

Supplementary Materials

Biological Evaluation of Arylsemicarbazone Derivatives as Potential Anticancer Agents

Anne Cecília Nascimento da Cruz ¹, Dalci José Brondani ², Temístocles I'talo de Santana ¹, Lucas Oliveira da Silva ², Elizabeth Fernanda da Oliveira Borba ¹, Antônio Rodolfo de Faria ², Julianna Ferreira Cavalcanti de Albuquerque ¹, Sylvie Piessard ³, Rafael Matos Ximenes ¹, Blandine Baratte ^{4,5}, Stéphane Bach ^{4,5}, Sandrine Ruchaud ⁴, Francisco Jaime Bezerra Mendonça Junior ⁶, Marc-Antoine Bazin ³, Marcelo Montenegro Rabello ², Marcelo Zaldini Hernandes ², Pascal Marchand ^{3,*} and Teresinha Gonçalves da Silva ^{1,*}

- ¹ Departamento de Antibióticos, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50740-520, Brazil; annececilia2006@hotmail.com (A.C.N.C.); temistoclesitalo@gmail.com (T.I.S.); elizabethfernanda_7@hotmail.com (E.F.O.B.); julianna@ufpe.br (J.F.C.A.); ximenesrm@gmail.com (R.M.X.)
- ² Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, PE, 50740-520, Brazil; brondani.dj@gmail.com (D.J.B); luc.osilva@gmail.com (L.O.S.); rodolfo.ufpe@gmail.com (A.R.F.); montenegro.rabello@gmail.com (M.M.R.); zaldini@gmail.com (M.Z.H.)
- ³ Université de Nantes, Cibles et Médicaments des Infections et du Cancer, IICiMed, EA 1155, Nantes, F-44000, France; sylvie.piessard@univ-nantes.fr (S.P.); marc-antoine.bazin@univ-nantes.fr (M.A.B.)
- ⁴ Sorbonne Université, CNRS, USR3151, « Protein phosphorylation and human diseases » Unit, Station Biologique, Roscoff, F-29688, France; baratte@sb-roscoff.fr (B.B.); bach@sb-roscoff.fr (S.B.); sandrine.ruchaud@sb-roscoff.fr (S.R.)
- ⁵ Sorbonne Université, CNRS, FR2424, Kinase Inhibitor Specialized Screening Facility KISSf, Station Biologique, Roscoff, F-29688, France
- ⁶ Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, PB, 58071-160, Brazil; franciscojbmendonca@yahoo.com.br
- * Correspondence: teresinha.goncalves@pq.cnpq.br (T.G.S.); pascal.marchand@univ-nantes.fr (P.M.); Tel.: +55 31 81 2126 8347 (T.G.S.); Tel.: +33 253 009 155 (P.M.)

1. 1H- & 13C-NMR Spectra for Compounds 3a-3m and 4a

160 150 140 130

120 110

100 90 80 70 60 50 40

30

20

10 ppm

Figure S2. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3b.

Figure S3. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3c.

160 150

140 130

120

110

100 90

80

70 60 50

40

30 20

10

0 ppm

Figure S4. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3d.

Figure S5. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3e.

AT110-DMSO 1H 3g

Figure S8. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3h.

Figure S10. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3j.

Figure S12. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 31.

Figure S13. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, DMSO-d6, for compounds 3m.

Figure S14. 1H NMR at 400 MHz and 13C NMR at 100 MHz spectra, CDCl3, for compounds 4a.

2. Molecular Docking Calculation Parameters

CDK2	CDK5	CDK9	CLK1	DYRK1A	PIM1	CK1δ
LYS-33	LYS-33	GLN-27	PHE-172	PHE-170	PHE-49	ILE-15
GLU-51	GLU-51	LYS-48	LYS-191	LYS-188	LYS-67	LYS-38
PHE-80	PHE-80	PHE-103	GLU-206	GLU-203	LEU-120	MET-80
PHE-82	PHE-82	PHE-105	PHE-241	PHE-238	GLN-127	MET82
ASP-86	ASP-86	CYS-106	SER-247	ASN-244	ASP-128	LEU-84
LYS-89	LYS-89	GLU-107	ASP-250	ASP-247	ASP-131	ASP-91
GLN-131	GLN-130	ASP-109	GLU-292	GLU-291	GLU-171	ASP-132
ASN-132	ASN-131	ASN-154	ASN-293	ASN-292	ASN-172	LEU-135
LEU-134	LEU-133	LEU-156	LEU-295	LEU-294	LEU-174	ILE-148
ASP-145	ASN-144	ASP167	ASP-325	ASP-307	ASP-186	ASP-149

Table S1. Amino acid residues treated as flexible during the docking calculations.

 \odot 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/).