and hexane (H) extracts of marcs; ²In bold are evidenced the resonances chosen for metabolite quantification; ³ s: singlet, bs: broad singlet, d: doublet, t: triplet, dd: doublet of doublets, m: multiplet.

Figure S9. GC-MS qualitative analysis for CM extract

Table S2. Identification of CM peaks

RT	Area%	Library/ID	Quality
7.890	12,45	2-Heptenal, (E)-	83
13.769	9,17	2,4-Decadienal, (E,E)-	91
13.997	13,43	2,4 DECADIENAL	97
18.071	5,10	Hexadecanoic acid	96
18.570	0,86	Hexadecanoic acid	90
19.227	42,50	9,12-Octadecadienoic acid (Z,Z)-	99
19.385	11,22	Octadecanoic acid	91
19.543	2,38	9,12-Octadecadienoic acid (Z,Z)-	90
21.085	2,91	LINOLEIC ACID, BUTYL ESTER	80
Total Identification:		73,32%	

Figure S10. GC-MS qualitative analysis for CP extract

Table S3. Identification of CP peaks

RT	Area%	Library/ID	Quality
7.881	12,59	2-Heptenal, (E)-	96
8.398	2,09	1 OCTEN 3 OL	90
10.106	1,58	2 OCTENAL	90
10.650	1,58	Hexane, 1,1-diethoxy-	90
13.419	5,01	2-Decenal, (E)- (CAS) \$\$ trans-2-D	87
13.769	10,21	2,4-Decadienal, (E,E)-	91
13.997	15,59	2,4-Decadienal, (E,E)-	94
14.969	0,90	Cycloheptasiloxane, tetradecamethyl-	86
17.572	0,51	Phthalic acid, isobutyl nonyl ester	86
17.659	0,53	Eicosamethylcyclodecasiloxane	90
18.071	5,58	Hexadecanoic acid	98
18.264	0,98	Tetradecanoic acid, ethyl ester	90
18.571	0,50	Hexadecanoic acid	90
19.228	31,19	9,12-Octadecadienoic acid (Z,Z)-	97
19.385	9,87	Linoleic acid ethyl ester	99
19.561	1,31	9,12-Octadecadienoic acid (Z,Z)-	97
Total Identification:		74,26 %	

Figure S11. GC-MS qualitative analysis for HM extract

RT	Area%	Library/ID	Quality
7.907	12,45	2-Heptenal, (E)-	96
10.650	5,27	Hexane, 1,1-diethoxy-	91
13.427	4,02	2-Decenal, (Z)-	86
13.769	5,95	2,4-Decadienal	91
14.005	9,76	2,4 DECADIENAL	97
16.941	3,31	1-Octanamine, N-methyl-N-octyl-	80
17.572	2,19	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	90
18.071	3,96	Hexadecanoic acid	91
18.570	2,07	Hexadecanoic acid	93
19.219	6,59	9,12-Octadecadienoic acid (Z,Z)-	98
19.245	14,09	9-Octadecenoic acid (Z)-	95
19.385	7,58	Octadecanoic acid	92
19.639	5,92	9,12-Octadecadienoic acid (Z,Z)-	98
19.797	1,69	Octadecanoic acid	81
20.156	2,13	1-Octanamine, N,N-dioctyl-	86
21.103	2,50	7,12-dioxobenzo[k]fluoranthene	86
21.155	2,53	Octadecane	97
22.031	5,57	Eicosane	95
22.689	2,41	13-Hexacosyne	80
Fotal Identification:		70.73 %	

Table S4. Identification of HM peaks

Figure S12. GC-MS qualitative analyses for HP extract

RT	Area%	Library/ID	Quality
7.890	4,53	2-Heptenal, (E)-	90
10.124	0,59	2-Octenal, (E)-	90
10.650	1,18	Hexane, 1,1-diethoxy-	91
13.418	1,48	2-Decenal, (E)-	80
13.769	5,83	2,4-Decadienal, (E,E)-	91
13.997	10,37	2,4 DECADIENAL	97
14.382	0,93	E-2-dodecenal	80
17.572	0,53	1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester	86
18.071	8,03	Hexadecanoic acid	99
18.264	0,89	Hexadecanoic acid, ethyl ester	99
18.570	0,52	Hexadecanoic acid	93
19.228	49,60	9,12-Octadecadienoic acid (Z,Z)-	99
19.385	12,30	9,12-Octadecadienoic acid, ethyl ester	97
19.552	1,54	9,12-Octadecadienoic acid (Z,Z)-	93
19.639	1,20	9,12-Octadecadienoic acid (Z,Z)-	86
21.611	0,48	Eicosane	93
Total Identification:		81.07%	

Table S5. Identification of HP peaks

Figure S13. HaCaT cell viability assay