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Abstract: Recently, we reported on potent EphA2 targeting compounds and demonstrated that dimeric
versions of such agents can exhibit remarkably increased agonistic activity in cellular assays compared
to the monomers. Here we further characterize the activity of dimeric compounds at the structural,
biochemical, and cellular level. In particular, we propose a structural model for the mechanism
of receptor activation by dimeric agents and characterize the effect of most potent compounds in
inducing EphA2 activation and degradation in a pancreatic cancer cell line. These cellular studies
indicate that the pro-migratory effects induced by the receptor can be reversed in EphA2 knockout
cells, by treatment with either a dimeric natural ligand (ephrinA1-Fc), or by our synthetic agonistic
dimers. Based on these data we conclude that the proposed agents hold great potential as possible
therapeutics in combination with standard of care, where these could help suppressing a major driver
for cell migration and tumor metastases. Finally, we also found that, similar to ephrinA1-Fc, dimeric
agents cause a sustained internalization of the EphA2 receptor, hence, with proper derivatizations,
these could also be used to deliver chemotherapy selectively to pancreatic tumors.

Keywords: EphA2; agonistic EphA2 peptides; 135H12; cell migration; pancreatic cancer; drug discovery;
targeted delivery

1. Introduction

Pancreatic cancer is an extremely aggressive and deadly disease, which accounts for about
3% of all cancers in the United States and about 7% of all cancer deaths. It is estimated
that in 2020 about 57,600 people (30,400 men and 27,200 women) will be diagnosed with
pancreatic cancer and that 47,050 people (24,640 men and 22,410 women) will die of pancreatic
cancer, (https://www.cancer.org/cancer/pancreatic-cancer/about/key-statistics.html). Unfortunately,
most pancreatic cancers develop resistance to chemotherapy and radiation. Current therapeutic
strategies include treatment with 4-drugs: fluorouracil, leucovorin, irinotecan and oxaliplatin [1],
gemcitabine or, more recently, gemcitabine plus abraxane (nanoparticle albumin-bound paclitaxel) [2].
While these treatments have significant effect on patients’ overall survival, their therapeutic impact
remains modest [3,4].

Unlike general chemotherapy, targeted therapies focus on attacking cancer-specific pathways
that contribute to cell proliferations, suppression of apoptosis, or cell migration, all contributing to
the aggressiveness of pancreatic cancer. One such emerging family of targets are the Eph receptors.
Eph receptor tyrosine kinases are involved in a variety of cell–cell interactions, communicating via
their ligands (the ephrins) [5–20]. In cancer, the unbound EphA2 subtype is pro-oncogenic, promoting
angiogenesis and cell migration. In pancreatic cancer, EphA2 expression is dramatically inversely
correlated with survival [9,21], and the detection of EphA2 fragments in plasma has been recently
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proposed as a new possible diagnostic approach to anticipate the aggressiveness of pancreatic cancer
in patients [22]. More recent studies, underlined the role of EphA2 in driving therapy-resistant
pancreatic adenocarcinomas, suggesting that EphA2 targeting agents should be developed and used in
combination with current therapeutics [23]. In addition, our recent studies in a variety of pancreatic
cancer cell lines, or primary pancreatic cancer tissues, revealed elevated EphA2 levels [24]. Activation
of the receptor by its ligands (the ephrins) or by synthetic agonistic peptides, cause its internalization
of the receptor, followed by its lysosomal degradation [25]. Hence agonistic peptides could be used to
reduce EphA2 levels or, when properly conjugated with cytotoxic agents, could serve as peptide–drug
conjugates to deliver chemotherapy to EphA2 expressing tumors [24–29]. For example, we previously
demonstrated that earlier EphA2 targeting agonistic agents conjugated with gemcitabine had superior
efficacy compared to gemcitabine alone in mice models of pancreatic cancer [24]. We subsequently
demonstrated that dimeric versions of these agents possessed dramatically increased cellular efficacy
in causing receptor activation, internalization, and degradation [26]. Very recently, we developed novel
and more potent synthetic agents, which target the EphA2-LBD (ligand binding domain) at nanomolar
concentrations, as corroborated by robust biophysical methods, including X-ray crystallography,
and isothermal titration calorimetry (ITC), and biochemical data [30]. Here we focused on further
investigating dimeric versions of these agonistic agents in pancreatic cancer cells, compared to a dimeric
natural ligand (ephrinA1-Fc) and to EphA2 knockout cells.

2. Results and Discussion

2.1. Synthesis and Characterization of Dimeric and Tetrameric 12-Mers Targeting the EphA2-LBD

Recently, we reported that dimerization of EphA2 binding 12-mer peptides resulted in agents
with dramatically increased agonistic activity in cell, presumably by catalyzing receptor dimerization
and subsequent clustering [26,30]. In an attempt to further investigate the basis for this increased
activity we prepared a variety of 12 mers and related dimeric and tetrameric agents as reported
in Table 1. The synthesis of all agents followed the general solid phase strategies as we recently
reported [30]. Dimeric agents were obtained likewise by a solid-phase synthetic scheme that introduced
an additional Lys residue as the terminal amino acid, which allowed coupling of the C-terminus of
each of two monomers onto its backbone and side chain amines, respectively (Table 1). Similarly,
we also prepared a tetrameric agent by introducing an additional Lys-Lys di-peptide at the C-terminus
of a dimer, which allowed two dimers to be conjugated into a tetramer (Table 1). To further investigate
the effect of the linker length on the activity of the resulting dimers, we also introduced Gly, β-Ala,
or γ-aminobutyric acid (GABA) at the C-terminus of the 12-mers, hence, prior to the terminal Lys
residue used for the dimerization (Table 1). To characterize the binding properties of these novel
agents, we adopted our recently developed dissociation-enhanced lanthanide fluorescent immunoassay
(DELFIA) [30], where a biotinylated EphA2 binding peptide (123B9, Table 1) was prepared and used
as bait in streptavidin-coated 96-well plates. Subsequently, recombinant 6xHis-EphA2-LBD and
fluorescent europium-conjugated anti-6xHis antibody were added to each well. After a brief incubation
time of the complex and a given test agent, followed by washing steps, residual fluorescence was
measured. Dose response measurements were subsequently carried out to assess the ability of any
given test compound to displace 123B9 from EphA2-LBD [30]. We showed that this assay is highly
reproducible and produces data that align very well with both previously reported ELISA-based
IC50 values, and isothermal titration calorimetry binding data [30]. Hence, using the DELFIA assay,
IC50 values for each agent were obtained by dose-response displacement measurements and reported
in Table 1.
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Table 1. Sequences of 12-mers and their respective dimers cited in the manuscript. IC50 values
(µM) were derived from the dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA)
assay. Reported standard errors represent number of experiments in with each having
duplicate measurements. Hyp = trans 4-hydroxy-l-proline; Nle = l-norleucine; Hsr = l-homoserine;
GABA = γ-aminobutyric acid.

ID Sequence IC50 (nM) (DELFIA)

123B9 (4F,3ClPhOCH2CO)SAYPDSVP(Nle)(Hsr)S-CONH2 6500 ± 1700, n = 2

YSA H2N-YSAYPDSVPMMS-CONH2 16200 ± 800, n = 14

135B12 H2N-YSAYPDSVPFRP-CONH2 1600 ± 200, n = 16

135C11
(dimer of 135B12) (H2N-YSAYPDSVPFRPG)2-K-CONH2 700 ± 100, n = 4

135C12
(dimer of 135B12) (H2N-YSAYPDSVPFRP-βAla)2-K-CONH2 300 ± 100, n = 3

135D1
(dimer of 135B12) (H2N-YSAYPDSVPFRP-GABA)2-K-CONH2 400 ± 200, n = 3

135E2 (4F,3Cl-PhOCH2CO)SAYPDSVPFRP-CONH2 3100 ± 600, n = 3

135G3 (4F,3Cl-PhOCH2CO)SAYPDSV(Hyp)(4Cl-Phe)RP-CONH2 600 ± 100, n = 6

135G4
(dimer of 135G3) ((4F,3Cl-PhOCH2CO)SAYPDSV(Hyp)(4Cl-Phe)RPG)2-K-CONH2 130 ± 2 n = 1

135H11 (3-CH3,6,7-OCH3,Benzofuranoic acid)LA(4-CH3-Tyr)PDA
V(Hyp)(4Cl-Phe)RP-CONH2

130 ± 1, n = 4

135H12
(dimer of 135H11)

((3-CH3,6,7-OCH3,Benzofuranoic
acid)LA(4-CH3-Tyr)PDAV(Hyp)(4Cl-Phe) RPG)2-K-CONH2

150 ± 60, n = 3

135I1
(tetramer of 135H11)

{[(3-CH3,6,7-OCH3,Benzofuranoic
acid)LA(4-CH3-Tyr)PDAV(Hyp)(4Cl-Phe)RPG]2-K-K}2-K-CONH2

60 ± 10, n = 2

Our previous optimizations studies started by analyzing the binding properties and sequences of
YSA and ephrins-derived peptides [30]. These studies culminated with lead agent 135B12 (Table 1),
which presented a significantly increased affinity for the receptor compared to YSA. Based on our
previous experience with dimeric agents [26], we subsequently derived dimeric versions of 135B12
with various linker lengths (agents 135C11, 135C12, and 135D1) [30]. We also previously found that the
stability of these peptides in plasma is limited, mostly because of aminopeptidases that can efficiently
cleave the first amino acid [28]. However, we could dramatically improve plasma stability of these agents
by replacing the N-terminal Tyr residue with bioisosters, such as the 2-(3-chloro-4-fluorophenoxy)acetic
acid (included in agents 123B9 [27], and 135E2 [30]). We subsequently solved the X-ray structure
of 135E2 in complex with EphA2-LBD [30] that allowed us to fine tune the composition of some of
the side chains of this agent, leading first to agent 135G3 (and its dimer version 135G4) (Table 1),
and subsequently to agent 135H11 in which the N-terminal residue was further optimized into
a 3-CH3,6,7-OCH3,benzofuranoic acid (Table 1) [30]. Agents 135H12 and 135I1 are, respectively,
the dimer and the tetramer version of 135H11 (Table 1). We did not expect that dimers would display
dramatically increased affinities compared with their monomers for the isolated EphA2-LBD [26,30].
Nonetheless, some noticeable increased affinities (decreased IC50 values) were observed for some
dimers and for the tetramer (Table 1). However, because we are interested ultimately in their ability
to act as agonistic agents, we deferred rank ordering these multimeric agents to cell-based assays as
reported in the sections below.

2.2. Dimeric Agents May Promote Dimerization of EphA2-LBD

Our attempts to co-crystallize dimeric agents with EphA2-LBD have thus far been unsuccessful.
However, we were recently able to derive for the first time the X-ray structure of an agonistic peptide
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agent (135E2, Table 1) in complex with EphA2-LBD (PDB ID 6B9L) [30]. The structure of ephrinA5
bound to EphA2-ectodomain has also been reported (PDB ID 3MX0) [31] (Figure 1a). Interestingly, the
dimeric biological unit of 135E2 in complex with EphA2-LBD is nearly identical to the same dimeric
arrangement found in the structure of the EphA2 ectodomain in complex with ephrinA1 (Figure 1).
Hence, by simply fixing the geometry of this dimer and that of the crystallographic bound conformation
of 135E2, we modeled dimeric 135H12 (Table 1) into the monomers (Figure 1b). After building the
structure, the complex was energy-minimized, resulting in a minimal rearrangement of the receptor
side chains and of the bound peptide with respect to the original experimental crystallographic
structure. Interestingly, in this model the linker between two of the 12-mers is threaded through a flat
narrow channel created by the interface between the two EphA2 monomers, and capped by EphA2
residue Tyr48 (one from each monomer, Figure 1c). In this model, similar to the dimer observed within
the complex with ephrinA1 (Figure 1a), there seem to be only relatively limited contacts between the
monomers. Interestingly, the space occupied by the linker is similar to the space occupied by a biotin
moiety as recently reported in using a biotinylated YSA [32] (Table 1) peptide, that resulted more
potent than the non-biotinylated agent [33].
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Figure 1. Molecular models of EphA2-LBD in complex with its agonistic agents. (a) Front view and top
view of the molecular models representing the biological dimeric unit of EphA2-LBD (red and blue),
in complex with ephrinA5 (yellow) (PDB ID 3MX0). (b) Front view and top view of the molecular
model of 135H12 (yellow; Table 1) in complex with EphA2-LBD (red and blue). The model was build
based on the dimeric biological unit of EphA2-LBD in complex with 135E2 (Table 1; PDB ID 6B9L).
(c) Molecular surface representation of the models shown in (b) generated with MOLCAD (Sybyl-X
1.2). 135H12 surface is in magenta, while the surface for EphA2-LBD dimer is color coded according to
hydrophobicity (MOLCAD). The position of residue Tyr48, at the bridge between the two monomer,
is highlighted.

As mentioned above, our attempts to crystallize dimeric agents in complex with EphA2-LBD have
thus far failed. However, we could express and purify 15N-labeled EphA2-LBD and have conducted
comparative NMR experiments with monomers and dimers (Figure 2). 2D [15N,1H]-sofast HSQC NMR
experiments were performed in presence and absence of stoichiometric amounts of monomer 135G3
or its dimer 135G4 (Table 1). Large changes in chemical shifts for several amide proton and nitrogen
resonances were observed in the 2D [15N,1H]-sofast HSQC for each complex (Figure 2a,b), typical
of potent and specific binding, as we recently reported [30]. However, comparison of the spectra of
each complex revealed a differential line broadening of several resonances in the complex with 135G4
(dimer) versus the complex with 135G3 (monomer) (Figure 2c). These changes suggest that either
chemical exchange (for example from monomer to dimer) and/or increased nuclear spin relaxation due



Pharmaceuticals 2020, 13, 90 5 of 13

to dimer formation and slower rotational correlation times of the complex are taking place, given that
both events could contribute to the observed line broadening. While the line broadening is widespread,
some resonances seem more affected and presented differences in chemical shifts. Unfortunately,
the resonance assignments for EphA2-LBD are not available, but we speculate that these localized
changes may reflect the formation, perhaps transiently, of the dimer interface. Hence, our modeling
studies, based on the experimental structures of the monomers, and NMR data comparing monomers
versus dimers binding suggests that, at the least transiently, the dimeric agents can favor dimer
formation that could explain the dramatically increased agonistic activity in cellular assays of the
dimers versus the monomers as illustrated below.
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Figure 2. 2D NMR [15N,1H] spectra with 15N-labeled EphA2-LBD. (a) Superposition of 2D NMR
spectra of EphA2-LBD (20 µM), recorded in absence (blue) and presence (red) of 135G3 (20 µM).
(b) Superposition of 2D NMR spectra of EphA2-LBD (20 µM), recorded in absence (blue) and presence
(red) of 135G4. (c) Superposition of 2D NMR spectra of EphA2-LBD (20 µM), recorded in presence of
135G3 (blue) or in presence of 135G4 (red).

2.3. Dimeric and Tetrameric Compounds Are Potent Agonists of EphA2 Signaling

In order to evaluate the ability of each agent to activate the receptor, we tested them in various
cellular assays as reported below. Because receptor activation causes its internalization and degradation,
we opted to monitor the ability of each agent to reduce EphA2 levels over time, after exposure of cells
to test ligands. As control we used dimeric ephrinA1-Fc, as it was reported that monomeric ephrinA1
is less effective as an agonist compared to the Fc dimerized molecule [9]. First, we wanted to explore
the effect of the linker length between the monomers and therefore tested side by side monomeric agent
135B12 and its dimeric versions 135C11, 135C12, and 135D1 (Table 1). The dimers introduced a Gly
(135C11), a β-Ala (135C12), or a γ-amino butyric acid (GABA; 135D1) between the 12-mer (135B12) and
the C-terminal Lys residue used to link the two monomers (Table 1). As controls we used ephrinA1-Fc,
DMSO, YSA (an earlier agonistic peptide; Table 1) [32], and Fc. For these experiments we initially
treated HCT116 cells with 10 µM concentration of each agent for 2.5 h, and cells lysates were probed
for total EphA2 using anti-EphA2 antibody (1C11A12; Thermo Fisher Scientific) (Figure 3a). From this
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experiment, it seemed obvious that ephrinA1-Fc (at 1 µg/mL concentration) was very effective in
causing EphA2 degradation, compared to controls (DMSO and Fc) and to monomeric agents YSA and
135B12 (Figure 3a). This is well in agreement with several previous studies with monomeric agents,
including 135H11, that showed receptor activation only at relatively high concentrations (100 µM
or higher) [26,30,32]. However, and in striking contrast, the dimeric versions of 135B12 exhibited
huge reduction of EphA2 levels at this concentration for all dimers tested (Figure 3a). Given that no
difference was observed between the dimers in inducing EphA2 degradation, we opted to select the
dimer with the shortest linker (135C11) for further studies. Our linker length is also comparable with
an earlier study with a less potent agonistic peptide of sequence SWLAYPGAVSYR that when dimerized
at the C-terminus by an aminoexanoic acid linker resulted much more potent than its monomer in
activating the receptor in cell [34]. Hence, using optimized agent 135H11, we then examined the ability
of its dimeric (135H12) and tetrameric versions (135I1) (Table 1) to induce EphA2 degradation in the
pancreatic cancer cell line BxPC3 (CRL-1687) (Figure 3b). Because these agents had optimized side
chains [30], we expected these to work at much lower concentrations compared to dimeric agents
derived from 135B12 (Table 1). Accordingly, test agents showed a remarkable induction of EphA2
degradation at nearly all concentrations tested (Figure 3b). Interestingly, the tetramer 135I1, despite it
was significantly more potent in the DELFIA assay (Table 1), was not significantly more effective than
its dimeric counterpart (135H12) in inducing receptor activation/degradation.
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Figure 3. Dimeric and tetrameric EphA2 agonistic ligands degrade EphA2 receptor. (a) Western blot
study of HCT116 cells treated with ephrinA1-Fc, EphA2 agonistic monomers (YSA, 135B12), and EphA2
agonistic dimers (135C11, 135C12, and 135D1) for 2.5 h (10 µM each). Total anti-EphA2 blot indicates
that ephrinA1-Fc treatment led to complete degradation of the receptor, while EphA2 dimeric ligands
treatments showed partial decrease of the receptor. Total ERK1/2 blot was used as a loading control.
(b) Pancreatic cancer BxPC3 cells were treated with tetrameric (135I1) and dimeric (135H12) compounds
for 1 h. These compounds successfully degraded EphA2 receptor at nanomolar concentrations.

These data, all in all, support the conclusion that dimeric agents may facilitate dimer formation
and subsequent receptor clustering and activation compared to monomeric agents, in agreement to
our model and data reported in Figures 1 and 2. Further, the data identified dimeric agent 135H12 as
a promising agonistic compound of this series.
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2.4. Cell Migration Studies

The monomeric, unbound EphA2 receptor is known to be pro-oncogenic, inducing cell migration
of cancer cells, while ephrinA1-Fc, inducing EphA2 dimer formation can suppressed this activity [35].
To more directly examine the effect EphA2 on pancreatic cancer cell migration we first prepared
a stable BxPC3 EphA2 knockout (KO) cell line and monitored its migratory properties using the
scratch wound method and live-cell analysis (IncuCyte S3, Sartorius) (Figure 4). Briefly, homogeneous
scratch wounds on plated cells were created by a 96-pin mechanical device (WoundMaker, Sartorius,
Göttingen, Germany). Subsequently, live-cell imaging was performed to monitor the rate of wound
closure. As controls, we also tested wild-type (WT) BxPC3 cells, and each cell type was treated with
ephrinA1-Fc, or Fc as control (Figure 4). Cell migration was significantly attenuated in the EphA2-KO
cells compared to WT-BxPC3 cells. In addition, the migratory properties of EphA2-KO cells was
similar (not significantly different) to that of wild-type cells treated with ephrinA1-Fc (Figure 4a,b).
Furthermore, treatment of EphA2-KO cells with ephrinA1-Fc did not significantly decrease the rate
of migration (Figure 4). EphrinA1-Fc is a promiscuous ligand and could in principle activate several
EphA or EphB receptor subtypes [36], hence any inhibitory effects observed when treating cells with
ephrinA1-Fc may be due to a variety of Eph subtypes. However, the data reported in Figure 4 suggests
that in BxPC3 the A2 subtype alone contributes to the pro-migratory properties of the cell line.
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Figure 4. Genetic inhibition of EphA2 expression impairs migration of pancreatic cancer cells.
(a) Real-time cell migration assay. WT and EphA2-KO BxPC3 cells were scratched and treated with
either ephrinA1-Fc or Fc. Cells were left to heal for 36 h inside the IncuCyte S3 live-cell imager.
WT cells treated with Fc migrated significantly faster than WT cells treated with ephrinA1-Fc (1 µg/mL).
Moreover, knocking out EphA2 significantly reduced cell migration. However, treating EphA2-KO cells
with ephrinA1-Fc did not have a significant additive effect on reducing cell migration. (b) Histogram
of relative wound density at 36 h. (c) Validation of knocking out EphA2 using CRISPR-Cas9. WT and
KO1 cell lines were used for the scratch assay. (d) Representative images of different scratches at times
0 and 36 h. *, p < 0.05; ***, p < 0.0001. Error bars represent standard deviation.
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Subsequently, we probed the effect of the pharmacological inhibition of EphA2 by our dimeric
agents on the migratory properties of WT-BxPC3 in a similar assay (Figure 5a). The data revealed
that the dimeric agent suppressed cell migration in a dose-response manner (Figure 5), at the highest
concentrations tested (10 µM) its inhibitory effect on cell migration was similar (not significantly
different) to that induced by ephrinA1-Fc treatment (Figure 5). Of note is that cell proliferation was not
affected by either treatment with ephrinA1-Fc or by our agents.Pharmaceuticals 2020, 13, x FOR PEER REVIEW 8 of 13 
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cancer cells. (a) Scratched confluent WT-BxPC3 cells were treated with either 135H12 at different
concentrations or 1 µg/mL ephrinA1-Fc and were imaged every 2 h. (b) Histogram of relative wound
density after 30 h shows significant decrease of cell migration when treated with 5 µM and 10 µM of
135H12 or ephrinA1-Fc. (c) Western blot of BxPC3 cell lysates after exposure for 5 min, 1 h or 24 h
to indicated agents. (d) Representative images from treated wells at times 0 and 30 h. **, p < 0.005;
***, p < 0.001. Error bars represent standard deviation.

3. Materials and Methods

3.1. Synthetic Chemistry

Fmoc (Fluorenylmethyloxycarbonyl)-amino acids, resins for solid synthesis and N-capping acids
were obtained from commercial sources and used without further purification. Reported agents were
synthesized in house by standard microwave-assisted Fmoc peptide synthesis protocols on Rink amide
resin using a Liberty Blue Peptide Synthesizer (CEM Corp., Matthews, NC, USA). Briefly, typical
reaction conditions included six equivalents of Fmoc-AA, three equivalents of DIC, and one equivalents
of OximaPure in 4.5 mL of DMF (dimethylformamide). Each coupling reaction was conducted at
90 ◦C for 5 min in the microwave reactor, under constant nitrogen bubbling. Fmoc deprotection was
performed by treating the resin-bound peptide with 20% piperidine in DMF (2 × 3 mL) for 3 min at
90 ◦C. Peptides were cleaved from the resin with a cleavage cocktail containing TFA(trifluoroacetic
acid)/TIS/water/phenol (94:2:2:2) for 3 h, and the cleaved peptides were precipitated in cold Et2O,
centrifuged and dissolved in DMSO. DMSO crude solutions were purified to >95% purity by preparative
RP-HPLC using a Luna C18 column (Phenomenex, Torrance, CA, USA) on a JASCO preparative HPLC
system and water/acetonitrile gradient (5% to 70%) containing 0.1% TFA. HRMS (high-resolution mass
spectrometry) was used to assess the identity of the compounds. To prepare multimers, the amount
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of resin employed for the typical synthesis of monomeric 12-mers (0.1 mmol), was reduced to 0.05
(dimers) or 0.025 mmol (tetramer). An Fmoc-Lys(Fmoc)-OH was used at the branching points in the
sequence. Double coupling was performed to ensure the complete reaction of all elongating sequences.
Standard cleavage and purification protocol were used to obtain the pure dendrimers (purity >95%
by HPLC).

3.2. Molecular Modeling and In Vitro Studies

Molecular modeling studies were conducted using Sybyl-X 1.2 (Certara, St. Louis, MO, USA)
and the X-ray structures of 135E2 in complex with EphA2-LBD (PDB ID 6B9L) [30] and of ephrinA1
in complex with the ectodomain of EphA2 (PDB ID 3MX0) [31]. To prepare a model of 135H12 in
complex with EphA2, the biological unit of the 135E2-EphA2-LDB complex was used and the side
chains of 135E2 were first modified step-wise using the biopolymer routine of Sybyl, to obtain 135H11,
and the resulting complex was energy-minimized. Subsequently, a C-terminal Gly-Lys linker was
modeled in an extended conformation to 135H11, and covalently linked to a second 135H11 from
the other unit of the biological unit dimer. The complex was further energy minimized (partial
charges were assigned using the Gasteiger-Huckel method). Structural comparisons and molecular
surfaces were obtained using Chimera (http://www.cgl.ucsf.edu/chimera) and MOLCAD, respectively
(SYBYL-X 1.2, Ceratara, St. Louis, MO, USA). NMR studies were conducted on a 15N-labeled sample
of EphA2-LBD that was obtained as described previously [25,27,30]. 2D so-fast-[15N,1H] HSQCs were
measured on a 700 MHz Avance Bruker instrument equipped with a cryo-probe and automated sample
changer. IC50 values reported in Table 1 were obtained via DELFIA (Dissociation-Enhanced Lanthanide
Fluorescent Immunoassay) displacement assay as we recently described [30].

3.3. Cell Lines, Cell Culture, and Antibodies

BxPC-3 and HCT116, HEK273T/17 cell lines were purchased from the American Type Culture
Collection (ATCC). All culture media and supplements were purchased from ThermoFisher and media
were supplemented with 10% FBS and 1% Pen Strep to be completed. BxPC3 was cultured in complete
RPMI-1640, and HCT116 and HEK293 were cultured in complete DMEM (Dulbecco’s Modified
Eagle Medium). Anti-EphA2 antibody (1C11A12) was purchased from ThermoFisher, Waltham, MA,
USA and anti-ERK1/2 antibody was purchased from Cell Signaling Technology, Danvers, MA, USA.
β-Actin antibody was purchased from Santa Cruz Biotechnology, Dallas, TX, USA.

3.4. Establishment of an EphA2 Knocked-Out Pancreatic Cancer Cell Line

Human embryonic kidney HEK293T/17 cells were transfected with EphA2 CRISPR Guide RNA
1 plasmid (KO1; target sequence, CTACAATGTGCGCCGCACCG), or EphA2 CRISPR Guide RNA
2 plasmid (KO2; target sequence, AGGCTCCGAGTAGCGCACAC) which were purchased from
GenScript and Expression Packing Kit (GeneCopoeia, Inc., Rockville, MD, USA) to produce lentivirus
particles according to GeneCopoeia Inc’s protocol. After 2 days, viral particles were collected and
filtered. Stable BxPC3 EphA2-KO cell lines were established by transducing with viral particles
and selecting with 1 µg/mL puromycin 2 days post-transduction. EphA2-KO was confirmed by
Western blot.

3.5. Cell Migration Assays

Cells were plated at 50 × 103 cells/well density in 96-well ImageLock plates (Sartorius).
The following day, cells were scratched using the WoundMaker (Sartorius) and washed three times
with PBS. Subsequently, cells were treated with the indicated compounds in RPMI-1640 complete
media. Treatments included ephrinA1-Fc (1 µg/mL) and test agents 135H12 (2.5 µM, 5 µM, and 10 µM).
Plates were imaged every two hours using IncuCyte S3 (Sartorius), and relative wound areas were
analyzed using the algorithm of the imager cell migration software module.

http://www.cgl.ucsf.edu/chimera
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3.6. Immunoblotting Assays

Cells were lysed with cell lysis buffer (20 mM Tris, pH 7.4, 120 mM NaCl, 1% Triton X-100,
0.5% sodium deoxycholate, 0.1% SDS, 1% IGEPAL, 5 mM EDTA, supplemented with EDTA-free
Protease Inhibitor Cocktail and PhosStop from Sigma-Aldrich, St. Louis, MO, USA) for 10 min on ice.
Cell lysates were then centrifuged to clear off cell debris for 10 min at 13,000 rpm at 4 ◦C. Samples were
prepared and loaded into 4–12% NuPAGE Bis-Tris Precast Gels and transferred to PVDF membrane as
indicated previously [30]. The membrane was blocked with 5% non-fat milk in TBS and 0.1% Tween
(TBST) for 1 h, then incubated with primary and secondary antibodies and visualized using a Clarity
Western ECL kit (BIO-RAD, Hercules, CA, USA). The membranes were stripped using Restore Western
blot to blot with a loading control antibody.

4. Conclusions

Therapeutic targeting of the EphA2-LBD has been pursued in recent years by a variety of
approaches [27,32,37–48]. Here, using a combination of biophysical and cellular assays we conclude
that dimeric 12mer agonistic agents can induce EphA2 receptor dimerization and subsequent activation
and degradation, compatible with a proposed molecular model on ligand-induced EphA2 dimer
formation. Recent observations reported an enhanced cell migration in EphA2 transfected cells,
and such enhancement was even more pronounced when cells were transfected with EphA2 mutants
that presented defective dimerization properties [35]. These data suggested that even transient
dimerization of the receptor could have a profound effect in attenuating EphA2 driven cell migration [35].
Accordingly, we found that EphA2-KO BxPC3 pancreatic cancer cells presented reduced migratory
properties that are comparable to WT-cells treated with either ephrinA1-Fc or our dimeric agonistic
agents. We also noted that our agents induced a sustained degradation of the receptor over time similar
to what we have observed with ephrinA1-Fc treatment. These data suggest that 135H12, or perhaps
further and even more potent similar dimeric compounds, could be used in combination therapies in
an attempt to suppress pro-oncogenic EphA2 signaling. In addition, similar to what we have recently
proposed [24–29], we also envision derivatizing 135H12 or related agents with cytotoxic or imaging
reagents, for targeted delivery of chemotherapy, or diagnostic purposes, respectively.
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