A Photocleavable Contrast Agent for Light-responsive MRI

Friederike Reeßing ^{1,3}, Sèvrin E. M. Huijsse ¹, Rudi A. J. O. Dierckx ¹, Ben L. Feringa ^{1,3}, Ronald J.H. Borra ^{1,2} and Wiktor Szymański ^{1,3,*}

- ¹ Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- ² Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- ³ Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- * w.szymanski@umcg.nl

1. Synthetic procedures and spectroscopic data

2-Isocyano-*N***-(prop-2-yn-1-yl)acetamide (2):** Compound **2** was prepared by a modification of a literature procedure [1,2]. A mixture of methyl isocyanoacetate (7.82 mmol, 711 μ L) and propargylamine (15.6 mmol, 1.00 mL) was stirred at room temperature overnight. The formed solid was filtered off and washed with Et₂O to provide compound **2** as light brown powder (759 mg, 78%). R_f = 0.63 (pentane/AcOEt, 1:1, v/v); Mp. 109°C; ¹H NMR (400 MHz, DMSO-d₆): δ 3.15 (t, 1H), 3.88 (dd, 2H), 4.35 (s, 2H), 8.61 (br s, 1H). ¹H NMR spectrum is in agreement with published data [1].

1-Azido-2-(2-(2-methoxyethoxy)ethoxy)ethane (4): 1-Bromo-2-(2-(2-methoxyethoxy) ethoxy)ethane (4.4 mmol, 1000 mg) was dissolved in ethanol (80 mL) and NaN₃ (8.8 mmol, 584 mg) was added. After heating the solution under reflux overnight, the solvent was evaporated and DCM added to the residue. The organic layer was washed with H₂O (3x) and dried with MgSO₄ to give a colorless liquid (758 mg, 91%). R_f = 0.67 (Pentane/AcOEt 1:1); ¹H NMR (400 MHz, CHCl₃): δ 3.62-3.58 (m, 8H), 3.48 (t, 2H), 3.33-3.31 (m, 5H). ¹H NMR spectrum is in agreement with published data [3]. ¹³C NMR (100 MHz, CDCl₃): δ 71.9, 70.7, 70.6, 70.6, 70.0, 59.0, 50.7.

4,7,10-Tris(2-(*tert*-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecan-1-ium bromide (6): The compound was prepared according to a literature procedure [4]. A suspension of cyclen (5.81 mmol, 1.00 g) and sodium acetate (19.1 mmol, 1.57 g) in *N*,*N*-dimethylacetamide (DMA, 12 mL) was stirred at -20 °C. A solution of *tert*-butyl bromoacetate (19.2 mmol, 2.83 mL) in DMA (4 mL) was added dropwise over 15 min at -20 °C. The reaction mixture was stirred at room temperature for 24 h, after which it was poured into H₂O (60 mL), resulting in a clear solution. Solid KHCO₃ (30.0 mmol, 3.00 g) was added portion-wise and a precipitate was formed. The precipitate was collected by filtration and dissolved in DCM (5 mL) and the solution was washed with H₂O (20 mL), dried over MgSO₄, filtered and concentrated to about 4-5 mL. Diethyl ether (50 mL) was added and compound **6** precipitated as a white solid (1.64 g, 48%). R_f = 0.63 (DCM/MeOH, 9:1, v/v); Mp. 179-181 °C; ¹H NMR (500 MHz, CDCl₃) δ 1.45 (s, 9H), 1.46 (s, 18H), 2.87 (m, 4H), 2.93 (m, 8H), 3.10 (m, 4H), 3.29 (s, 2H), 3.38 (s, 4H), 10.03 (br s, 1H). ¹H NMR spectrum is in agreement with published data [4].

tert-Butyl 8-bromooctanoate (S1): The compound was prepared according to a literature procedure [5]. 8-Bromooctanoic acid (1.57 mmol, 350 mg) was dissolved in dry DCM (15 mL) under nitrogen atmosphere. The resulting solution was cooled down to 0 °C and trifluoroacetic anhydride (3.61 mmol, 0.51 mL) was added dropwise. The reaction mixture was stirred at 0 °C for 2.5 h after which *tert*-butanol (5.5 mmol, 0.52 mL) was added slowly. The mixture was stirred at 0 °C for 1 h and was then allowed to warm to room temperature. The reaction mixture was stirred for additional 12 h at room temperature and then quenched with H₂O (10 mL). The product was extracted with Et₂O (3x) and the combined organic layers washed with brine, sat. aq. NaHCO₃ solution and dried with MgSO₄. The volatiles were evaporated to obtain compound **8** as a clear oil (384 mg, 88%). R_f = 0.9 (pentane/Et₂O, 4:1, v/v), ¹H NMR (400 MHz, CDCl₃): δ 1.31-1.34 (m, 6H), 1.44 (s, 9H), 1.55-1.62 (m, 2H), 1.85 (quint, 2H), 2.20 (t, 2H), 3.40 (t, 2H). ¹H NMR spectrum is in agreement with published data [5].

Tri-tert-butyl 2,2',2''-(10-(8-(*tert*-butoxy)-8-oxooctyl)-1,4,7,10-tetraazacyclo dodecane-1,4,7triyl)triacetate (S2): Compounds S1 (0.54 mmol, 150 mg) and 6 (0.27 mmol, 160 mg) were dissolved in acetonitrile and K_sCO₃ (1.1 mg, 148 mg) was added to the solution. The reaction mixture was stirred at 60 °C overnight. The salts were filtered off, the volatiles evaporated and the product was purified by flash column chromatography (DCM/MeOH 98:2 – 9:1 v/v) to give compound S1 (131 mg, 68%). R_f = 0.6 (DCM/MeOH, 9:1, v/v); HRMS (ESI+) calc. for [M+H]⁺ (C₃₈H₇₂N₄O₈): 713.5423, found: 713.5431; ¹H NMR (400 MHz, CDCl₃): δ 1.31-3.41 (overlapping br m), 1.38 (s), 1.40 (s), 1.43 (s).

2,2',2"-(10-(7-Carboxyheptyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid (8): Compound S2 (0.17 mmol, 123 mg) was dissolved in DCM (2 mL). Tri-*iso*-propyl silane (1.0 mmol, 0.21 mL) and HCl in Et₂O (2 m, 7 mL) were added to the solution. The reaction mixture was stirred at room temperature overnight. The volatiles were evaporated under reduced pressure and Et₂O added to the residue. The product was filtered off and re-dissolved in MeOH. The solution was concentrated under reduced pressure and the residue triturated with Et₂O. The product was filtered off again to afford a white solid (88 mg, 97% calculated as mono hydrochloride salt). ¹H NMR (400 MHz, D₂O): δ 1.37 (s, 6H), 1.61 (quint, 2H), 1.76 (br s, 2H), 2.4 (t, 2H), 3.02-3.18 (overlapping m, 6H), 3.27 (t, 2H), 3.35-3.44 (overlapping m, 4H), 3.48-3.54 (overlapping m, 6H), 3.61-3.76 (overlapping m, 4H), 4.05 (s, 2H). ¹³C NMR (100 MHz, D₂O): δ 22.7, 24.0, 25.4, 27.7, 27.7, 27.7, 27.8, 33.5, 33.6, 48.0, 48.3, 49.8, 51.6, 52.0, 52.9, 54.6, 65.4, 169.2, 174.2, 177.7, 179.2.

2. Quantum yield determination

Figure S1. Quantification of compound 7 by UPLC. a) chromatogram recorded at λ = 360 nm for the solution of compound 7 (0.565 mM in acetonitrile), after 1:15 dilution with MilliQ water. The area of the peak with a retention time of 10.8 min was used for quantification. b) Calibration curve for the quantification of compound 7 by UPLC.

3. NMRD profiles

Figure S2. NMRD profiles of a sample containing **Gd-1** before irradiation (0 min), after 1 h in the dark (stability 1 h) and after irradiation for indicated time points (10; 20; 40; 60 min). See supporting tables 1 and 2 for numerical data.

4. Relaxometry data at different magnetic field strength

Table S1. Molar relaxivity (s ⁻¹ mM ⁻¹) profiles of a sample of Gd-1 in TBS buffer pH 7.5 before irradiation (0 min),
after 1 h in the dark (stability 1 h) and after irradiation for indicated time points (10; 20; 40; 60 min). The standard
deviation represents the uncertainty of fitting the T1 curve to the experimental data.

Larmor												
frequency (MHz)	0.010	0.019	0.035	0.066	0.123	0.231	0.433	0.811	1.52	2.85	5.34	10.0
0 min (dauls)	8.54	8.00	8.13	8.10	8.18	8.07	7.91	7.92	7.87	7.31	7.08	6.47
0 min (aark)	±0.28	±0.20	±0.31	±0.30	±0.04	±0.05	±0.05	±0.05	±0.09	±0.11	±0.06	±0.04
0 min (dark 1 h)	8.22	7.63	8.14	8.30	8.19	8.07	7.96	7.84	7.63	7.42	6.74	6.47
o min (dark 1 h)	±0.21	±0.30	±0.25	±0.20	±0.05	±0.06	±0.06	±0.06	±0.06	±0.07	±0.08	±0.04
10 min	7.51	7.61	8.03	7.63	7.51	7.60	7.61	7.50	7.30	7.04	6.41	6.15
10 min	±0.19	±0.16	±0.22	±0.18	±0.07	±0.04	±0.03	±0.05	±0.06	±0.07	±0.04	±0.02
20 min	7.72	7.39	7.22	7.19	7.29	7.48	7.16	7.20	6.99	6.78	6.22	5.84
20 min	±0.31	±0.13	±0.19	±0.23	±0.04	±0.05	±0.06	±0.05	±0.09	±0.08	±0.06	±0.04
10	7.24	7.20	7.39	7.21	7.06	6.98	7.19	7.02	6.82	6.54	5.99	5.54
40 min	±0.30	±0.12	±0.24	±0.16	±0.05	±0.04	±0.04	±0.05	±0.04	±0.07	±0.04	±0.04
60 min	7.03	6.94	7.23	6.89	6.78	6.85	6.94	6.90	6.57	6.22	5.79	5.39
	±0.28	±0.14	±0.24	±0.20	±0.05	±0.04	±0.07	±0.06	±0.07	±0.09	±0.05	±0.04

Table S2. Molar relaxivity (s⁻¹ mM⁻¹) profile of a sample of **Gd-8** in TBS buffer pH 7.5. The standard deviation represents the uncertainty of fitting the T1 curve to the experimental data.

Larmor frequency (MHz)	0.010	0.021	0.046	0.100	0.215	0.464	1.00	2.15	4.64	10.0
64.9	6.58	6.72	6.61	6.43	6.59	6.33	6.39	6.26	5.90	5.02
64-8	±0.29	±0.15	±0.17	±0.06	±0.05	±0.04	±0.05	±0.05	±0.05	±0.02

Table S3. Molar relaxivity (s⁻¹ mM⁻¹) and standard deviation (SD) of a sample of **Gd-1** in TBS buffer pH 7.5 in response to irradiation for the indicated time points (0; 3; 60 min), at 1.5T (63.87 MHz) and 3.0T (127.74 MHz).

Magnetic field strength	1.5T	1.5T	3.0T	3.0T	
	MEAN	SD	MEAN	SD	
0 min	8.58	0.19	8.50	0.10	
3 min	7.79	0.16	7.73	0.11	
60 min	6.93	0.10	6.85	0.06	

5. Determination of free gadolinium(III) concentration

_

Figure S3. Quantification of free Gd^{III}. a) Calibration curve showing the ratio of absorbance intensity at λ = 573 nm and λ = 433 nm for increasing Gd^{III} concentration in the presence of xylenol orange (0.60 mM). b) Percentage of free Gd^{III} in the presence of increasing equivalents of compound **1**.

6. NMR spectra

1-(4,5-Dimethoxy-2-nitrophenyl)-2-oxo-2-((2-oxo-2-(prop-2-yn-1-ylamino)ethyl)amino)-ethyl 8bromooctanoate (3):

Tri-*tert*-butyl 2,2',2''-(10-(8-(1-(4,5-dimethoxy-2-nitrophenyl)-2-((2-(((1-(2-(2-(2-methoxy ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-oxoethyl)amino)-2-oxoethoxy)-8-oxo octyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate (7):

2,2',2"-(10-(8-(1-(4,5-Dimethoxy-2-nitrophenyl)-2-((2-(((1-(2-(2-(2-methoxy)ethoxy)ethoxy) ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-oxoethyl)amino)-2-oxo-ethoxy)-8-oxooctyl)-1,4,7,10tetraazacyclododecane-1,4,7-triyl)triacetic acid (1):

References:

- 1. Dömling, A.; Beck, B.; Fuchs, T.; Yazbak, A. Parallel synthesis of arrays of amino-acid-derived isocyanoamides useful as starting materials in IMCR. *J. Comb. Chem.* **2006**, *8*, 872–880.
- 2. Wang, Y.; Patil, P.; Dömling, A. Easy Synthesis of Two Positional Isomeric Tetrazole Libraries. *Synthesis* **2016**, *48*, 3701–3712.
- 3. Borissov, A.; Marques, I.; Lim, J.Y.C.; Félix, V.; Smith, M.D.; Beer, P.D. Anion Recognition in Water by Charge-Neutral Halogen and Chalcogen Bonding Foldamer Receptors. *J. Am. Chem. Soc.* **2019**, *141*, 4119–4129.
- 4. Jagadish, B.; Brickert-Albrecht, G.L.; Nichol, G.S.; Mash, E.A.; Raghunand, N. On the synthesis of 1,4,7-tris(tert-butoxycarbonylmethyl)-1,4,7,10- tetraazacyclododecane. *Tetrahedron Lett.* **2011**, *52*, 2058–2061.
- 5. Jacquot, C.; McGinley, C.M.; Plata, E.; Holman, T.R.; van der Donk, W.A. Synthesis of 11thialinoleic acid and 14-thialinoleic acid, inhibitors of soybean and human lipoxygenases. *Org. Biomol. Chem.* **2008**, *6*, 4242–4252.