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Abstract: Potent and selective adenosine receptor (AR) agonists are of pharmacological interest for
the treatment of a wide range of diseases and conditions. Among these derivatives, nucleoside-based
agonists represent the great majority of molecules developed and reported to date. However,
the limited availability of compounds selective for a specific AR subtype (i.e., A2BAR) and a generally
long and complex synthetic route for largely substituted nucleosides are the main drawbacks of this
category of molecules. Non-nucleoside agonists represent an alternative set of compounds able to
stimulate the AR function and based on simplified structures. This review provides an updated
overview on the structural classes of non-nucleoside AR agonists and their biological activities,
with emphasis on the main derivatives reported in the literature. A focus is also given to the synthetic
routes employed to develop these derivatives and on molecular modeling studies simulating their
interaction with ARs.

Keywords: purinergic receptors; adenosine receptors; adenosine receptor agonists; non-nucleoside
agonists; pyridine derivatives; pyrimidine derivatives; ligand–target interaction; drug discovery

1. Introduction

The endogenous nucleoside adenosine regulates a number of physiological and pathological
processes through the stimulation of membrane proteins named adenosine receptors (ARs). These
proteins are G protein-coupled receptors cloned as four subtypes (A1, A2A, A2B, and A3 ARs) [1,2] and
coupled to cytoplasmic GTP-binding proteins that mediate the intracellular effects of AR stimulation.
In particular, the stimulation of the A2A and A2B ARs leads to an increase of intracellular cAMP levels
through activation of a G protein, while the stimulation of the A1 and A3 ARs leads to a decrease of
intracellular cAMP levels through activation of Gi/o proteins. Modulation of further second messengers
has also been described, which involves the activation of signaling mechanisms like phospholipase C,
Protein Kinase C (PKC), phosphoinositide 3-kinases, ion channels, and the modulation of calcium
levels [1,3,4]. The stimulation of the various AR subtypes has effects on Central Nervous System
(CNS) and peripheral tissues [5,6], modulating release of neurotransmitters, synaptic transmission [7],
heart rate and atrial contractility, vascular smooth muscle tone [8], gastrointestinal functions [9,10],
as well as renal [11], platelet [12], and leukocyte [13] functions. Therefore, AR regulation represents
a high-potential strategy for the development of therapeutic tools. On the other hand, widespread
AR expression requires compounds endowed not only with high potency and efficacy at the various
ARs but also with selectivity for specific AR subtypes [14]. To date, a limited number of adenosinergic
ligands have been approved for therapy besides Ado itself, that is, the A2AAR agonist Regadenoson
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(approved as a coronary vasodilator) and the A2AAR antagonist Istradefylline as an anti-Parkinson
drug [15–17].

Several compounds have been designed and developed as AR agonists, where adenosine generally
represents the core scaffold further modified to obtain compounds with various degrees of AR potency
and selectivity [18]. The key modifications made to the endogenous ligand are at both the purine
moiety and the ribose ring. In the first case, substituents introduced at the 2- and N6-position lead to an
improvement of the affinity/potency and often selectivity for specific AR subtypes, depending on the
volume and chemical-physical profile of the substituents themselves. A key modification of the ribose
moiety is at its 4’-position, with the introduction of an N-alkylcarboxamido function (the so-called
MECA, N-methylcarboxamidoadenosine, or NECA, N-ethylcarboxamidoadenosine, derivatives, where
the alkyl group consists of a methyl or an ethyl function, respectively) [19–22]. This modification
generally improves the activity at all the AR subtypes with respect to the corresponding adenosine
analogues. Conversely, the removal of the ribose moiety or its replacement with a small alkyl group
was generally observed as associated to an agonist-to-antagonist switch of the pharmacological
profile [23–25].

Recent developments in this field have occurred since the publication of some patents and articles
in the early 2000s describing non-nucleoside agonists of the ARs [26–30]. The early data are related
to non-selective agonists ranging from partial to full agonist profiles. Subsequent reports described
further non-nucleoside derivatives endowed with low nanomolar potency and improved selectivity for
the A1, A2A, or A2B AR subtypes [30–38]. Structural features and biological activity of these molecules,
synthetic approaches, and molecular modelling studies simulating the interaction between these
compounds and AR targets are reviewed in this work.

2. Non-Nucleoside Agonists of the ARs

2.1. Structural Features and Biological Activity

2.1.1. Pyridine Derivatives

The discovery and development of pyridine-based non-nucleoside agonists of the ARs started from
the publication of patents from Bayer describing pyridine derivatives endowed with agonist activity at
the ARs [26–29,39]. These compounds were generally 2-aminopyridines presenting two cyano groups
at the 3- and 5-positions, a phenyl group in the 4-position, and in the 6-position a further substituent
starting with a methylthio spacer followed by groups of various volumes and chemical-physical
properties. The key structural modifications applied to the series were related to the 6-chain and to
further substituents to be inserted to the 4-phenyl ring. These studies led to the discovery of compounds
of significative importance, in particular for the A1AR. One of these compounds is the A1AR agonist
2-amino-6-[[2-(4-chlorophenyl)-1,3-thiazol-4-yl]methylsulfanyl]-4-[4-(2-hydroxyethoxy)phenyl]pyridine-
3,5-dicarbonitrile, also named BAY 68-4986 or Capadenoson (1; Figure 1; Table 1). This compound
consists in a 2-aminopyridine presenting two cyano groups at the 3- and 5-positions, a substituted
phenyl group in the 4-position, and in the 6-position a thiomethyl spacer with a substituted thiazole.
Capadenoson currently represents a reference A1AR partial agonist, endowed with subnanomolar
potency at the human A1AR [39–41]. Capadenoson was shown to dose-dependently modulate the
stress-induced heart rate changes and the release of norepinephrine from cardiac presynaptic nerves
in the perfused hearts of spontaneously hypertensive rats [42]. In canine models of heart failure,
the administration of Capadenoson improved the left ventricular function and prevented progressive
remodeling [43]. In a phase II clinical study, Capadenoson was shown to modulate the heart rate
in patients with stable angina [44], even if it was later withdrawn [45]. In another phase II clinical
study (patients with persistent or permanent atrial fibrillation), this molecule did not show a relevant
effect in the modulation of heart rate [46,47]. Further clinical evaluations of this molecule were not
reported. Capadenoson was also studied as modulator of body temperature in rats, showing a
slight hypothermic effect compared to the A1AR full agonist CHA [48]. This molecule also showed
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a favorable DMPK (drug metabolism and pharmacokinetics) profile [39,46] The advantages of the
use of partial A1AR agonists were highlighted in one of these works, including the ability of these
compounds to not lead to receptor desensitization, the multifaceted set of effects in various tissues
where different levels of A1AR expression are observed, the lower risk of producing severe side effects
with respect to full agonists [46]. A biased agonism of Capadenoson was also assessed since this
compound exhibited high potency in the activation of all the intracellular pathways upon A1AR
stimulation, with the exception of the intracellular calcium mobilization, where the effect was lower
with respect to other A1AR reference agonists [49]. Considering the AR affinity, Capadenoson showed
also a high A1AR selectivity versus the other AR subtypes where the percentage of radioligand
displacement was 0–2.5% [36]. In contrast, a recent work reported that this molecule can also bind the
A2BAR with a Ki of about 300 nM, but the authors did not specify the affinity at the other subtypes.
In the same work, the potency of 1 in functional experiments was given as EC50 equal to 0.66 nM,
1400 nM, and 1.1 nM at the A1, A2A, and A2B ARs, respectively (Table 1) [41].
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Interestingly, Capadenoson showed a biased agonism also at the A2BAR since it activated the
cAMP pathway with higher potency with respect to the other pathways induced by A2BAR stimulation.
Structural modifications at the exocyclic amine group of Capadenoson led to the development
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of the A1AR agonist 2-(((2-(4-chlorophenyl)-1,3-thiazol-4-ylmethyl)sulfanyl)-4-(4-(2-hydroxyethoxy)
phenyl)-6-(pyrrolidin-l-yl)pyridine-3,5-dicarbonitrile, also named Neladenoson (2; Figure 1; Table 1).
Like Capadenoson, Neladenoson is a selective partial agonists of the A1AR [50,51]. Neladenoson
showed cardioprotective effects in rat preclinical models, analogously to Capadenoson, although with
lower central effects. A bialanate (alanine–alanine ester) derivative of Neladenoson (in its hydrochloride
salt form) was also developed as a prodrug, showing a more favorable pharmacokinetic profile.

Neladenoson bialanate (BAY 1067197; 3; Figure 1) is currently in clinical evaluation for the
treatment of chronic heart failure with preserved/reduced ejection fraction (HFpEF and HFrEF,
respectively) [50–57]. Early results show a lack of dose-dependent favorable effects on cardiac structure
and function and on exercise capacity, with a dose-dependent decrease in renal function [58,59].

Further derivatives of Capadenoson were developed, with the evaluation of their binding affinity
and dissociation kinetics properties at the A1AR (as examples are reported compounds 4–8; Figure 1;
Table 1). Several of these derivatives were endowed with good A1AR affinity and selectivity, ranging
from partial to full agonist profiles [36]. In particular, considering the modifications on the 4-phenyl
ring of Capadenoson, the replacement of the para-hydroxyethyloxy substituent with a hydroxy group
maintain the A1AR affinity of Capadenoson (5, Ki A1AR = 1.5 nM, versus 1, Ki A1AR = 1.4 nM; Table 1).
The replacement of the same moiety with a methoxy group (4) led to the synthesis of a Capadenoson
analogue that was further modified at the phenyl group present in the 2-position of the thiazole ring.
In this set of derivatives, high A1AR affinities were obtained with compounds presenting a phenyl ring
substituted in the para-position with a halogen atom (i.e., 7). In some cases, compounds were found
endowed with residence times up to 132 min (4), about 4.7-fold longer than Capadenoson itself [36].

A work by Beukers and colleagues [31] described five 2-aminopyridines derivatives with
similarities to Capadenoson, given the presence of two cyano groups at the 3- and 5-positions
and a phenyl group in the 4-position. In the 6-position, a thiomethyl spacer with a 2-imidazole ring was
inserted. The 4-phenyl group could be further substituted with a hydroxy or methoxy group in the para-
or meta-position. Results of biological evaluation of these compounds showed a low nanomolar affinity
for the A1 but also for the A2B ARs (9–13; Figure 1; Table 1). The most potent A1 and A2B AR agonists
of this group (then named LUF5844, 10, and LUF5845, 11, respectively) present a methoxy group in
the meta- or para-position 4-phenyl ring, respectively. A modification of LUF5844 by substituting
the imidazole ring with a 6-methylpyridin-2-yl group led to the development of the compound
2-amino-4-(3-methoxyphenyl)-6-(2-(6-methylpyridin-2-yl)ethyl)pyridine-3,5-dicarbo- nitrile (MMPD;
14; Figure 1; Table 1), a partial A1AR agonist endowed with subnanomolar affinity for this receptor and
high selectivity versus the other AR subtypes. This compound was also developed as a radioligand
useful for Positron Emission Tomography (PET) imaging in the brain, given its good pharmacokinetics
profile related to the ability to cross the Blood Brain Barrier (BBB) [60,61]. Even the compound
2-amino-4-(4-hydroxy phenyl)-6-(1H-imidazol-2ylmethylsulfanyl)-pyridine-3,5-dicarbonitrile [31],
then named LUF5834 (13; Figure 1; Table 1), was developed as a radioligand able to bind to A1AR in
both G-protein-coupled and uncoupled conditions with a similar high affinity [34]. Since this molecule
showed nanomolar affinity also for the A2AAR, it was employed for a mutagenesis study at this AR
subtype, in comparison with the nucleoside derivative CGS21680. Results showed that the potencies of
LUF5834 and CGS21680 are differently subjected to variations due to mutations of binding site residues,
suggesting different ligand–receptor interactions between nucleoside and non-nucleoside agonists
and the A2AAR [37]. The same research group later reported the synthesis and biological evaluation
of 9–13 analogues where the imidazolyl-methyl-thio substituent in the 6-position was replaced by a
hydroxy-ethyl-thio group [32]. In general, these compounds, (15–19; Figure 1; Table 1), showed A1AR
selectivity, with affinity in the nanomolar range. Low nanomolar or subnanomolar potencies of some
of these compounds at the A1AR were also reported by Bayer researchers [39]. Interestingly, some
of these derivatives showed full agonist activity at the A1AR, while other similar derivatives proved
to be inverse agonists of the same receptor. The presence of a small substituent in the meta-position
of the 4-phenyl ring generally appeared more important with respect to the insertion of the same
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group in the para-position for the A1AR affinity and for both agonist and antagonist/inverse agonist
activities [32]. One of these compounds, named LUF5831 (17; Figure 1; Table 1), initially showed
almost full agonist activity at the A1AR. In a subsequent work [33], the A1AR partial agonist profile of
the same compound was reported. Interestingly, the same molecule appeared to maintain the affinity
for a mutated A1AR (T277A) differently from the nucleoside agonist cyclopentyladenosine (CPA) that
lost its binding ability to the mutated receptor. Furthermore, the affinity of LUF5831 for the A1AR was
reduced by the presence of the allosteric modulator PD81,723, which conversely led to an improvement
of the A1AR affinity of the nucleoside agonist CPA [33].

Table 1. Binding affinity (Ki) and potency (EC50) data of selected pyridine-based non-nucleoside
agonists of the ARs.

Compound Affinity Data (Ki nM, or % Radioligand Displ.) Potency Data (EC50 nM)

A1AR A2AAR A2BAR A3AR A1AR A2AAR A2BAR

1 [36,41] 1.4 a,d 0% b,e 2.5% a,f 1.2% a,g 0.66 c 1400 c 1.1 c

2 [50] - - - - 0.1 a 670 a 80 a

4 [36] 5.0 a,d 5.8% b,e 20% a,f 19% a,g 2.9 a - -

5 [36] 1.5 a,d - - - - - -

6 [36] 8.4 a,d 0.0% b,e 63% a,f 27% a,g 1.9 a - -

7 [36] 3.9 a,d - - - - - -

8 [36] 12 a,d - - - - - -

9 [31] 2.4 a,d 28 b,e - 171 b,h - - 19 a

10 [31] 2.0 a,d 105 b,e - 74 b,h - - 34 a

11 [31] 7.0 a,d 214 b,e - 24 b,h - - 9 a

12 [31] 4.4 a,d 21 b,e - 104 b,h - - 10 a

13 [31,37] 2.6 a,d 28 b,e - 538 b,h 3.29 a 16.2 b 12 a

14 [60] 0.49 b,d 71 b,e 75 b,i 42% b,h 1.0 b - -

15 [32,39] 15 a,d 23% a,e - 26% b,h 0.7 a > 3000 a 670 a

16 [32] 12 a,d 25% a,e - 16% b,h - - -

17 [32,39] 23 a,d 37% a,e - 0% b,h 0.5 a > 3000 a 248 a

18 [32] 4.3 a,d 21% a,e - 18% b,h - - -

19 [32,39] 41 a,d 8% a,e - 21% b,h 2.7 a > 3000 a > 3000 a

20 [62] 57 a,d 27% a,e - 29% a,h - - > 1000 a

21 [62] 1.02 a,d 93 a,e - 668 a,h - - > 1000 a

22 [62] 0.98 a,d 31 a,e - 25% a,h - - > 1000 a

23 [62] 1.42 a,d 24 a,e - 948 a,h - - > 1000 a

24 [62] 1.32 a,d 67 a,e - 326 a,h - - > 1000 a

25 [39,63,64] 31% a,d 2% a,e 114 a,f 8% a,h - - 10 a

26 [64] 345 a,d 1% a,e - 20% a,h - - 38 a

27 [64] 83 a,d 25% a,e - 1% a,h - - 12.7 a

28 [64] 235 a,d 764 a,e - 474 a,h - - 9.5 a

29 [64] 338 a,d 1% a,e - 1% a,h - - 51 a

30 [64] 8.2 a,d 221 a,e - 85 a,h - - 11.7 a

(a) human AR subtype stably expressed by CHO (Chinese hamster ovary) cells; (b) human AR subtype stably
expressed by HEK (human embryonic kidney) 293 cells; (c) human AR subtype stably expressed by FlpIn-CHO cells;
(d) displacement of [3H]DPCPX as radioligand; (e) displacement of [3H]ZM241385 as radioligand; (f) displacement
of [3H]PSB603 as radioligand; (g) displacement of [3H]PSB11 as radioligand; (h) displacement of [125I]I-ABMECA as
radioligand; (i) displacement of [3H]NECA as radioligand. For complete experimental details, please refer to the
indicated references.
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This suggested that the interaction between the non-nucleoside agonist LUF5831 and the receptor
could involve some residues different with respect to the ones interacting with the nucleoside derivative
CPA, as later suggested also at the A2AAR (see above LUF5834) [37].

Further 2-amino-3,5-dicyanopyridines were recently reported, bearing a 2-furyl ring in the
4-position and a thiomethyl chain in the 6-position, further substituted with groups of various volumes,
polarity, and chemical-physical properties. Interestingly, all these compounds showed antagonist
activity at the A1AR, with affinity data in the low nanomolar range in several cases (as examples are
reported compounds 20–24; Figure 1; Table 1). The replacement of the 4-phenyl ring with a 2-furyl
group seems critical for the agonist-to-antagonist shift in the intrinsic activity of the compounds [62].

Among the pyridine derivatives acting as agonists at the ARs, a key compound is BAY 60–6583
(25; Figure 1; Table 1). This molecule was introduced as a selective A2BAR agonist, with EC50 potency
data at a low nanomolar level [39,65,66]. Various affinity/potency data were then reported for this
molecule at the same receptor, in all cases ranging in the nanomolar/submicromolar level [39,63,64,67,68].
These observed variations of affinity or potency may be due to different assay protocols or conditions.
Considering the molecular structure, the 3,5-dicyano-6-aminopyridine nucleus is still present, with the
introduction of a substituted phenyl ring in the 4-position and a thioacetamide chain in the 2-position.
This molecule soon became a reference ligand for pharmacological studies involving the A2BAR,
given the low availability of selective ligands for this receptor. In a mutagenesis study at the A2BAR,
the potency and efficacy of BAY 60–6583 was tested at various receptor mutants, in comparison to
the nucleoside agonist NECA [68]. Results showed that in some cases, the mutations led to different
effects for non-nucleoside and nucleoside agonists, considering both the potency (EC50 data) and
efficacy as full or partial agonist, in agreement to what was observed at the A1AR [33] and A2AAR [37].
The partial agonist profile of this molecule at the A2BAR was then assessed [69], even if the results
of the study suggested the authors to highlight that the intrinsic activity of this molecule could vary
from full agonist to antagonist depending on the tissue, the receptor expression level, and the local
adenosine concentration. BAY 60–6583 was used for several pharmacological studies, analyzing in
particular its cardioprotective effects [70,71]. Beneficial effects of this molecule for obesity [72], lung
injury [73], and insulin resistance [74,75] were also reported. Though this molecule never entered in
clinical trials, analogues of BAY 60–6583 were synthesized and tested [64]. These derivatives differed
from BAY 60–6583 in terms of the substituent on the 4-phenyl ring or the 2-chain (as examples are
reported compounds 26–30; Figure 1; Table 1). Interestingly, one of these compounds (28), bearing
a cyclopropylmethyloxy group in the para-position of the 4-phenyl ring (like BAY 60–6583) and
a 2-imidazolyl-methyl-thio chain in the 2-position, showed low nanomolar potency in functional
assay at the A2BAR together with high nanomolar affinity in binding experiments and seems to
show an interesting selectivity versus the other AR subtypes. This selectivity is higher compared to
analogues bearing the same 2-substituent and presenting in the 4-position a phenyl ring unsubstituted
or substituted by smaller groups (9–13; Figure 1; Table 1) [31]. Further derivatives of this work showed
A2BAR potency within the nanomolar range, although in some cases with limited selectivity.

2.1.2. Pyrimidine Derivatives

The pyrimidine scaffold was used as a core structure for the development of AR ligands generally
endowed with antagonist activity and, in some cases, low nanomolar affinity [76]. These compounds
were 2,6-diphenylpyrimidine or 4,6-diphenylpyrimidine derivatives bearing a substituted amide
function in the 4- or 2-position, respectively. The second group showed a marked selectivity for the
A1AR. Further development of these compounds, obtained by mixing their structural features with
the ones of the already described cyanopyridine agonists (see above [31,32]), led to the synthesis of
pyrimidine derivatives endowed with inverse agonist activity at the same receptor [77]. The combination
of two aromatic rings in the 4- and 5-position of pyrimidine led to the development of an A2BAR
antagonist [78]. A few years later, with respect to the publication of the early patents on pyridine
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derivatives, two patents about cyanopyrimidine derivatives as A2AAR agonists were reported by
Otsuka Pharmaceuticals [30,38].

These molecules were 4-amino-6-aryl-5-cyano-2-thiopyrimidines, presenting an acetylamino
group in the para-position of the 6-phenyl ring and various substituents within the 2-chain (as examples
are reported compounds 31–36; Figure 2; Table 2). These compounds present several similarities
compared to the above-described cyanopyridine agonists, with the main difference consisting in the
absence of one cyano group of the pyridines substituted by a nitrogen atom in the aromatic scaffold.
Several of these compounds were claimed as being endowed with low nanomolar potency at the A2AAR.
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In a subsequent work, Louvel and coworkers [35] described cyanopyrimidine obtained by
combining structural features of Capadenoson with the pyrimide core. These molecules showed
A1AR affinity at a low nanomolar level and a good selectivity for the same receptor, with generally a
partial agonist profile (as examples are reported compounds 37–42; Figure 2; Table 2). High A1AR
affinities were obtained in particular with compounds bearing a 3,4-methylenedioxy substituent on
the 4-phenyl ring and a substituted phenyl ring linked to the thiazole moiety of the 2-substituent,
with some analogies with respect to what was observed in a study on pyridine-based Capadenoson
analogues [36]. In addition, dissociation kinetics were analyzed and reported for the same compounds.

Pyrimidine analogues bearing a 2-thioarylalkyl chain and an alkyloxy group in the 6-position
were developed as AR ligands. These compounds (lacking the 5-cyano group and an aromatic
ring within the 6-substituent) showed antagonist activity at the ARs [79]. In a successive work,
the same authors tested analogues of these molecules based on a pyrimidine scaffold, with the
presence of a phenylmethyloxy chain in the 6-position [80]. Biological evaluation of these compounds
showed that they are endowed with micromolar affinity for the A1AR and high nanomolar agonist
potency at the same AR subtype (43–44; Figure 2; Table 2). This suggested the importance of the
presence of the 5-cyano group and an aromatic ring directly linked to the heterocyclic core to achieve
nanomolar affinity at ARs. The pyrimidine core was also fused with a thiazole moiety to obtain
thiazolo[5,4-d]pyrimidine agonists of the A2AAR. These compounds mimicked some structural features
of adenosine, since the 6-substituent inserted in the bicyclic core of the thiazolopyrimidines appears
to provide analogue interaction with the receptor cavity with respect to the adenosine ribose ring,
according to molecular modelling studies [81]. Results of the biological evaluation of these compounds
showed high nanomolar A2AAR affinity and moderate selectivity for some derivatives, with a partial
agonist profile (as example 45; Figure 2; Table 2).
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Table 2. Binding affinity (Ki) and potency (EC50) data of selected pyrimidine-based non-nucleoside
agonists of the ARs.

Cpd Affinity Data (Ki nM, or % Radioligand Displacement) Potency Data (EC50 nM)

A1AR A2AAR A2BAR A3AR A1AR A2AAR A2BAR

31 [30,38] - - - - - 2.8 b -

32 [30,38] - - - - - 2.5 b -

33 [30,38] - - - - - 3.0 b -

34 [30,38] - - - - - 3.3 b -

35 [30,38] - - - - - 2.9 b -

36 [30,38] - - - - - 1.8 b -

37 [35] 4.8 a,c 10% b,d 3.5% a,e 3.0% a,f 12 a - -

38 [35] 14 a,c 44% b,d 2.5% a,e 5.5% a,f 3.9 a - -

39 [35] 2.4 a,c
−2.0% b,d 20% a,e 24% a,f 4.6 a - -

40 [35] 14 a,c 4.5% b,d 0% a,e 4.5% a,f 4.9 a - -

41 [35] 5.2 a,c 2.9% b,d 1.7% a,e
−1.8% a,f 4.6 a - -

42 [35] 1.8 a,c 3.2 b,d 3.5 a,e 11 a,f 1.9 a - -

43 [80] 1240 a,c >10,000 a,g - >10,000 a,g 490 a - Inactive a

44 [80] 1945 a,c >10,000 a,g - >10,000 a,g 870 a - Inactive a

45 [81] 555 a,h 200 a,g - 978 a,i - - -

(a) human AR subtype stably expressed by CHO cells; (b) human AR subtype stably expressed by HEK 293 cells;
(c) displacement of [3H]DPCPX as radioligand; (d) displacement of [3H]ZM241385 as radioligand; (e) displacement
of [3H]PSB603 as radioligand; (f) displacement of [3H]PSB11 as radioligand; (g) displacement of [3H]NECA as
radioligand; (h) displacement of [3H]CCPA as radioligand; (i) displacement of [3H]HEMADO as radioligand.
For complete experimental details, please refer to the indicated references.

2.2. Synthetic Approaches

As reported above, two main scaffolds of compounds with non-nucleosidic structure and agonist
properties for ARs have been identified.

The first series of compounds were substituted 3,5-dicarbonitrile pyridine. Their synthesis and
biological evaluation were reported in two patents by Bayer [26,27]. The synthetic procedure involved
the reaction of an aldehyde with malononitrile in basic conditions to give the aryilidenemalononitrile,
which reacted with another molecule of malononitrile and, in the presence of thiophenol, furnished the
2-amino-4-aryl-6-(phenylthio)pyridine-3,5-dicarbonitriles (general structure I). The latter compound
was used for the production of the useful intermediate 6-thiol derivative II by elimination of the
phenyl group with sodium sulfide and then treatment with chloridric acid to get the thiol derivative.
The reaction of II with the suitable alkylhalide chains furnished the desired final 3,5-dicarbonitrile
pyridines III (Scheme 1).
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(a) piperidine, EtOH; (b) malononitrile, thiophenol, Et3N, EtOH; (c) (i) Na2S, DMF, (ii) 1 M HCl;
(d) alkylhalide, NaHCO3, DMF; Ar = aryl, R = alkyl.
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The reaction pathway for the production of such a series of compounds was previously
reported by other authors [82–84]. In particular Dyachenko and Litvinov obtained the 6-amino-3,5-
dicyanopyridine-2(1H)-thione derivatives IIIa from ethyl 3-(4-butoxyphenyl)-2-cyanoacrylate or
4-butoxy benzaldehyde and cyanothioacetamide in basic conditions by N-methylmorpholine with the
reaction mechanism suggested, as depicted in Figure 3 [85].
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Figure 3. Mechanism proposed by Dychenko and Litvinov for the cyclization formation of 3,5-dicyano
pyridine derivatives. X = Br, Cl; Z = 4-Cl-Ph, CH3COO, PhCO, CH2=CH, NH2CO, H, 4-Br-PhCO,
4-Cl-PhCO, EtCOO, PhCH2COO, 2-oxo-3-pyrazynylcarbonyl, PhNHCO, CN; B = N-methylmorpholine.

Subsequently, on the basis of data previously published in the patent from Bayer, Beukers and
coworkers evaluated some 3,5-dicarbonitrile derivatives as human A2B adenosine receptor agonists,
which were synthesized with the previously reported procedure [31]. Both the synthetic approaches
used the thiol intermediate that was reacted with the suitable organic halide to obtain the final
2-thioalkylpyridine derivatives.

A different methodology was used by Evdokimov and colleagues, who prepared a series of
2-amino-3,5-dicyano-6-sulfanylpyridines and 1,4-dihydropyridines via a single-step, three-component
reaction of malononitrile with different aldehydes and thiols (Scheme 2) [86].
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The hypothesized mechanism of the reaction includes the formation of 1,4-dihydropyridines,
which undergo oxidation by the Knoevenagel adducts rather than air oxygen (Figure 4). As base,
1,4-diazabicyclo[2.2.2]octane (DABCO) or trimethylamine was used and 2-amino-3,5-dicarbonitrile-
6-thio-pyridine derivatives in 20–48% yields were obtained due to the formation of 1,4-dihydropyridines
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Due to the importance such a class of molecules has acquired over the time, several other synthetic
routes have been attempted. In particular, in one of them are reported conditions that led to the use of
less pollutant reagent/catalyst/waste or better yields using a different catalytic agent.

Sridhar and co-workers [87] firstly reported the application of Lewis acids as catalysts in the
preparation of this class of compounds using the single-step approach to react the suitable aldehyde
with malononitrile and thiophenol. Furthermore, a comparison of conventional or microwave
heating to obtain the 2-amino-3,5-dicarbonitrile-6-(phenylthio)pyridine-4-substituted intermediates
was described. The substitution of the base catalysis with the Lewis acid led to a doubling of the yield
of the reaction when ZnCl2 was used as Lewis acid (Figure 5). Comparing the two methods, it is
possible to assume that there was not an increment of the yield with the microwave protocol, but in
this case, a few minutes of heating was sufficient to obtain the final product with good yield.
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Subsequently, other authors used the same approach but using different Lewis acids. Kottawar
and colleagues used scandium triflate to produce highly substituted pyridines. In this case, the yields
of the reaction were subject to the used aldehyde, but they performed the reaction on a great
variety of aldehydes to furnish a good library of data in the production of 3,5-dicyanopyridines [88].
The increasingly eco-friendly requirements for synthetic protocols pushed several researchers to
also look for new materials and conditions. Takale and co-workers [89] investigated the use of
iodoxybenzoic acid (IBX) in aqueous media as an oxidant catalyst. The activity of IBX was compared
with other compounds such as β-cyclodextrin, ceric ammonium nitrate or sulfate, tetrabutylammonium
hydrogen sulphate, urea hydrogen peroxide, and cupreous chloride at reflux conditions for 3–5 h,
but the yields of recovered product were 32–60%, while with IBX at 70 ◦C, for a 1.5 h reaction time,
the yield was 80%. Additionally, the catalyst could be recovered and reused as it maintains its
catalytic property. Thimmaiah and colleagues [90] set up a multicomponent reaction for the production
of 2-amino-3,5-dicarbonitrile-6-thio-pyridines using heterogeneous catalysis by Zn(II) or a Cd(II)
metal–organic framework (MOF). The advantages of the method were the tolerability of different
functional groups present on the substrates, the recovery and reuse of the catalysts, and the fact that the
reaction does not necessitate the use of any organic solvent. Moreover, in these conditions, the reaction
requires less reaction time (30–60 min), with, in general, very high yields of the product isolated by
column chromatography.

Among the nanoparticle materials, CuI nanoparticles were also used as a worthwhile and reusable
catalyst supply and eco-friendly procedure for the synthesis of 2-amino-3,5-dicyano-6-sulfanyl pyridine
derivatives. The products were obtained, in the better conditions, using CuI with a high specific
surface area and approximately crystalline size of 60 nm in ethanol/water under reflux conditions.
The reaction took 100 min and via a multicomponent reaction of 4-chlorobenzaaldehyde, malononitrile,
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and thiophenol under reflux conditions, gave a 90% yield on the isolated product. The method
presented is mild, efficient, inexpensive, and satisfactory to give the products in the presence of novel
nanoscale materials [91].

Another approach to furnish this class of compounds was the use of ionic liquids. This approach
has the advantage of the use of solvents with very low vapor pressure, good thermal stability,
and the possibility to recycle and reuse them. The use of the ionic liquids is strategic also because
gas, and in particular oxygen, can be present in the solvent at a greater concentration versus other
organic solvents, allowing the easy dehydrogenation of 1,4-dihydropyridines leading to the pyridine
derivatives by aromatization of the intermediate. Tian and Guo used 1-butyl-3-methylimidazolium
tetrafluoroborate ([bmim]BF4) as an ionic liquid, which gave a higher yield of 2-amino-4-phenyl-6-
(phenylsulfanyl)-3,5-dicyanopyridines with respect to the corresponding chlorine or bromine ionic
halide liquids [92]. In this case, the reaction was performed with the three-component approach,
aromatic aldehyde, malononitrile, and thiophenol, at 50 ◦C. The advantages of the method were the
very high yields (78–89%), the short reaction time (20–30 min) together with high selectivity and milder
reaction conditions, and the recovery and reuse of the solvent.

Other authors used 2-hydroxyethylammonium acetate (2-HEAA) as an ionic liquid for the
multicomponent reaction [93]. By using 2-HEAA, the reaction was kept at room temperature for 5 min.
Water was added to work up the reaction mixture from which the product was filtered off and the
ionic liquid recovered after evaporation of the filtrate and drying at 100 ◦C under vacuum. The reuse
of the solvents, recovered from a previous reaction batch, led to obtaining the desired product with
an almost quantitative yield in the usual time. The authors hypothesized a mutual activation of the
substrates and the ionic liquid, as shown in Figure 6.
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In 2008, a patent (WO/2005/105778) by Otsuka Pharmaceutical reported the synthesis of
4-amino-5-cyanopyrimidine derivatives as potent A2AAR agonists (second series of derivatives).
Compounds were obtained through the synthesis of the intermediate 2-mercapto-4-substituted
pyrimidine VI (Scheme 3). The scaffold was obtained using a previously reported procedure [94],
by reaction of the useful substituted benzaldehyde with malononitrile, using ethanol as solvent,
and an equimolar amount of an organic base, such as piperidine, at room temperature to give the
2-(4-substitutedbenzylidene)malononitrile. The latter compound was reacted with thiourea [95]
in ethanol and in the presence of sodium ethoxide at reflux to obtain a mixture of pyrimidine
or dehydropyrimidine derivatives V and VI. The reaction of the mixture of compounds with the
suitable alkyl-aryl-halide in DMF as solvent, and in the presence of sodium bicarbonate as the
base at room temperature, furnished the desired final compounds as 2-alkylthiopyrimidines VIII or
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2-alkylthiodehydropyrimidines VII. The dihydro compound V can be transformed to the pyrimidine
derivative VI by an oxidation reaction.
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Scheme 3. Synthetic route for the pyrimidine derivatives with agonist properties at ARs. Reagents and
conditions: a) piperidine, EtOH, r.t.; b) EtONa, EtOH, reflux; c) NaHCO3, DMF, r.t.

Treatment with N-bromosuccinimide (NBS) in ethanol or using 2,3-dichloro-5,6-
dicyanobenzoquinone (DDQ) in dioxane at reflux transformed the dehydro derivative V in the
oxidized compound VI. Alternatively, the final compound could also be obtained by reaction of the
thiourea with the alkyl-aryl-halide through the S-alkyl isothioureas IX. The reaction was performed in
ethanol in the presence of a base or an acid at 60 ◦C. The intermediate was obtained as a free form or a salt
form [96]. The S-alkyl isothioureas IX was then reacted with the benzylidene-malononitriles in ethanol
and in the presence of sodium bicarbonate to furnish the desired compounds VIII (Scheme 4) [97].
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Starting from 2008, Cosimelli and coworkers published a series of compounds with agonist
properties for ARs characterized by a common 6-alkoxypyrimidine scaffold [79,80,98]. The synthesis
of such compounds was obtained by alkylation of the sulfur atom in the 2-position of the commercially
available 4-amino-6-hydroxy-2-mercaptopyrimidine with the suitable alkyl halide in an aqueous
solution of sodium hydroxide (Scheme 5). With the aim at alkylating the oxygen atom at 6-position,
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the 2-S-alkyl pyrimidines where then reacted with the suitable alkyl halide in DMF and excess of
potassium carbonate. The reaction furnished a mixture of O- or N-alkylated derivatives due to the
keto-enolic equilibrium forms present of the reagent. Finally, the O-alkylated derivatives were reacted
with the opportune anhydride and concentrated sulfuric acids as catalyst.
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The identification of non-nucleoside agonists with new scaffolds is very interesting, especially
from the synthetic point of view. In fact, before the discovery of the pyridine and pyrimidine
derivatives, all AR agonists were adenosine derivatives. Their synthesis is very complex and concerns
two different so-called divergent or convergent approaches. In the first, a nucleoside is modified to
obtain adenosine derivatives. An example is the synthesis of the full agonist 2-substituted NECA
derivatives that can be obtained in about nine steps from guanosine to get the intermediate useful
for the synthesis of compounds bearing a substitution in the 2-position, which is important for the
selectivity of these compounds versus A2A/A3 AR subtypes [99]. In the “convergent approach”,
the nucleosides are obtained by a glycosylation reaction through a modified nitrogen heterocyclic base
and a suitable sugar both obtained after modification of commercially available bases and sugars,
in different synthetic steps. The disadvantage of this method is that a mixture of different anomeric
and isomeric compounds could be obtained based on coupling conditions, heterocyclic base, and sugar
structures and reactivity [100,101]. Basically, nucleoside production consists of several synthetic
passages, which involve the purification of the products with relatively complex methods and yields
of the final products that could be very low due to the formation of side compounds.

The synthesis of nucleoside analogues furnished very potent and selective AR agonists that are
actually used as tools to study ARs, and several examples are in clinical trials but in general with poor
pharmacokinetic properties and very complex synthetic routes for their realization [4,14,18,61]. Hence,
the need to discover non-nucleosidic scaffolds gives the advantage of low-cost compounds obtained
with simple and fast methods, and sometimes environmental friendly procedures and fewer waste
products. The change in the production of nucleosidic compounds with respect to the non-nucleosidic
ones leads to a reduction of the synthetic work, decreases the costs of the production of the new
molecules, and, decreasing the amount of waste, reduces the impact on pollution and on the costs of
side-product disposal.

2.3. Molecular Modelling

Currently, several X-Ray or cryo-EM structures of ARs in complex with nucleoside agonists
are available, in particular of the A2A [102–104] and A1 [105] AR subtypes. In contrast, structural
experimental data depicting the interaction between non-nucleoside agonists and the ARs are still
lacking. Studies were reported describing the effect of mutations of the binding site (or its proximity)
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residues on the affinity and/or efficacy of AR ligands, in some cases with the comparison of the effects
on nucleoside- and non-nucleoside agonist activity. These works suggested different ligand–receptor
recognition patterns for these two families of AR agonists. Molecular modelling studies were hence
performed to interpret these data and to simulate the potential non-nucleoside agonist conformations
within the AR binding cavity [36,37,63,64,68,106–109].

The docking conformation suggested by the majority of modelling studies presents the
purine/pyrimidine scaffold of the agonists positioned analogously to the purine core of the nucleoside
agonists (X-Ray/cryo-EM data), between a conserved phenylalanine in the extracellular loop (EL) 2
(i.e., Phe171 in the A1AR) and a conserved isoleucine in the transmembrane (TM) chain 7 (position
7.39 according to the Ballesteros and Weinstein numbering system [110]; in the A1AR, this position
is occupied by Ile274 [111]). Figure 7 shows the putative binding mode of Capadenoson (1) and
LUF5834 (13) at the A1AR. The exocyclic amine has a polar interaction with a glutamate residue in EL2
(i.e., Glu172 in A1AR) that is conserved among all the AR subtypes apart from the A3AR. The same
amine and the cyano group next to this function have a polar interaction with the AR conserved
asparagine in the 6.55 position (i.e., Asn254 in the A1AR), while the aromatic ring directly linked
to the heterocyclic core points toward the depth of the cavity. The thioarylalkyl chain is oriented
toward the extracellular environment. This arrangement appears the most suitable to interpret the
activity of Capadenoson analogues at the A1AR or the Otsuka Pharmaceuticals pyrimidine-based
A2AAR agonists, since the aromatic ring directly linked to the heterocyclic core generally presents
small substituents that may find space within the depth of the binding cavities with no detrimental
effect on the compound arrangement.
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potential binding mode of Capadenoson (1) and LUF5834 (13), respectively, at the A1AR. Key receptor
residues involved in ligand–target interaction are indicated.

The bulky thioarylalkyl chains of these compounds are located at the entrance of the binding
cavities, where large amounts of space are available to accommodate these groups. The role of these
chains to provide selectivity for a specific AR subtype seems critical since the kind of heterocycle
inserted within this substituent modulates AR affinity. In fact, while the presence of an imidazole
leads to compounds with nanomolar affinity for A1, A2A, and A2B subtypes, its replacement with a
thiazole generally enhances A1AR selectivity. The presence of a pyridyl group appears favorable to
improve A2AAR affinity. Modeling studies have not clarified this feature since the thioarylalkyl chain
may adopt several arrangements at the entrance of the binding cavity, with a consequent difficulty in
the interpretation of the affinity data. The effect of the second cyano group (in the para-position with
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respect to the exocyclic amine) of the pyridines on the binding affinity has not been totally clarified as
well, since compounds lacking this group (i.e., the corresponding pyrimidine derivatives) are endowed
with nanomolar affinity for the respective ARs. Compounds bearing this function were suggested
to have an additional interaction with a conserved histidine residue in position 7.43 (i.e., His278 in
the A1AR).

According to the above-described arrangement, the exocyclic amine would occupy the analogue
position of the 6-amine group of nucleoside agonists. Hence, modifications of this group with the
insertion of further substituents could follow the “rules” depicted by Structure-Activity Relationship
(SAR) analyses of nucleoside analogues. As an example, the insertion of alkyl/cycloalkyl groups in
the 6-amine of adenosine led to the development of the selective A1AR agonist cyclopentyladenosine
(CPA). Analogously, the modification of the A1AR agonist Capadenoson (1) through the replacement
of the exocyclic amine with a pyrrolidinyl group led to the development of Neladenoson (2), another
A1AR agonist with improved selectivity versus the A2BAR (see EC50 data of 1 and 2, Table 1). However,
this rule appears to not always be respected in the case of non-nucleoside derivatives, since some
above-described antagonists presenting analogue docking conformations were modified with the
insertion of alkyl groups in the exocyclic amine but the obtained affinities at ARs were generally lower
respect to the unmodified compounds [62].

Further arrangements were reported, with some relevant differences with respect to the
above-described one. At the A2BAR, docking studies of pyridine-based agonists suggested an
additional arrangement with the compounds (Figure 8a) [64,68,106,108].
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Figure 8. Putative binding mode of non-nucleoside agonists at the ARs. Panels (a,b) describe the
potential alternative binding mode of non-nucleoside agonists at the A2BAR (BAY 60–6583, 25) and at
the A2AAR (33), respectively. Key receptor residues involved in ligand–target interaction are indicated.

This docking conformation makes the heterocyclic core still be located in the center of the binding
cavity, but the phenyl ring directly linked to it points toward the extracellular environment, while
the thioarylalkyl chain is inserted in the depth of the cavity. The exocyclic amine again has a polar
interaction with a glutamate residue in EL2 (i.e., Glu174 in A2BAR), while the polar interaction with the
conserved asparagine 6.55 (Asn254 in the A2BAR) is given by the exocyclic amine and the nitrogen atom
of the pyridine core, while the cyan group next to the exocyclic amine points toward the extracellular
space. However, this arrangement appears possible only for derivatives presenting a small thioarylalkyl
group. A further docking conformation was observed at the A2AAR for the Otsuka Pharmaceutical
pyrimidine-based agonists (Figure 8b) [109]. This conformation is an upside-down version of the
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general binding mode described above, with the thioarylalkyl group externally located and the phenyl
ring in the depth of the cavity. The exocyclic amine interacts with TM2 residues, while the cyano
group points toward the conserved histidine in the 7.43 position (i.e., His278 in the A2AAR). The polar
interaction with the conserved asparagine in the 6.55 position (i.e., Asn253 in the A2AAR) is given by
one of the nitrogen atoms of the heterocyclic core. This arrangement could be in agreement with the
affinity data, but its occurrence apparently depends on the arrangement of the EL2 glutamate residue
(i.e., Glu169 in A2AAR) [109].

Experimental (X-Ray/cryo-EM) data would be of great use for interpreting the biological activity
of these compounds and for the design of further simplified agonists with high affinity, i.e., for the
A3AR, the only AR subtype at which the above-described non-nucleoside agonist presents low or
null activity.

3. Conclusions

Agonists of the ARs were only analogues of nucleoside adenosine until the discovery of the agonist
properties of some pyridine derivatives in the early 2000s. This discovery prompted researchers to
identify new non-nucleoside molecules endowed with increased activity and/or selectivity compared
to the various AR subtypes, due to their easy synthesis with respect to the production of nucleosides,
especially from the industrial point of view.

This field appears promising, since on the one hand, selective A1, A2A, and A2B AR non-nucleoside
agonists have been found only with two heterocyclic scaffolds (pyridine and pyrimidine), On the other
hand, selective non-nucleoside agonists of the A3AR subtype have not been yet identified, leaving this
goal still open. Finally, the understanding of the binding mode of non-nucleoside structures at the
AR cavities could significantly help the design of novel agonists based on a simplified structure, with
advantages due to the possibility of exploring different scaffolds and various substituents, which may
also lead to good drug-like properties.
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