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Abstract: A well known problem for precise positioning in real environments is the pres-
ence of outliers in the measurement sample. Its importance is even bigger in ultrasound based
systems since this technology needs a direct line of sight between emitters and receivers.
Standard techniques for outlier detection in range based systems do not usually employ ro-
bust algorithms, failing when multiple outliers are present. The direct application of standard
robust regression algorithms fails in static positioning (where only the current measurement
sample is considered) in real ultrasound based systems mainly due to the limited number of
measurements and the geometry effects. This paper presents a new robust algorithm, called
RoPEUS, based on MM estimation, that follows a typical two-step strategy: 1) a high break-
down point algorithm to obtain a clean sample, and 2) a refinement algorithm to increase
the accuracy of the solution. The main modifications proposed to the standard MM robust
algorithm are a built in check of partial solutions in the first step (rejecting bad geometries)
and the off-line calculation of the scale of the measurements. The algorithm is tested with real
samples obtained with the 3D-LOCUS ultrasound localization system in an ideal environment
without obstacles. These measurements are corrupted with typical outlying patterns to numer-
ically evaluate the algorithm performance with respect to the standard parity space algorithm.
The algorithm proves to be robust under single or multiple outliers, providing similar accuracy
figures in all cases.
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1. Introduction

The general implantation of Global Navigation Satellite Systems (GNSS) has triggered the develop-
ment of new applications based on the user’s position. Their limited use in indoor environments [1] has
created the necessity for new positioning systems able to localize in environments where GNSS signals
are not available.

Several technologies are employed to design custom positioning systems able to work in indoor or
restricted environments, referred to as Local Positioning Systems (LPS) [2, 3]. They are commonly
classified by their accuracy, which is directly dependent on the technology: systems based on Received
Signal Strength Indicator (RSSI) achieve accuracies of several meters [4, 5]; Ultra-Wide Band (UWB)
radio systems, using the measurement of Time of Flight (ToF), achieve errors within tens of centime-
ters [6, 7]; artificial vision navigation systems have accuracies of several centimeters [8]; and finally,
ultrasound location systems are able to offer accuracies below one centimeter [9].

A well known problem for precise positioning in real environments is the presence of outliers in the
measurement sample. These outliers are provoked by obstacles present in the localization area generating
reflected alias signals (multipath effect), or blocking the direct signal path producing distortion in the
received signal or even avoiding its reception.

The literature concerning outlier detection in the Global Positioning System (GPS) is extensive,
whereas this is not the case for LPSs, especially those using ultrasound. Most of the GPS articles
are devoted to the existence of a single faulty measurement, since it was developed for aerial navigation
where the presence of two simultaneous faults is very unlikely. However, the tendency is changing to
algorithms that detect multiple failures, that are more likely to occur when using GPS in urban areas or,
in the close future, in combination with others GNSS. Although GPS has several procedures to detect
system errors, we will concentrate on those techniques developed to detect faulty measurements in the
receiver (Receiver Autonomous Integrity Monitoring - RAIM), since they can be employed on every
localization system based on ranges.

Outlier detection methods can be divided into two main categories: 1) backward search, outliers are
detected and removed one at a time; 2) robust methodologies that use forward search, look for an initial
clean measurement sample without outliers and add good measurements to improve the result, or robust
functions, that are indirect procedures to detect outliers downweighting atypical observations.

The Parity Space (PS) [10] is a backward search method, being the most prominent Receiver Au-
tonomous Integrity Monitoring (RAIM) algorithm. In [11] a RAIM algorithm is studied for detecting a
fixed number of satellite failures. In [12] a backward search method is implemented. Another backward
search is implemented in [13] for sensor networks. However, the standard literature on outlier detection
usually considers the backward search as non robust for multiple outlier detection, since it is affected by
masking (misidentification of outliers) and swamping (identification of good measurements as outliers)
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[14]. Some examples of robust algorithms can be found in GPS bibliography, as Huber M-estimation
[15], and for LPS systems [16, 17]. Huber M-estimation has convergence problems when a good ini-
tial estimation is not available, whereas the robust methods presented in [16] and [17] do not take into
account the geometry, with decreased robustness when a temperature measurement is not available.

In this paper a new robust method called RoPEUS (Robust Position Estimation in Ultrasound Sys-
tems) based on the MM estimator [18] is presented. The MM estimator is computed in three stages: an
initial regression estimate with a high breakdown point, an M-estimate of the error scale, and a refining
M-estimate using a redescending function. The use of two M-estimates inside the algorithm is the rea-
son for calling them MM estimators. The low efficiency of high breakdown point robust algorithms is
complemented in MM estimation with a robust final estimation step with high efficiency, but maintain-
ing the high breakdown point of the initial estimation. The MM estimator has become very popular for
this reason [19]. Three main modifications are added to the standard MM algorithm: 1) an intermediate
checking of the high breakdown point estimator solutions is built into the algorithm, to make it robust
to bad geometries; 2) the scale for the high efficiency algorithm is obtained from the off-line calculation
of the standard deviation of the measurements using real data, and a geometry parameter of the initial
estimation; and 3) a final check of the solution is added for taking into account the convergence of the
algorithm to local minima. This algorithm is tested for static positioning in the 3D-LOCUS ultrasound
localization system [20] in an ideal environment without obstacles. These measurements are corrupted
with typical outlying patterns to numerically evaluate the algorithm performance with respect to the
standard Parity Space (PS) algorithm.

The next section will present the background mathematics needed to introduce the algorithms em-
ployed, including basic regression concepts, the least squares regression algorithm and the correspond-
ing equations in the ultrasonic system. The following section introduces the PS algorithm. Section 4.
presents the RoPEUS algorithm. The evaluation of both algorithms is designed in Section 5. and the
results presented in Section 6. Finally, Section 7. contains discussion and conclusions.

2. Mathematical Background

Although the equations defining the position estimation problem from measured ranges are nonlinear,
most algorithms rely on the linearized equations to find the solution. The nomenclature employed in
regression analysis and the basic regression algorithm employed to solve the linearized equations is
introduced in this section. Its relation to the position estimation equations is presented next.

2.1. Regression Basics

The purpose of regression analysis is to fit equations to observed variables [21]. The basic equations
that define the univariate regression problem are:

yi = g
(
xi,β

)
+ ei for i = 1, ..., n, (1)

where n is the sample size. The variables xi are the independent variables or carriers, whereas the
variable yi is the dependent variable also referred as to observations. The vector β, with p unknown
parameters,
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β =


β1

β2

...
βp

 (2)

(vectors and matrices will be denoted by boldface), has to be estimated from the data X and y, with:

X =


x1

x2

...
xn

 =


x11 x12 · · · x1m

x21 x22 · · · x2m

...
... . . . ...

xn1 xn2 · · · xnm

 (3)

where m is the dimension of the carriers. Applying a regression estimator to such a data set yields:

β̂ =


β̂1

β̂2

...
β̂p

 (4)

where the estimates
(
β̂1,β̂2,· · · ,β̂p

)
are called the estimated regression coefficients. Applying Equation 1

to these coefficients yields:
ŷi = g

(
xi, β̂

)
for i = 1, ..., n (5)

with ŷi the predicted or fitted value of yi. The residual or measurement residual ri of the ith equation is
the difference between what is actually observed and what is fitted:

ri
(
β̂
)

= yi − ŷi. (6)

2.2. LS Regression Algorithms

It is usually considered that the error term ei of Equation 1 is normally distributed with equal variance
σ2 (ei ∼ N(0, σ2)). In this case, the maximum likelihood estimator of the regression coefficients is the
least squares (LS) estimator, defined as:

argmin
β̂

{
L
(
β̂
)}

(7)

with:

L
(
β̂
)

=
1

2

n∑
i=1

(
ri
(
β̂
))2

=
1

2

∥∥∥r(β̂)∥∥∥2

=
1

2
r
(
β̂
)T

r
(
β̂
)
. (8)

One option for obtaining the regression coefficients satisfying Equation 7 is through linearization and
iterative estimation of β̂. Linearizing Equation 1 using a Taylor series around the approximate regression
coefficients

(
β̂1,β̂2,· · · ,β̂p

)
, we obtain:
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g
(
β̂ + ∆β̂

)
= y ' g

(
β̂
)

+ J
(
β̂
)
∆β̂ ⇒ r

(
β̂
)

= J
(
β̂
)
∆β̂ ⇒

⇒ ∆β̂ =
(
J
(
β̂
)T
J
(
β̂
))−1

J
(
β̂
)T

r
(
β̂
) (9)

where J is the Jacobian matrix and ∆β̂ is the actualization step. The Gauss Newton method provides
the same step, having the sign of the Jacobian matrix inverted.

The Gauss-Newton method has several drawbacks, the unguaranteed convergence being the most
important. However, the Levenberg-Marquardt method guarantees convergence. Its step is defined by
the following equation:

∆β̂ =
(
J
(
β̂
)T
J
(
β̂
)

+ µIp

)−1

J
(
β̂
)T

r
(
β̂
)

(10)

with µ ≥ 0. The parameter µ ensures the algorithm’s convergence, since for all µ > 0 the coefficient
matrix of Equation 10 is positive definite. This parameter starts with a predefined value µinit and changes
in every iteration of the algorithm. When it is large, the step is close to the gradient direction, which is
good if the current estimation is far from the solution. If it is small, the step will be close to the Gauss-
Newton step, which is good for the final steps of the iteration process when the estimation is close to
the solution. Consequently, we used this in this paper. A detailed implementation of the algorithm is
presented in [22].

2.3. Trilateration equations in ultrasound location systems

The usual formulation for ultrasound LPS trilateration considers a known velocity of sound that is
obtained through the measurement of the ambient temperature. This approach induces errors since the
velocity of sound depends on more parameters (such as humidity), and the temperature is not uniform in
indoor environments.

The equations that define the trilateration problem, when the velocity of sound is considered unknown,
are:

ToFi =

√
(xbi − xu)

2 + (ybi − yu)
2 + (zbi − zu)

2

Vs
+ ei for i = 1, ..., n, (11)

where ToFi is the measured time of flight between the user and the beacon “i”, (xbi , ybi , zbi) is the known
position of the beacon “i”, (xu, yu, zu) is the unknown user position, Vs is the unknown sound velocity,
ei is the error term, and n is the sample size.

The variables (xbi , ybi , zbi) are the carriers (xi), ToFi are the observations for the dependent variable
(yi), and the unknown parameters are:

β =


β1

β2

β3

β4

 =


xu

yu

zu

Vs

 (12)

Consequently, in this problem, the number of unknowns (p) is 4, and the dimension of the carriers
(m) is 3.
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The literature considering an unknown sound velocity is very scarce. Figueroa proposes the use of
a specific linearized system in [23], but this approach is not appropriate when the beacons are arranged
in a plane since the resulting matrices are singular. That is the reason for using the standard approach
for nonlinear equations based on the Jacobian of these equations presented in the previous section. The
resulting matrices are non singular with the beacons located in the same plane, and the Jacobian matrix
is:

J =


x11−β̂1

β̂2
4 ŷ1

x12−β̂2

β̂2
4 ŷ1

x13−β̂3

β̂2
4 ŷ1

ŷ1
β̂4

x21−β̂1

β̂2
4 ŷ2

x22−β̂2

β̂2
4 ŷ2

x23−β̂3

β̂2
4 ŷ2

ŷ2
β̂4

...
...

...
...

xn1−β̂1

β̂2
4 ŷn

xn2−β̂2

β̂2
4 ŷn

xn3−β̂3

β̂2
4 ŷn

ŷn

β̂4

 . (13)

3. Parity Space Method for Outlier Detection

The most widespread method for detecting outlying measurements in GPS is the use of the parity vec-
tor [10, 24]. Using the matrix J obtained after the convergence of the Gauss-Newton or the Levenberg-
Marquardt methods, we can obtain a matrix called P of dimensions (n − p) × n with rank n − p, such
that P PT = In−p and P J = 0. This matrix can be obtained through singular value decomposition [25]
or QR factorization [26] of the matrix J . Using the QR factorization (J = QR) and dividing the matrix
Q in two submatrices Q = [Q1,Q2], where Q2 has dimensions n× (n− p), the matrix P is obtained as
P = QT

2 . The parity vector is then obtained from this matrix and the residual vector as:

p = P r (14)

To detect a faulty measurement, the vector p can be employed, and also its transformation from the
parity space to the measurement space, that employs the matrix S = PTP = I − J

(
JTJ

)−1
JT (with

rank n− p and having the property of being idempotent: S2 = S), obtaining the faulty vector:

f = S r . (15)

A decision variable for detecting a faulty measurement can be calculated from these vectors; we will
employ D = pTp = fT f . When it reaches a threshold (T ), we will deem that there is an erroneous
measurement. The detection threshold (T) is a function of the false alarm probability (PFA) defined as
the probability of the decision variable being above the threshold without any measurement error. From
this value, that is supplied to the algorithm, we can calculate the value of T as [10]:

PFA = 1− σ2χ2
n−p
(
T
)
⇒ T = χ2

n−p,(1−PFA)/σ2 (16)

If an error is detected (D > T ), the maximum value of f 2
i /Sii is calculated. The index i of this

maximum identify the faulty measurement, which is deleted.
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4. RoPEUS Algorithm

The RoPEUS algorithm, proposed by the authors of this paper, is inspired in the MM estimator
of Yohai [18]. The MM estimator is divided into three stages: an initial regression estimate with a
high breakdown point algorithm, an M-estimate of the error scale, and a refining M-estimate with a
redescending function. The RoPEUS algorithm follows the same strategy with the exception that the
error scale (estimated standard deviation of the measurement error) is performed off-line, due to the small
number of measurement employed in a single estimation. With this modification, the RoPEUS algorithm
consist of two steps: a high breakdown point estimation step and a refining step. The high breakdown
algorithm employed is based on the Least Trimmed Squares (LTS) estimator, which is modified to make
it robust to bad geometries and to detect erroneous results. The refining M-estimate considered is the
bisquare estimator, that employs the error scale calculated off-line. Figure 1 shows a flow chart of the
proposed algorithm.

4.1. First step: LTS Robustified Method

Standard least-squares regression diagnostic methods, such as Parity Space, are affected by two re-
lated phenomenons: masking (misidentification of outliers) and swamping (identification of good mea-
surements as outliers) [14]. These effects make the use of robust estimators for position calculation more
appropriate.

The LTS estimator is the value that minimizes the expression:

argmin
β̂

{
h∑
i=1

r2
(i)

(
β̂
)}

(17)

where r2
(i)

(
β̂
)

are the squared residuals (r
(
β̂
)
) written in ascending order (brackets in the subindex de-

note ordered increasing values). Since the minimization considers the h (< n) smallest squared residuals,
it will be inmune to n− h failing measurements.

For its calculation, we compute the estimated position using the Levenberg-Marquardt algorithm
for all combinations of the n measurements taken h at a time; as such we get q =

(
n
h

)
= n!

h!(n−h)!
possible solutions. Then, for each solution, we compute the corresponding n residuals, arrange them in
ascending order, and sum the h smallest squared residuals. We can store these results in a vectorR with
q elements. The regression coefficients associated with the index v of the minimum of this vector (β̂v)
are the solutions of the algorithm [21].

The LTS algorithm in its basic form does not take into account the estimated precision of the result.
This makes the system prone to reduce the accuracy of the algorithm, mainly when any or several sub-
groups of satellites form a bad geometry. The algorithm proposed in this paper takes into account the
geometry using an estimation of its goodness to reject those subgroups having a bad geometry.

The standard deviation of the estimation error is related to the standard deviation of the measurements
by the square root of the diagonal elements of the matrix DOP =

(
JTJ

)−1 [27]. These values and their
combination are usually referred in GPS bibliography as Geometric Dilution of Precision parameters
(GDOP [28]). This name is based on the fact that the Jacobian matrix depends on the existing geometry
of the beacons with regard to the user position.
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Figure 1. Flowchart of the RoPEUS algorithm.�� �
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The parameter selected for rejecting bad geometries is the Position Dilution of Precision (PDOP) that
relates the positioning Root Mean Square (RMS) error with the standard deviation of ToF measurements.
Although this parameter is dimensionless in the GPS system, it will have units of [m/s] in our algorithm
since the positioning error is measured in meters and the time of flight is measured in seconds. The
PDOP parameter is calculated from the DOP matrix above, being:

PDOP =

√√√√ 3∑
i=1

DOPii [m/s] (18)

This parameter can be computed for the q possible solutions of the LTS algorithm calculated above.
Those surpassing a maximum predefined PDOP limit (PDOPMAX) are rejected and not taken into
account for the final LTS solution. Notice that it is not necessary to calculate this parameter for all
the possible solutions (which increase the calculations) but only for those candidate solutions (β̂v) with
smaller values in the vectorR.

Since this algorithm does not take into account the existence of too many erroneous measurements
(more than n − h), a parity space checking of the final solution is made. If an outlier is detected, the
solution is flagged as “non valid reading”.

4.2. Second Step: Refining Step

The second step needs the off-line calculation of the ToF measurement error variance, which is per-
formed using a large number of position estimations previous to the algorithm application. Using the
RMS error of these position estimations and its averaged PDOP, the estimated standard deviation of the
measurements will be:

σ =
RMS

PDOPMEAN

[s] (19)

This value will take into account both the standard deviation and bias of the ToF measurements. The
scale of the residuals will be estimated from σ and the PDOP parameter on every position determination
using the following formula:

σr =
σPDOP

β̂4

[s] (20)

This will be the value employed in this refining step as the scale.
M-estimation is based on the minimization of a function of the residuals, aiming at a result not influ-

enced by outliers. The M-estimation function considered for attaining higher efficiency is the bisquare
(also called biweight) function, which is a redescending estimate. This function is defined as:

ρ(ri) =

 1−

[
1−

(
ri
σrk

)2
]3

if |ri| ≤ σrk

1 if |ri| > σrk

(21)

The value of k will determine the efficiency of the algorithm. Table 1 shows the values of the param-
eter k for prescribed efficiencies of the algorithm [19].
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Table 1. Efficiency of the bisquare algorithm for several values of the parameter k [19].

eff. 0.80 0.85 0.90 0.95
k 3.14 3.44 3.88 4.68

Figure 2. Biweight function and its corresponding weighting function.
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The algorithm implemented for minimizing this function of the residuals is a weighted least squares.
The weighting function corresponding to the biweight is:

W (ri) =

[
1−

(
ri
σrk

)2
]2

I
(
|ri| ≤ σrk

)
(22)

where I(.) is the indicator function, whose value is 1 when the argument is fulfilled and 0 otherwise. Fig-
ure 2 shows both the biweight function (Equation 21) and its corresponding weighting function (Equation
22) with σr = 1 and k = 4.68.

A final check of the result is added at the end of the algorithm, to discard those estimations that
has converge to impossible values. It is checked whether the estimated velocity of sound is within a
reasonable value. Notice that this range do not depend on any temperature measurement.

5. Outlier Characterization and Test Design

A numerical evaluation of the algorithm has been made by controlling the outliers pattern present in
the measurements. Consequently, the data considered in the evaluation is composed of real measure-
ments and typical outlying patterns. This approach also checks whether the estimated value of sigma is
correct under real measurements.
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Figure 3. Outlying patterns considered in the evaluation of the algorithm.
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5.1. Typical outliers in ultrasound LPS

The outlying patterns in ultrasound range measurements are basically of three types: ramp, peak and
step. These patterns are presented in Figure 3, applied to a real ToF measurement, to show the importance
of these errors with respect to the actual value. Figure 3a shows an example of a real environment where
these outlier patterns would be present.
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Figure 3b shows a typical outlying ramp pattern: one of the measurements deviates progressively
from its true value. This pattern is produced when a moving obstacle partially occludes the direct signal
path. The signal is propagated by refraction on the obstacle surface. The maximum deviation is not
large, making difficult its detection.

The peaks pattern showed in Figure 3c is characterized by large intermittent outliers. These errors are
usually produced when the power of the signal refracted in an obstacle is very low and there is multipath
present. The system is not able to distinguish which signal is the correct one. An intermittent change
between two different times of flight is produced.

When the direct signal path is completely occluded an outlying step occurs (see Figure 3d). It is
characterized by a continuous large error since the only detected signal is coming from an indirect path.

5.2. Test Design

The RoPEUS and PS algorithms performance will be evaluated using real measurements obtained
in an ideal environment (without obstacles) with the 3D-LOCUS ultrasound local positioning system
[20]. This system consist of a network of seven fixed nodes located at known positions and a mobile
node whose position is calculated. Every node has one emitter and one receiver of ultrasonic signals,
being able to work as a centralized system (the mobile node emits and the fixed nodes receive the ultra-
sonic signal), private (the mobile node receives the ultrasonic signals emitted from the fixed nodes), or
bidirectional (signals are sent to and from the mobile node). Original measurements are borrowed from
[9] where the system performance was evaluated, taking those belonging to the bidirectional mode in a
windy environment and using Time Division Multiple Access (TDMA). These measurements are taken
with seven fixed nodes located in the ceiling of a fixed structure forming and hexagon with one of them
in its center. The mobile node is located in 22 fixed positions taking 100 individual measurements in
each of them.

Table 2. Outlying patterns added to the original measurements to evaluate the RoPEUS
algorithm performance.

Cases Type of errors added to
under original measurements

consideration Ramp Peak Step

Case 1
Case 2 X
Case 3 X
Case 4 X X

The original measurements from [9] will be corrupted in this paper with the outlier patterns presented
in the previous section following Table 2. Four different cases are considered: 1) Original measurements;
2) Step pattern; 3) Ramp pattern; 4) Step and peak patterns simultaneously in two different beacons. The
step outlier is applied to every measurement of one of the beacons with a value of 2,941 µs (1,000 mm at
340 m/s). The outlying ramp is also applied to every measurement of one of the beacons and is repeated
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on every single test point with a maximum value of 294 µs (100 mm at 340 m/s). The peaks pattern is
applied randomly to a 25% of the measurements (550) in a different beacon with a value of 2,941 µs.
Notice that the peaks pattern applied to a 100% of the measurements would be the same as the step
pattern.

5.3. Design of the algorithms

The main configuration parameters employed in the evaluation of the PS and RoPEUS algorithms are
presented in Table 3.

Table 3. Main configuration parameters employed in the simulations.

Algorithm Parameter Value

PS

Base algorithm Levenberg-Marquardt
Max iterations 25

µinit 10−6

σ 3.444 µs

PFA 1%
Max errors 2

R
oP

E
U

S

LTS robust

Base algorithm Levenberg-Marquardt
Max iterations 25

µinit 10−6

σ 3.444 µs

PFA 0.1%
h 5

PDOPMAX 2,000 m/s

MM (Bisquare)

Base algorithm Weighted Least Squares
Max iterations 25

σ 3.444 µs

Efficiency 0.95%
k 4.68

The standard deviation of ToF measurements is calculated off-line using Equation 19. Using the
RMS error and the mean PDOP of the original 2,200 position determination presented in [9], results in
σ = 3.444 µs for bidirectional TDMA with wind. This value will be used in both algorithms the parity
space and the refining step of RoPEUS (in the bisquare estimator).

The false alarm value in the parity space algorithm is fixed to 1%. The same algorithm is implemented
at the end of the LTS robustified algorithm for rejecting erroneous measurements; the value employed is
0.1% in this case. We take a smaller value in the latter case since it must only detect big errors in the
estimation.

Since there are seven measurements available in every position estimation (n = 7), a maximum of two
erroneous measurements can be detected (having in this case five correct measurements which implies
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one redundant measurement since we estimate four parameters). Therefore, if the parity space algorithm
detects three erroneous measurements the estimation will be flagged as non valid. The implication in the
LTS algorithm is that h equals 5 in the Equation 17.

The PDOP parameter employed in the LTS algorithm for rejecting bad geometries will be fixed to
2,000 m/s. An intuitive approach to the significance of this value can be obtained dividing it by a standard
velocity of sound which approximately results in the amplification rate of the distance measurement
errors due to the geometry (with the real velocity of sound it would result in the exact amplification of
the standard deviation of the distance measurements). For instance, with a velocity of sound of 340 m/s
the amplification ratio would be 5.88.

A final check of the results is added for deleting anomalous values, that occur when the algorithm
converges to local minima. This check consists in flagging as non valid measurements those with an
estimated velocity of sound outside the 300-400 m/s range.

Finally, the starting point of the algorithms is located 0.5 meters below the centroid of the beacons
(approximately the center of the hexagon) and a velocity of sound of 320 m/s is considered as an initial
seed.

6. Results

The results obtained are presented in Figure 4 and Table 4, offering a qualitative and quantitative
comparison of the algorithms performance. Figure 4 includes the results obtained after the first step of
the RoPEUS algorithm (LTS Robust). This step give robustness under multiple outliers to the global
algorithm, while the second step, whose results correspond to the RoPEUS algorithm, improves the
accuracy (as can be seen in Figures 4a–4d). The numerical results extracted from the algorithms (Table
4) are the RMS of the positioning error, maximum and 95% confidence level errors, the simulation time,
and the number of non valid measurements.

Table 4. Numerical results obtained when applying the PS and RoPEUS algorithm to the
four cases studied (see Table 2).

Outlying pattern Algorithm RMS(mm) 95%(mm) Max(mm) Time(sec) Non valid(#)

Original Parity Space 3.4132 5.7 9.0866 12.3071 1
measurements RoPEUS 3.3916 5.7 9.0889 86.2593 1

Step
Parity Space 3.5039 5.9 11.7279 19.8974 1

RoPEUS 3.4532 5.7 9.5744 112.6032 1

Ramp
Parity Space 4.4343 7.0 34.7512 19.1777 3

RoPEUS 4.7735 7.3 46.628 84.8579 1

Step and peaks
Parity Space 3.4912 5.8 11.7279 22.2398 551

RoPEUS 3.7456 6.4 10.1281 115.4485 15
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The evaluation of the accuracy can be extracted from the numerical errors and the cumulative distri-
bution functions. They show that both algorithms get very similar results, being slightly better for the
PS algorithm in the last case (see Figure 4d). The worst case outlying pattern is the ramp error, where
both algorithms get a RMS error below 4.8 mm and a 95% level below 7.4 mm.

The robustness of the algorithms is evaluated in terms of non valid measurements, which is clearly
represented in the numerical results. The lack of robustness of the parity space algorithm is clearly
shown when two outliers are present (step and peak errors, whose results are presented in Table 4),
where the number of non valid estimations is approximately equal to the number of evaluations with two
simultaneous erroneous measurements. It is observed in Table 4 that the original measurements sample
without contamination contains 1 erroneous measurement that is detected by both algorithms.

Figure 4. Cumulative distribution function obtained when applying the PS and RoPEUS
algorithms to the four cases studied (see Table 2).

(a) Original measurements (Case 1)
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(b) Step outlying pattern (Case 2)
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(c) Ramp outlying pattern (Case 3)
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(d) Step and peaks outlying patterns(Case 4)
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The simulations have been performed in a Pentium 4 processor at 3.20 GHz with the algorithms im-
plemented in Matlab. The computational load of the algorithms is reflected in the total time employed
for the 2,200 estimations, shown in Table 4. The RoPEUS algorithm takes about five times the time
employed by the PS algorithm. The maximum computation time correspond to the case with two simul-
taneous outliers, where the RoPEUS algorithm lasts for about 115 seconds that correspond to a maximum
actualization rate of the position of 19 Hz.

7. Discussion and Conclusions

A new algorithm called RoPEUS, based on the MM estimator, has been proposed and tested in this
article. Its robustness, accuracy and computational load makes it suitable for being implemented in any
ultrasound positioning system.

The general structure of the algorithm based on two steps (robust and refining steps) is borrowed from
the MM algorithm. The scale estimation step considered in the MM algorithm is omitted and calculated
off-line due to the reduced number of measurements available, which is usually the case in global and
local positioning systems.

If this algorithm would be applied to a system with more measurements available (more fixed beacons
in our example), the on-line estimation of the scale could improve the solution. However, the improve-
ment is not secure and the number of measurements necessary for a reliable result remains to be studied;
whence, we recommend to make the scale calculation in the way it has been presented. However, an in-
crement in the number of beacons could result in an infeasible computation time in the LTS robust step.
This could be overcome with the consideration of only a random selection of all the possible combina-
tions of the n measurements [19]. Anyway, we propose to select the seven smaller ToF measurements,
when we scale the 3D-LOCUS system with more fixed beacons, to avoid the increased computation
time.

The LTS robustified algorithm discards those solutions where the numerical stability of the equations
is compromised, and allows for the existence of a large error. This approach, compared to the one
presented in [17], has the advantage of avoiding the necessity of determining an approximate range for
the velocity of sound (although the range employed in this article was coarse, the result depended on the
width of this range). The PS checking is included for detecting those estimations where more than two
erroneous measurements are present. The result then obtained is just an intermediate estimation, that is
refined with the bisquare estimator requiring a “good” starting point.

The implementation of the refining biweight estimator enables the LTS algorithm to have a bigger
error, consequently the DOP limit does not need to be very tight. This algorithm achieves a robust final
improvement of the solution with a slight increase of the computation time. It automatically rejects or
takes into account measurements discarded by the LTS algorithm, without having a deterministic number
of influential data.

Although the velocity of sound estimation presents better accuracy than the traditional calculation
from the temperature data, it presents the problem of local minimums in a few evaluations with outliers.
It has been observed that these minimums usually fall far from the real solution, presenting anomalous
velocity estimations. This is the reason for adding a final check that detects whether the value of the
estimated velocity of sound is reasonable or not.
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The robustness of the RoPEUS algorithm carries an important increment in the computational load.
However, it is not excessive for 3D-LOCUS since the update rate of 19 Hz enabled by the algorithm
is larger than the actual update rate of the 3D-LOCUS system, with a maximum of 10 Hz in CDMA
mode (tested with four beacons) and around 2 Hz in TDMA bidirectional mode [9]. Consequently,
this algorithm can be implemented in the central computer that is connected to the 3D-LOCUS system
for real time operation. We also consider that an optimized implementation could be made to run this
algorithm in the central node, or alternatively, distributing the needed computation among the sensor
nodes of the 3D-LOCUS system. However, RoPEUS cannot be implemented in other nodes with severe
battery restrictions due to its computational demands. In such processing and battery-limited sensor
networks a centralized implementation must be made.

The result of the RoPEUS algorithm is an accurate position estimation that does not rely on any
temperature measurement or approximate range, is robust under two simultaneous outliers (using seven
beacons), and has an appropriate position update rate that does not slow down the system. This results
in an increase of the system availability, improved reliability and improved general performance.
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