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Abstract: In this manuscript, we review the progress made in the synthesis of thick film-

based piezoelectric and magnetoelectric structures for harvesting energy from mechanical 

vibrations and magnetic field. Piezoelectric compositions in the system Pb(Zr,Ti)O3–

Pb(Zn1/3Nb2/3)O3 (PZNT) have shown promise for providing enhanced efficiency due to 

higher energy density and thus form the base of transducers designed for capturing the 

mechanical energy. Laminate structures of PZNT with magnetostrictive ferrite materials 

provide large magnitudes of magnetoelectric coupling and are being targeted to capture the 

stray magnetic field energy. We analyze the models used to predict the performance of the 

energy harvesters and present a full system description. 
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1. Introduction 
 

Wireless sensor nodes are used in a wide spectrum of applications, ranging from the human body to 

the oceans to industrial machines. One can envision a personal health monitoring system where 

external sensor nodes measure the body temperature, pulse rate, and blood pressure and transmit the 

data to a PDA or another hand held wireless devices. Sensor nodes can also be implanted in the human 

body to monitor glucose levels and toxins, while communicating with outside control devices. In the 

ocean environment there are a variety of deployable wireless sensor networks that conduct operations 

such as surveillance, chemical and biological studies, and oil exploration. In case of industrial 

applications, a variety of sensors are utilized to monitor process and manufacturing operations 

including, gas, chemical, temperature, strain, humidity, motion, structural health, and explosives. In all 

these applications the lifetime of the sensor node is limited by the size of battery. In the case of 

implanted devices, the battery is inaccessible and thus other methods for powering the sensor 

nodes are required.  

The advancement in CMOS-technology, IC manufacturing, and networking techniques utilizing 

Bluetooth communication have significantly reduced the total power requirements of wireless sensor 

nodes. The development of ultra-low-power components has lead to power requirements which are 

extremely small (microcontrollers ~160 μA/MHz, sensor ~120 μA, transceiver (RS-232) ~3 mA, and 

transceiver (RS-485) ~120 μA) [1]. Recently, results have been reported on the development of 

wireless sensor nodes requiring power consumption of a few hundred microwatts. Such nodes will 

form the future of dense ad hoc-networks transmitting data from 1 to 10 meters. For communication 

over 10 meters, the sensor networks are projected to operate in a multi-hop fashion, replacing large 

transmission distances with multiple low power–low cost nodes [2–8]. In order for the nodes to be 

conveniently placed and used they should be as small as possible, which puts an upper limit on their 

lifetime. If an electronic device with a 1 cm3 non-rechargeable lithium battery (at a max energy density 

of 2,880 J/cm3 or 800 watt hour per liter) were to consume on average 100 µW of power, the device 

would last 333 days. A lifetime of approximately one year is not practical [9]. Even though the nodes 

in the wireless network will be much smaller than the 1 cm3 area, the power requirements will force 

them to use a battery of much larger size, enhancing the system volume. Clearly, there is an acute need 

for the development of alternative power sources [10,11]. 

The power requirement for commercially available transceivers such as Crossbow’s Mica series, 

Sentilla nodes and Dust Network nodes, varies between 25–150 mW in the active state and less than 

10 mW in the sleep state. This power is consumed by processors, radio, and sensors, depending upon 

factors such as transmission and receive rate. The power consumed by processors can range from 

0.2 nJ/instruction to 2 nJ/instruction at 35 kHz to 400 MHz. The power consumed by radio lies in the 

range of 150 nJ/bit for short distances. The sensor power requirement depends upon the mechanism 

utilized such as magnetic, piezoelectric, capacitive, etc. Piezoelectric and magnetoelectric sensors have 

the advantage that they are passive and consume power only for processing and radio, thus further 

reducing the energy budget. 
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In general, there are four possible ways to address the problem of powering the wireless sensor 

nodes, as follows: (1) enhance the energy density of storage systems; (2) reduce the power 

consumption of wireless nodes; (3) develop self-powered nodes by generating or scavenging power 

and (4) develop other novel methods for powering the nodes. Out of these various possible solutions 

the most efficient and practical method is to develop self-powered nodes by scavenging energy from 

the wasted ambient energy. Table I shows the list of mechanical energy sources available in various 

scenarios which can be trapped for generating electricity locally. Recently, our focus has been on 

industrial machines as the source of energy and also the platform for implementing wireless health 

monitoring sensor network. In addition to vibrations, industrial machines are also source of stray 

magnetic fields which can be trapped for generating electricity using magnetoelectrics. Thus, the same 

device can convert both mechanical and magnetic energy into electricity. 

Table 1 . Sources of energy available in the surrounding which are/can be tapped for 

generating electricity [identified in first draft of standards on vibration energy harvesting, 

Center for Energy Harvesting Materials and Systems (CEHMS)]. 

Human body Vehicles Structures Industrial Environment 
Breathing, blood 
pressure, exhalation, 
body heat, walking, 
arm motion, finger 
motion, jogging, 
swimming, eating, 
talking 

Aircraft, UAV, 
helicopter, 
automobiles, trains, 
tires, tracks, 
peddles, brakes, 
shock absorbers, 
turbines 

Bridges, roads, 
tunnels, farm house 
structures, 
control-switch, 
HVAC systems, 
ducts, cleaners, etc. 

Motors, 
compressors, 
chillers, pumps, 
fans, conveyors, 
cutting and dicing, 
vibrating mach. 

Wind, ocean 
currents, 
acoustic waves. 

 

Several commercial energy harvesting prototypes addressing the needs in industries ranging from 

housing to aircraft to industrial process monitoring systems have been demonstrated. Figure 1 shows 

some of the prototypes that have been deployed on various platforms. Figure 1(a) shows the picture of 

enocean® “Pushbutton Transmitter Module” (PTM 200) which has been implemented in wall-mounted 

electrical switches as shown in Figure 1(c). The transmitter generates power using the energy harvester 

similar to one shown in Figure 1(b) (ECO 100) which converts linear motion into electricity using an 

electromagnetic induction mechanism. The dimensions of harvester are 33.3 × 22.0 × 10.8 mm3 and it 

can provide output pulse of up to 5 V from a force of 5 N with travel distance of 2 mm. Figure 1(c) 

shows the picture of a wall switch where devices like ECO 100 can find application. Figure 1(d) shows 

the picture of Virginia Tech’s “pen” which was found to generate power of 3 mW at 5 Hz and 1 mW at 

3.5 Hz operating under displacement amplitude of 16 mm (corresponding to an acceleration of 

approximately 1.14 grms at 5 Hz and 0.56 grms at 3.5 Hz respectively) [12]. The pen utilizes Faraday’s 

law of electromagnetic induction where a magnet oscillates inside a wound coil as shown in Figure 1(e). 

The integrated pen harvester prototype was found to generate continuous power of 0.46–0.66 mW 

under normal human actions such as jogging and jumping, as shown in Figure 1(f). Figure 1(g),(h) 

shows photographs of vibration energy harvesting heat stress nodes developed by MicroStrain Inc. for 
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Navy applications. The module consists of miniature relative humidity (RH) sensor, a dry bulb 

temperature sensor and black body temperature sensor that combined provide data for determining 

each ship compartments’ wet bulb globe temperature (WBGT) and heat stress indexes. The vibration 

harvester was attached to an air compressor and tuned to work at 52 Hz sinusoidal vibration of 

amplitudes 30–40 milliG’s which was the predominant vibration frequency of machine. Figure 1(i) 

shows the picture of ship just to give an idea of working platform in terms of dimensions. Figure 1(j–k) 

shows picture of a tire pressure monitoring system (TPMS) developed by ASTRI [13,14]. Figure 1(l) 

shows the TPMS application platform where tire vibrations are being used to monitor pressure and 

transmit the data wirelessly. All these results shown in Figure 1 clearly demonstrate the promise of 

vibration energy harvesting technologies. 

Figure 1.  Demonstrated vibration energy harvesting systems. (a)–(c) enocean® 

“Pushbutton Transmitter Module” (PTM 200), ECO 100 harvester, and wall mounted 

switch (Website: http://www.enocean.com/); (d)–(f) Virginia Tech’s “pen” and integrated 

pen harvester prototype generating continuous power of 0.46–0.66 mW under normal 

human actions; (g)–(i) vibration energy harvesting heat stress nodes developed by 

MicroStrain Inc. (Website: http://www.microstrain.com) for Navy applications (taken 

from: Energy Harvesting Technologies, Ed. S. Priya and D. Inman and 

http://www.maritimequest.com/); and (j)–(l) tire pressure monitoring system (TPMS) 

developed by ASTRI for automobiles (Website: http://www.astri.org). 
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Figure 1. Cont. 

 
2. Vibration Energy Harvesting 

 
Traditionally, a single degree of freedom (SDOF) vibrating mass-spring-damper base excitation 

system has been used to describe the magnitude of energy that can be harvested from a vibration 

source as shown in Figure 2. The equation of motion for the vibrating system is given as: 

 0)]()([)]()([)(  tytxktytxctxm T       (1) 

where stiffness of spring is k, total amount of damping (electrical and parasitic mechanical) is cT, 

seismic mass is m, displacement of the base is given by y, and the displacement of seismic mass is 

given by x.  

 

Figure 2. Diagram of a spring-mass-damper base excitation system. 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (1) can be rearranged in order to derive a differential equation for the relative motion, z(t), 

as a function of the base acceleration: 

)()()()( tymtkztzctzm T         (2) 

where z(t) is the relative motion of seismic mass with respect to housing. Using Equation (2), it can be 

shown that the total power dissipated in damper under sinusoidal forcing is given as: 
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where ξT is the total damping ratio of the system. At resonance, the total power in the system can be 

split into sum of mechanical power dissipated and the electrical power generated: 
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where the electrical power generated is equal to Pe(ω), the mechanical power dissipated is given by 

Pm(ω), and ξe and ξm are the electrical and mechanical damping ratios respectively of the harvester. The 

maximum power which can be generated by the electrical power takeoff system occurs when the 

electrical damping is equal to mechanical damping (ξe = ξm). Therefore the maximum electrical power 

which can be generated is given as [10]: 
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Equation (5) represents the theoretical maximum amount of electrical power which can be 

dissipated in electrical load. Depending upon the amplitude, frequency range, operating temperature 

range, and lifetime, any of the five mechanisms, namely electromagnetic, piezoelectric, electrostatic, 

magnetoelectric and electrets, can be selected to convert available vibration energy into electricity. In 

this manuscript, we review the developments made in the field of piezoelectric and magnetoelectric 

energy harvesting, mainly focusing on thick films. 

Materials performance plays key role in the design of harvester. Detailed analytical model for 

piezoelectric energy harvesting using bimorph transducer has been proposed by Oliver and Priya. 

Figure 3 shows the block diagram form of a solution to illustrate the effect of mechanical system on 

electrical output and the feedback term with which the electrical system affects the mechanical 

vibration of system. The variables Hr(s), Fr(s) and U(s) are Laplace transforms of modal forcing, 

modal displacement, and output voltage. Using the block diagram, a transfer function from input 

forcing function to output voltage and displacement can be calculated. The transfer function from input 

base excitation force to output current can be calculated as: 

 

)(
1

)( tF
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G
tU r
        (6) 

 

where G is the through path which represents the generation of current from mechanical motion, and H  

is the feedback path which represents the electrical damping that system places on structure.  
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Figure 3. Block diagram for response around rth mode of the parallel (a = 1) and series (a = 2) 

connected piezoelectric bimorph. 

 

 

The output voltage and power for a series (a = 2) and parallel (a = 1) bimorph around the rth mode 

can be reduced to the following equations [15]: 
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where Фr(x) is the mode shape of the rth mode of cantilever beam, L is the length of beam, Mt is the 

seismic mass, Mb is mass of beam, U is the voltage across the load resistance and Pavg is the power. 

The modal mechanical forcing term is given as: 
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The modal coupling term transducing modal velocity to current in the electrical equation is given as [15]: 
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where hpc is the distance from the ceramic centerline to the neutral axis. The backward modal coupling 

creating the electrical damping on mechanical structure is given as: 

Lx
rs

p
s

p
ELx

r
r dx

xdh
h

h

ah

bd

sdx

xd



















 




)(

24

1)(
22

31

11

    (10) 

where hs and hp are the thicknesses of the piezoceramic and substructure layers, Es11  is the modulus of 

elasticity for the ceramic, d31
 
is the piezoelectric constant, b is the width of the beam, and a = 1 (for 

bimorph layers connected in parallel), a = 2 (for bimorph layers connected in series) [15]. The 

capacitance of bimorph is given as: 



Sensors 2009, 9             
  

6369

p
p h

bL
C


        (11) 

Using Equations (7)–(11), it can be shown that piezoelectric material with high d31, and g31, and low 

loss is required for bimorph transducer. The loss in piezoelectric material is mainly related to dielectric 

and electromechanical losses. These parameters contribute to the electrical damping. 

Dong et al. have presented the equivalent circuit model for magnetoelectric energy harvester as 

shown in Figure 4. Based upon this model, the induced voltage (Vinduced) across the dielectric layer 

under open circuit condition can be given as [16]:  

 HF
Z

Z
V m

m

c
pinduced  








      (12) 

where φp is the electromechanical coupling factor, φm is the magneto-elastic coupling factor, ZC is the 

capacitance impedance (Zc = 1/jωpC0) and Zm is the mechanical impedance. The negative “－” sign 

indicates the reversal of phase between the applied F (or H) and the induced voltage Vinduced. It can be 

seen from Equation (12) that a high electromagnetic coupling and magneto-elastic coupling is required 

to harvest the vibration and magnetic field simultaneously. 
 

Figure 4. Equivalent circuit model for magnetoelectric energy harvesting. 

 

3. Piezoelectric Thick Films for Energy Harvesting 
 

Figure 5 highlights the application spectrum of piezoelectric thin/thick films. Piezoelectric thick 

films with thickness range of 1–100 m have been used in devices such as micro-fluidics, micropumps, 

accelerometers, and energy harvesters. In addition to energy harvesters, other microelectromechanical 

systems (MEMS) such as accelerometers, acoustic sensors, and infrared detectors also require dense, 

crack-free piezoelectric thick films [17–25]. However, synthesis of thick films is complex, as it is more 

susceptible to cracks by thermal stresses induced by difference in thermal expansion coefficients 

between the film and substrate [26,27]. Another important parameter for enhancement of ferroelectric 

and piezoelectric properties of films is texture. It is well known that electromechanical properties of 

Pb(Zr,Ti)O3 (PZT) film strongly depends on crystallographic orientation [28–30]. Piezoelectric 
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properties of (001) oriented rhombohedral PZT films near morphotropic phase boundary (MPB) are 

superior than those of (111) oriented films over the entire composition range [31–35]. 

Figure 5. Application areas of piezoelectric materials with varying thickness. 

 
 

In order to fabricate high quality thin/thick PZT films, chemical or physical deposition methods 

such as sputtering, pulsed laser deposition (PLD), metal organic chemical deposition (MOCVD), sol-

gel, tape casting, and screen printing have been employed [36–39]. Published techniques for synthesis 

of PZT thin films can be divided into two categories, those that use in-situ crystallization (i.e., 

crystallization during deposition) and those that involve post-deposition crystallization. MOCVD and 

physical deposition at elevated temperatures fall into the former category [36]. For in-situ 

crystallization, oxygen partial pressure is known to be a critical process control parameter. The second 

category includes most chemical and low temperature physical deposition techniques [37–39]. Pre- 

and post-crystallization processes are also known to influence the nucleation, microstructure, texture, 

and electrical properties of PZT films. 

Synthesis of crack-free thick films by using PLD, sputtering, and sol-gel requires careful 

optimization of various synthesis parameters [40–43]. Park et al. have reported (100)-oriented 8 m 

crack-free thick film using sol-gel route, as shown in Figure 6 [41]. By controlling the pyrolysis steps, 

they were able to obtain preferred orientation and by using an organic additive [polyvinylpyrrolidone 

(PVP)] they were able to increase the thickness of film. Using the combination of these two parameters, 

8-m-thick films with (111) or (100) texture were successfully synthesized. 

A combinatory process of sputtering and sol-gel with controlled nucleation and growth has been 

used to synthesize 5 m thick (100)-oriented high quality films exhibiting longitudinal piezoelectric 

coefficient of >300 pC/N [42,43]. The microstructure and orientation of films was adjusted by first 

synthesizing a thin seed layer derived from sol-gel method, and then subsequent depositions by 

sputtering. The seed layer had the same composition as other PZT layers. Initially, when a sputtered 



Sensors 2009, 9             
  

6371

thin layer was deposited on seed layer, the film had small grains with columnar structure; however, as 

the deposited film became thicker, it developed a large non-columnar grain structure with lateral 

growth, as shown in Figure 7a,b. The size of grains near the surface was larger than that near the 

substrate, indicating that grain boundary pinning effect becomes smaller as the distance from seed 

layer increases. Based on this observation, a multi-sputtering process was developed [43].  

 

Figure 6. Cross-sectional image of 8 μm-thick (100) oriented PZT film using sol-gel [41]. 

 
 
Figure 7.  Sputtering method with seed layer to control the grain growth. (a) schematic 

diagrams of normal sputtering on a seed layer, (b) cross-sectional view of 3.5 μm-thick 

film using normal sputtering on a seed layer [42], (c) schematic of multi-sputtering on a 

seed layer, and (d) cross-sectional view of 5 μm-thick film using multi-sputtering on a seed 

layer [43]. 

 

 

By reducing the thickness of film in each deposition step, its columnar microstructure was 

maintained, as shown in Figure 7c,d. Simultaneous optimization of both seed layer and multi-step 

sputtering process allowed suppressing the crack generation process. It was found that when the film 
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had small in-plane grain size and fibrous columnar structure, the crack generation process was 

suppressed due to increase in strength and structural stability. Consequently, thickness of PZT film 

with (100) orientation was markedly increased up to 5 μm which also increased the piezoelectric 

properties [43]. 

Piezoelectric properties were found to improve as the film thickness was increased [41–43]. This 

phenomenon is mainly related to reduction in clamping and damping effects of substrate [44–47]. 

Substrate clamping restricts the domain motion under applied electric field. However, it is difficult to 

directly associate the change in piezoelectric properties with degree of clamping in films, because 

these properties also depend of other microstructural variables such as grain size, grain shape, porosity, 

and texture [41,44–47]. The degree of clamping is often approximated by measuring the residual stress 

in films [41,47]. Substrate clamping can be reduced if the films are in free-standing state [48]. Recently, 

we have demonstrated systematic change in piezoelectric properties by synthesizing and measuring 

properties of three separate structures, clamped, island, and free-standing, as shown in Figure 8 [48]. 

The results showed that both lateral clamping as well as substrate clamping play an important role in 

controlling the ferroelectric response. 

Figure 8. Schematic diagram illustrating two different types of clamping in fully-clamped, 

island, and freestanding films [48]. 

 
Akedo et al. have introduced aerosol-deposition (AD) technique for synthesizing thick films [49,50]. 

This technique can provide crack-free dense thin and thick films with thicknesses ranging from 

submicrometer to several hundred micrometer with very fast deposition rates. Figure 9 shows a 

schematic diagram of an AD system, which consists of a carrier gas supply system with mass flow 

control, powder chamber containing the ceramic powder, and deposition chamber with motored X–Y 

stage and nozzle evacuated by rotary vacuum pump with mechanical booster. These three parts are all 

connected by a tube. The aerosol chamber contains the starting powders, which are mixed with a 

carrier gas to form an aerosol. The deposition chamber is devised for film formation. This chamber is 

connected with a vacuum system including a rotary vacuum pump and a mechanical booster pump. 

During deposition, the deposition chamber is evacuated by the vacuum system, and therefore a 

pressure difference between the aerosol chamber and deposition chamber is produced. The aerosolized 
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ceramic particles from the aerosol chamber are delivered to the deposition chamber by carrier gas due 

to the pressure differential between the two chambers. The particles are accelerated and ejected 

through a slit-type nozzle, impacted onto a substrate to form a dense film in the deposition chamber. 

Particle velocity can be controlled by the carrier gas flow rate. The desired film thickness and 

deposition area can be obtained by scanning the substrate on motorized X-Y-Z stage. Fine patterning 

for the film is also possible by inserting a mask between the nozzle and the substrate.  

AD is called as room temperature impact consolidation (RTIC) because dense films are formed by 

collision of fine particles with substrate at room temperature. However, actual deposition mechanism 

has not yet been established [49,50]. Considering previous studies on AD, it can be simply presumed 

that during collision with substrate, particles are broken into smaller pieces, rebound and impact each 

other, and then form the continuous film [49,50]. Consequently, the deposition of particles by AD 

appears to be largely dependent on kinetic energy and fracture energy of the primary particle, and 

therefore particle diameter and mechanical properties of particle such as strength are considered as 

important factors in producing dense high-quality AD film [49]. 

Figure 9. Schematic diagram of an aerosol deposition (AD) system. 

 
Park et al. have implemented this technique on various material systems including PZT-based 

compositions and realized highly dense and well-crystallized piezoelectric thick films of up to 100 m 

thickness as shown in Figure 10 [51–54]. In terms of deposition area, PZT films up to 150 × 150 mm2 

can be fabricated by AD with a 150 mm nozzle, as shown in Figure 11. Recently, 300 × 300 mm2 TiO2 

photocatalytic thin films have been deposited by AD, which indicate the future possibility of 

fabricating PZT films on 12” wafers. AD-piezoelectric thick films exhibit excellent piezoelectric 

properties due to high density and minimized substrate clamping. AD process can also be used to 

induce dopants into the film in order to tailor the specific properties. For example, Zhang et al. [55] 

have reported that Mn doping in PZT thin films increases hysteretic properties and reduces fatigue. 

Recently, we have demonstrated hard piezoelectric (PZT-PZN-Mn) thick films (~10 m) by AD 

technique [56] which opens possibilities to design high energy density compositions.  
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Figure 10. Cross-sectional view of piezoelectric film with various thickness by AD; 

(a) 3 μm, (b) 10 μm, (c) 20 μm, and (d) 100 μm [54]. 

 

Figure 11. Large area piezoelectric 10 m-thick films by AD. (a) 150 × 150 mm2 on 

stainless steel and (b) on 100 × 100 mm2 glass. 

 
 

3.1. Piezoelectric Micro-Generators for Wireless Sensor Nodes 

 

Piezoelectric micro-generators have higher energy density compared to other mechanisms such as 

electrostatic, and electromagnetic ones [57–59]. PZT films have been widely used for fabricating 

harvesters because of their superior effective piezoelectric constant [24,25,60–63]. Jeon et al. 
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demonstrated a d33 mode power generating device with interdigitated electrodes that can deliver 

1.0 W from 10.8g vibration amplitude at resonant frequency of 13.9 kHz [24]. However in most cases, 

the vibrations available for harvesting energy lie in the low frequency range of 50–150 Hz [58,59]. 

Fang et al. [60] have demonstrated a MEMS-based PZT cantilever structure with Ni proof mass that 

was found to generate 2.16 W power from 1g vibration at the resonance frequency of 609 Hz. 

Shen et al. [25] have studied a d31 mode harvester with embedded Si proof mass which was found to 

generate 2.15 W power from 2g vibration at resonance frequency of 461.15 Hz. Liu et al. [61] have 

reported micro-generators using varying length of beams in order to realize broadband behavior. The 

prototype was found to generate 3.98 W power from 0.5 g vibration in the frequency range of 226 to 

234 Hz. Renaud et al. [62] have reported a PZT based MEMS harvester with maximum power of 40 W at 

1.8 kHz. Important characteristics of reported MEMS based piezoelectric harvesters are summarized in 

Table 2. 

Figure 12. Plane Views of cantilevers: (a) d33 type and (b)d31 type. 

  

Table 2. Characteristics of reported piezoelectric micro-generators 

Power 

(W) 

Frequency 

(Hz) 

Acceleration 

(g) 

Power density 

(W/cm3) 
Mode Materials Ref.

1.0 13.9k 10.8 37,037* d33 PZT [24] 

2.16 609 1 10,843* d31 PZT [60] 

2.15 461 2 3,272 d31 PZT [25] 

3.98 226–234 0.5 ------ d31 PZT [61] 

40 1.8k 1.9* 21,680* d31 PZT [62] 

0.045 1,495 2 ------- d31 AIN [63] 

* Estimated values 

There are two piezoelectric modes (d31 and d33) commonly used for MEMS based piezoelectric 

transducers as shown in Figure 12(a),(b). Figure 13 shows the cross-sectional views of these 

piezoelectric modes [24,64] and Equations (13) and (14) are the representative relationship between 

stress XX (or strain x3) and electric field Ei (or voltage V3i). 
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ii Edx 33        (13) 

iixxi LgV 33        (14) 

where x3 is strain, V3i is the open circuit voltage, d3i (V/m) and g3i (Vm/N) are piezoelectric constants, 

and Li is the distance between electrodes which could be either thickness of piezoelectric (tpiezo) or L. 

The generated open-circuit voltage of a d33 type device will be much higher than that of the d31 type 

generator of similar beam dimensions.  

Figure 13. Two modes of piezoelectric conversion from input mechanical stress. 

 

Since the mass of a MEMS scale device is small, the operating frequency ranges are quite high, in 

the range of ~kHz. In order to overcome this problem, the natural tendency has been to increase the tip 

mass of the cantilever [25,60,61]. However, this affects the mechanical integrity and lifetime of 

harvester. Choi et al. [65] have recently proposed various possible designs such as spiral to reduce the 

operating frequency range. This is an important area of research in MEMS harvester in order to expand 

the applicability in common scenarios. 

 

4. Magnetoelectric Composites: Thick and Thin Film 
 

Magnetoelectric (ME) effect can be described as an induced electric polarization in a material when 

a magnetic field is applied to it, or an induced magnetization in a material when an electric field is 

applied to it [66–69]. ME effect can be described as the product property of piezoelectric and 

piezomagnetic effects [70], or as the product property of pyroelectric and pyromagnetic effects [71]. 

Most of the ferromagnetic materials show magnetostrictive effect, however, piezomagnetic effect in 

these materials has not been observed. This implies that the strain caused by magnetic field in these 

materials is not linearly proportional to the field strength but to the square of magnetic field strength.  

For energy harvesting applications, ME composite structures can be used to enhance the generated 

power from the micro-generator. The ME product property can be exploited to generate electricity 

from unused magnetic fields around electric motors and additionally from their mechanical vibrations. 

ME composites can also be used to convert the vibration energy into electricity with higher efficiency. 
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In a simple design, the vibrations can be used to rotate a mechanical assembly which consists of 

magnets thereby creating the oscillating magnetic field [72]. Ferro Solutions has demonstrated a device 

based on this approach which was able to provide an energy density of 2.0 mW/cm3 at 21 Hz and 100 mG. 

There has been significant advances in improving the magnitude of ME coefficient of laminates which 

makes this technique promising. A combined magnetic and vibration energy harvesting device may be 

implemented on silicon using the thin film deposition methods and fabrication process flow described 

earlier and combining with micro-machining technique. 

 
Figure 14. Reported ME composite film structures: 3-1 [73,74], 3-0 [76], and 2-2 [79]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently, multiferroic nanocomposite thin films of ferroelectric and magnetostrictive materials have 

been reported motivated by the work of Zheng et al. [73–75], via physical deposition methods such as 

pulsed laser deposition (PLD) and chemical solution methods such as sol-gel spin coating. From 

microstructural point of view there are three kinds of nanostructured composite films, i.e., (i) 3-0 

structures with magnetic spinel nanoparticles embedded in the ferroelectric films [76,77], (ii) 1-3 

heterostructures (vertical heterostructures) consisting of magnetic spinel pillars vertically embedded 

into ferroelectric films [73,75], and (iii) 2-2 heterostructures (horizontal nanostructures) consisting of 

alternating layers of ferroelectric perovskite and magnetic oxide [78,79], as shown in Figure 12. 

Wan et al. [76] synthesized PZT-CoFe2O4 (CFO) composite thin film using sol-gel process and spin-

coating technique. The films exhibited both good magnetic and ferroelectric properties, and the ME 

3-0 film

3-1 film

 

2-2 film
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effect of these films was found to be strongly dependent on magnetic bias and magnetic field 

frequency. Zheng et al. [73–75] reported composite films where arrays of magnetic CFO nanopillars 

with diameters of 20–30 nm were embedded in a ferroelectric BTO matrix. Other combinations of 

PbTiO3–CoFe2O4 and BiFeO3–CoFe2O4 have also been grown on SrTiO3 single crystal substrates. 

These composite films have been found to exhibit excellent ferroelectric and ferromagnetic properties 

but there is no ME coupling. It seems that these structures have significant leakage which restricts the 

poling process. On the other hand, 3-0 and 2-2 heterostructures have been found to exhibit finite ME 

coupling due to the fact that leakage problem of magnetic phase can be avoided by controlling the 

volume fraction. 

Recently, we have successfully implemented AD process to fabricate ME composite thick films [80]. 

A highly dense 3-2 nanocomposite ME thick films of PZT-PZN and (Ni,Cu,Zn)Fe2O4 (NCZF) with 

thickness of over 10 m was synthesized on platinized silicon substrate at RT. The schematic and TEM 

microstructure is shown in Figures 15(a-b). The fabricated nanocomposite film showed well dispersed 

laminated magnetic NCZF platelets inside PZT-PZN piezoelectric matrix. This structure eliminated the 

leakage problems found in 1-3 ME composite films and minimized substrate clamping effect, thus 

resulting in improved ME coefficient of 150 mV/cm·Oe as shown in Figure 15(c). In addition to ME 

characteristics, the deposition rate of ME films was exceptionally higher (over 1 m/min) than other 

conventional thin film process. 

 

Figure 15. (a) schematics and (b) TEM microstructure of PZNT-NCZF 3-2 ME composite 

film by AD. (c) ME coefficient of 3-2 ME composite film with PZNT-NCZF fabricated by 

AD as a function of DC magnetic bias field [80]. 

  

(a)

(b) 

(c)
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5. Conclusions  
 

We presented the review on prototype commercial vibration energy harvesters and their suitability 

for wireless sensor networks. A brief discussion was presented on modeling of vibration energy 

harvesters. Using the analytical models, it was shown that piezoelectric material with high d31 and g31, 

with low loss is required for bimorph transducer while high electromagnetic coupling and magneto-

elastic coupling is required to harvest the vibration and magnetic field simultaneously using 

magnetoelectric composites. An in-depth discussion was provided on synthesis of thick films using AD. 

This is an extremely important development as large area deposition capability with excellent film 

quality will allow transitioning the micro-scale prototype devices. Combining the developments in the 

area of piezoelectric thick films with micro-machining techniques will allow fabrication of cost-

effective energy harvesters. 
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