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Abstract: A new closed-loop drive scheme which decouples the phase and the gain of the 

closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We 

deduce the system model of closed-loop driving and use stochastic averaging to obtain an 

approximate “slow” system that clarifies the effect of thermal noise. The effects of 

mechanical-thermal noise on the driving performance of the SMG, including the noise 

spectral density of the driving amplitude and frequency, are derived. By calculating and 

comparing the noise amplitude due to thermal noise both in the opened-loop driving and in 

the closed-loop driving, we find that the closed-loop driving does not reduce the RMS 

noise amplitude. We observe that the RMS noise frequency can be reduced by increasing 

the quality factor and the drive amplitude in the closed-loop driving system. The 

experiment and simulation validate the feasibility of closed-loop driving and confirm the 

validity of the averaged equation and its stablility criterion. The experiment and simulation 

results indicate the electrical noise of closed-loop driving circuitry is bigger than the 

mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise 

may get bigger than the electrical noise of the closed-loop driving circuitry. 

 

Keywords: Silicon Micro-Gyroscope (SMG); drive-mode; thermal noise; stochastic 

averaging 
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1. Introduction  

 

The Silicon Micro-Gyroscope (SMG) is an important MEMS inertia sensor with a broad application 

in the national economy and defense fields [1-7]. These SMGs usually measure the proof-mass 

displacement by capacitive methods, but under normal atmospheric pressure, the minute moving 

proof-masses are especially susceptible to mechanical noise resulting from molecular agitation. 

Although accuracy is usually limited by electrical noise and systematic errors, mechanical thermal 

noise provides a theoretical lower limit for random errors [8-11]. Thus, a proper accounting of thermal 

noise is essential for the development of higher accuracy tactical and inertial grade gyroscopes.  

The effects of mechanical-thermal noise on the sense-mode have been presented in the literature [8-

11], but discussions of the effects of mechanical-thermal noise on drive-mode can hardly be found in 

the current literature. In this paper the effects of mechanical thermal noise on the driving performance 

of the SMG are mainly derived. Only the influence of the mechanical thermal noise is considered, 

while the electrical noise, sampling and quantization error, and distortion due to filtering are not 

considered. Meanwhile, we assume all the other processes run in an ideal manner. In this paper, a 

stochastic averaging approach is used to take account of the effects of closed-loop drive. The effect of 

mechanical thermal noise on drive-mode is discussed, then stochastic averaging is used to develop a 

model for the “slow” dynamics which represent the driving amplitude and frequency of the SMG. Both 

the steady-state and transient response of the model are obtained by stochastic averaging. The spectral 

density of the random error due to thermal noise on drive-mode is also derived.  

 

2. Working Principle 

 

As shown schematically in Figure 1(A), the micro-gyroscope consists of two silicon frames (outer-

frame and inner-frame); the outer-frame is anchored on a glass substrate by six outer support beams 

and is connected with the inner-frame through four inner support beams. The outer-frame and the fixed 

interdigitated drive electrode on the glass substrate form the drive capacitors. The alternating drive 

force of the out-frame along the x-axis is generated through applying alternating current (AC) voltage 

with direct current (DC) bias voltage to the fixed drive electrode. Since the stiffness of the inner 

support beam along the x-axis (Kxi >> Kx) is very large, the outer-frame and the inner-frame are driven 

together to vibrate along the x-axis by the alternating drive force, which causes the alternating 

capacitance between the outer-frame and fixed drive-sense electrode. We can capture the drive 

displacement by detecting the alternating capacitance. When the rotation rate along the z-axis is input, 

according to the Coriolis effect, the Coriolis force along the y-axis will be loaded on both the outer-

frame and the inner-frame. Because the stiffness of the outer support beam along the y-axis (Kyo>> Ky) 

is very large, only the inner-frame is driven to vibrate along the y-axis by the Coriolis force, which 

induces the alternating capacitance between the inner-frame and fixed sense electrode. We can obtain 

the rotation rate along the z-axis by detecting the alternating capacitance. 
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Figure 1. (A) The frame of the SMG. (B) The simple model of SMG. (C) The picture of 

the processed SMG. 

(A)                                                            (B)                                      (C) 
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The simplified motion equations of SMG are described by:  

x x x em x R x K x F n                          (1) 

2y y y ym y R y K y m x                 (2)  

where x and y are separately the drive axis displacements and sense axis displacements in meters, Ω 

the rotation rate along the z-axis in radians/second, mx (mx=m1+m2) and my (my=m2) the drive proof 

mass and the sense proof mass in kilograms, Rx and Ry the damping in Newtons/meter/second, Kx and 
Ky the stiffness in Newtons/meter, and 2 xm x   the denote of the Coriolis force. Fe (Fe=Fdsinωdt) is the 

electrostatic force used to maintain the drive-mode vibration at a specified amplitude in terms of 

displacement, and at a resonant frequency of the drive-mode. Mechanical thermal noise on the drive 

axis is represented by the random force n(t), in units of force.  
Ignoring the influence of the random force n(t), the drive axis displacements and sense axis 

displacements in the steady state are described by: 

sin( )x dx A t              (3) 

sin( )y dy A t                (4) 

where 
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 ; ωnx =(Kx/mx)
(1/2); ωny =(Ky/my)

(1/2); Qx=mxωnx/Rx, Qy=myωny/Ry. 

When ωd=ωnx=ωny, the maximum drive axis displacements and sense axis displacements are 

described by: 
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d x
d

x

F Q
x t t
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3. Mechanical Thermal Noise 

 

Consider the damped harmonic oscillator: 

x x xm x R x K x n                       (7) 

The presence of damping in the system suggests that any oscillation would continue to decrease in 

amplitude forever. Inclusion of the fluctuating force n(t) prevents the system temperature from 

dropping below that of the system’s surroundings. The damper provides a path for energy to leave the 

mass-spring system. This is the essence of the Fluctuation-Dissipation Theorem. According to 

Equipartition, if any collection of energy storage mode is in thermal equilibrium, then each mode will 

have an average energy equal to (1/2)kBT where kB is Boltzmann’s constant(1.38×10-23J/K) and T is 

the absolute temperature in degrees Kelvin. A mode of energy storage is one in which the energy is 

proportional to the square of some coordinate ; e.g., kinetic and spring potential. 

When this system is in thermal equilibrium, the probability distribution of x and x is given by 

equation (8):[12]   
( , )

( , ) B

E x x

k Tp x x e


 


 const ant                (8) 

For the oscillator, the energy is the sum of the kinetic and spring potential energy: 

2 21 1
( , )

2 2x xE x x m x K x                       (9) 

From here, the equipartition theorem can be derived, namely that the mean energy in any energy 

storage mode is equal to(1/2)kBT. Thus: 

2 21 1 1

2 2 2x x Bm x K x k T                                                  (10) 

where <·>denotes an ensemble average. The form of the distribution ( , )p x x indicates that x and x are 

independent, Gaussian, and have zero mean. Since this holds for all values of mx and Kx, the thermal 

noise n(t) must be a white Gaussian noise with two sided spectral density [10]: 

n B xS k TR（ ）＝2  N2/ Hz                (11) 

The spectral density of drive displacements due to thermal noise is:  

 
2 2

22 2
2

1
nx n

nx
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x

S S

Q

 
  

 
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（ ）= （ ）

m

         (12) 

So the noise power spectrum is:  

2 1

2 n

B
n x

x

k T
x S d

K
 







   （ ）                 (13) 

The RMS noise displacements due to thermal noise is:  

2
2

B B
n n

x x nx

k T k T
x x

K m 
                   (14) 
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According to Equation (5) and Equation (14) the signal-to-noise ratio of drive-mode is:  

( / ) / d x
x n

x B

F Q
S N x x

K k T
                   (15) 

The above equation indicates that we can improve the signal-to-noise ratio by increasing the 

quality Qx and driving force amplitude Fd, or by reducing the stiffness and temperature.  
  

4. Closed-loop Driving and System Model  

 

As is known in the art of Coriolis force sensors, in order to achieve an acceptable response from the 

sensor, the proof mass vibration of the drive-mode should have a frequency at, or close to, the resonant 

frequency of the proof mass. At the same time, in order to improve the entire performance of the SMG, 

a high stability of the driving frequency and the amplitude of the drive-mode are needed. To satisfy 

those demands, the closed-loop driving of the drive-mode must be achieved. To this end, the drive 

signal has a frequency equal to the resonant frequency of the proof mass. However, parasitic 

capacitances between the drive electrode and the drive-sense electrode can cause significant errors. 

That is, when the drive signal capacitively couples into the drive-sense electrode, the accuracy of 

amplitude control by the feedback circuit is degraded and the harmonic frequency of the closed-loop 

system departs from the resonant frequency of the proof mass, resulting in less than optimum sensor 

performance, so we must eliminate the capacitive coupling. Various techniques are generally utilized  

in an effort to reduce capacitive coupling. In this paper, such a technique is utilized as follows: the 

drive electrode is arranged on the left, the drive-sense electrode is arranged on the right and the anchor 

of the SMG is connected with the ground or the virtual ground, which is shown in Figure 1(A). By 

separating the drive-sense interface (drive-sense electrode) from the interference source (drive voltage), 

we can reduce these capacitive couplings. Besides, the SMG studied in this paper is executed in 

vacuum encapsulation, with a working pressure under 10-1 Torr and the quality factor of the drive-

mode above 2,500, which can also reduce these capacitive coupling by decreasing the drive voltage. 

The modulation-demodulation method through applying high-frequency carrier to the proof mass can 

also reduce these capacitive couplings.  

First, we need to extract the resonance signal of the drive-mode. The simplified interface circuitry is 

shown in Figure 1. Figure 2 show the details of the interface circuit and the equivalent circuit. Here in 

Figure 2, C(t) is the alternating drive-sense capacitance, C(t)=C0C, C0 is constant capacitance. The 

part of signal sense can be equivalent to a current supply I(t) and a internal resistance C0 [see Figure 

2(B)], where:  

.( ( ))
( ) s

d xc

d V C tdQ
I t V K x

dt dt
         (16) 

In Equation (16), the differential of driving capacitance to displacement Kxc (Kxc = C

x




 ) is a 

constant relating to the structure. The capacitance C0 is very minute and generally has hundreds of fF, 

thus the impedance of C0 is very large and we can ignore the influence of the impedance C0. The 

resistance R1 generally has a few MΩ, the capacitance C1 hundreds of nF, ω/ 2Л a few kHz (ω≈ωnx), 

so R1>>1/ωC1, the output voltage P(t) is described by: 
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.
1

1
1 1

( ) ( ) ( )
1/ s xc

R
P t I t R I t R V RK x

R j C
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
           (17) 

 

Figure 2. (A) The interface circuit of drive-sense signal. (B) The equivalent circuit. 

(A)                                                       (B) 

   
 

Figure 3 is the frame of the closed-loop driving. In this figure s is a complex variable. Vs, Vref and 

Vsup are the direct current biases. L and J are the zero and the pole of the integrator separately. G is the 

gain of the integrator. In order to improve the precision and the stability of the closed-loop driving, the 

Q-factor of the drive-mode should be increased (the SMG is executed in vacuum encapsulation), while 

the well closed-loop control should be achieved. The closed-loop control must meet such two 

conditions: 1. The phase of the whole loop θ=2nπ (n is an integer); 2. The gain of the whole loop A>1.  

 

Figure 3. The frame of the closed-loop driving. 
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A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving 

system is adopted in the SMG, so that the phase and the gain can be optimized, respectively. The gain 

of the whole closed-loop system is controlled by the branch circuit above, and the phase is controlled 

by the branch circuit below. These two branch circuits respectively fulfill the two conditions of closed-

loop control, adjusting and optimizing the closed-loop parameter separately. The “voltage comparator” 

is the key component of the closed-loop driving. The output of the “voltage comparator”, with an 

invariable output amplitude, only reserves the phase information of the input signal, so the phase 

conditions of the closed-loop are isolated from the gain conditions. Except the drive mode of SMG and 

“voltage comparator”, with the suppose that the phase of the other parts is fixed, when the phase of the 
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“voltage comparator” is changed, the vibrating frequency of the closed-loop system will depart from 

the resonant frequency of the proof mass, so the phase condition controls the frequency of the driving 

displacement. It is obvious that the gain branch controls the amplitude of the driving displacement. 

According to Equations (34) and (35) (See Section 5), ignoring the influence of the random processes 
n1(t) and n2(t) ,we can know that average amplitude a and average phase are decoupled, so the phase 

branch and the gain branch can be optimized respectively and the new closed-loop drive scheme is 

succeeded. 

To make sure that the harmonic frequency of the closed-loop system equals, or gets close to the 
resonant frequency of the proof mass, that is to say, the phase of the whole loop θ＝2nπ(n is an 

integer). When ωd=ωnx, the phase-shift of the drive displacement x(t) comparing to the drive force Fe 

is -π/2(See Equation (5)), the phase-shift of the output voltage of pre-amplifier P(t) comparing to drive 

displacement x(t) is -π/2 and the phase-shift of the output voltage of the “voltage comparator” Vcp(t) 

comparing to output voltage of preamplifier P(t) is –π. The other parts, which in fact all have tiny 

phase errors, have no phase-shifts, so the closed-loop control meets the phase conditions. In this way, 

it is hoped that the above closed-loop phase errors should be as tiny as possible. Various techniques 

are generally utilized in an effort to reduce closed-loop phase error, or drift, in servo circuits, such as 

amplifier circuits utilizing an operational amplifier. One such technique includes the addition of one or 

more zeros (i.e., a lead filter) in cascade with the open-loop gain of the operational amplifier in order 

to flatten the open-loop gain over a portion of the frequency band, generally resulting in only moderate 

closed-loop error reduction and also compromising stability. Another technique for reducing gain and 

phase errors is to increase the gain-bandwidth product associated with the operational amplifier. 

However, use of this technique is limited by the gain-bandwidth product of commercially available 

operational amplifiers as well as by the acceptable increased power dissipation associated with higher 

performance operational amplifiers. However, a Phase-Corrected Amplifier Circuit can be used to 

remove the closed-loop phase error [13]. An amplifier circuit having a bandpass circuit in cascade with 

the forward loop gain is provided, with the bandpass circuit having a transfer function approximating 

one plus a bandpass characteristic, the passband of which corresponds to the information band. This 

arrangement increases the open-loop gain of the amplifier circuit around the information frequency 

without affecting the open-loop gain at DC and crossover so as to reduce phase and gain errors around 

the information frequency. 

In Figure 1, the drive capacitance and the electrical potential energy stored in the capacitance is 

described as: 

0
1 0

( ( ))
( )d

h x x t
C t

d
 

                   (18) 

2
1

1
( )

2 dU C t V                       (19) 

where ε0 is the permittivity, h the thickness of the comb fingers, x0 the overlap length of the fingers, 

and d the width of the gap between fingers. According to Figure 3, the electrostatic drive force is 

described by: 

21 1
sup sup

( ) ( )1 1
[( ( )) ( ) ( ( ))]

2 2
d d

e cp

C t C t
F V V z t V t V z t

x x

 
    

 
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2 2 2 2 21 1 1
sup sup sup

( ) ( )1 1
( ( )) ( ( ) ) ( ) ( ( )) ( )

2 2
d d d

cp cp

C t C C t
V z t V z t V t V z t V t

x x x

  
     

  
  (20) 

where 1dC

x




is the differential of driving capacitance to displacement, the z(t) is a DC and Vcp(t) is a 

AC with the frequency near the resonant frequency ωnx. The first term of Equation (20) is a constant 

and does not contribute to the oscillating driving force. Since the amplitude of the AC driving voltage 

is chosen to be much smaller than the bias voltage, the third term of Equation (20) is much smaller 

than the second term and can be neglected. Therefore, under proper bias, the driving force is 

approximately proportional to the AC driving voltage. 

According to Figure 3, the drive-mode of the SMG is modeled as a second-order spring-mass-

damper system with a dynamic behavior described by: 

2 ( )nx
nx n

x x

n
x x x F u

Q m

                     (21) 

where Fn(u) is electrostatic drive force ( 2 21
sup( ) / ( ( ) ) ( ) /d

n e x cp x

C
F u F m V z t V t m

x


  


), and suppose 

z(t)≥0. 

Simplifying the integrator (See Figure 3) into the basic integral function, so: 

0
( | ( ) |) ( )

t

refG V P t dt z t    

i.e.: 
( ) ( | || |)ref s xcz t G V V R K x                                  (22) 

where | |x


 is modulus of the driving velocity and:  

( ) s xcP t V RK x   

So the output of the “voltage comparator” is:  

( )
( )

| ( ) | | || |
xc

cp
xc

K xP t
V t

P t K x
   




                 (23) 

In summary, the entire closed-loop driving system, shown in Figure 3, are described by Equations 

(24)~(25): 

2
eq nx

x

n
x R x x

m
                      (24) 

( ) ( | || |)ref s xcz t G V V R K x                            (25) 

where Req (
2 2 1

sup( ( ) )
| || |

nx d xc
eq

x xc x

C K
R V z t

Q x K x m

 
  

 
) is equivalent damper. Equations (24) and (25) 

show the closed-loop system model. With the ignorance of the influence of the random process n(t), 

Equation (24) shows a free spring-mass-damper oscillating system and Equation (25) shows the 

control principle of the integrator. The closed-loop system reduces the system damper Req through 

adjusting the output of the integrator z(t). When the equivalent damper Req is bigger than the 

zero(e.g.Req>0), the gain control loop reduces the output of the integrator z(t) and then the equivalent 
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damper Req will decrease near the zero (Req≈0, 1dC

x




is inverse-phase with Kxc). When the equivalent 

damper Req is smaller than the zero (e.g.Req<0), the gain control loop enhances the output of the 

integrator z(t) and thus, the equivalent damper will increase near the zero (Req≈0). So the closed-loop 

system shows approximately an undamped-free vibration with the invariable amplitude and 

frequency(e.g. the resonant frequency ωnx). However, the random process n(t) will influence the 

stability of the driving amplitude and frequency.  

 

5. Stochastic Averaging of the Gyroscope Dynamics 

 

After the vacuum encapsulation, the quality factor of the drive-mode Qx becomes very big. The 

drive-mode of the SMG can be equivalent to a band-pass filter. Only the displacement with the 

resonant frequency ωnx can be magnified and the other harmonics are attenuated greatly. So the 

transient displacement can be simplified into a pure sin component. In order to analyze the transient 

behavior of the system, the driving displacement of the SMG is defined as [14]: 

( ) cos( ( ))nxx a t t t                                                (26) 

where ( )a t is the amplitude, and ( )t is the phase of the driving displacement signal respectively.  

Differentiating Equation (26) with respect to time gives the velocity: 

sin( ) cos( ) sin( )nx nx nx nxx a t a t a t                 

One of the equations used to determine a  and   is obtained by assuming that the sum of the last 

two terms can be set equal to zero: 

cos( ) sin( ) 0nx nxa t a t                      (27)  

Thus, the velocity equation becomes: 

sin( )nx nxx a t                         (28)  

The acceleration is obtained by differentiating Equation (28) with respect to time: 

sin( ) ( ) cos( )nx nx nx nx nxx a t a t                    (29)  

Substituting Equations (26), (28) and (29) into Equation (24) yields: 
2

1
sup sup

sin( )
( ) sin( ) cos( ) ( ( ))( ( ))

| || sin( ) |
nx d xc nx

nx nx nx nx

x xc nx x x

C K a t
a a t a t V z t V z t

Q x K a t m

n

m

  
      

 
 

       
 

 (30) 

Substituting Equation (28) into Equation (25), and suppose a ≠0, according to Equation (27) and 
Equation (30), separate a ,   yields: 

2
sup sup2 1

sin ( )( )( ) sin( )
sin ( )

| || sin( ) |
xc nxnx d nx

nx
x xc nx x nx x nx

K a t V z V zC n t
a a t

Q x K a t m m

    
   

   
    

 
   (31) 

sup sup1
sin( ) cos( )( )( )

sin( ) cos( )
| || sin( ) |

xc nx nxnx d
nx nx

x xc nx x nx

K t t V z V zC
t t

Q x K a t m

       
  

   
     

 
   
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cos( )nx
x nx

n
t

am
 


        (32) 

( ) ( | || sin( ) |)ref s xc nx nxz t G V V R K a t               (33) 

It should be noted that Equations  (31)~(33) are the exact differential equations describing the 

evolution of the amplitude and phase of the driving displacement, as well as that of the output states of 

the integrator. However, these equations are difficult to analyze because they are substantially non-

autonomous. It is evident that instantaneous phase ωnxt evolves much faster than the other variables, 
such as a ,  , z and functions sin(ωnxt+ ) and cos(ωnxt+ ) are almost periodic. Within a period of 

these sinusoidal functions, variables other than ωnxt change very little. Hence, it is possible to apply 

the averaging method to the non-autonomous system described by Equations (31)~(33) and 

approximate it by an autonomous system [14-15].  

As pointed out above, instantaneous phase ωnxt is regarded as an independent variable and the 

differential equations Equations (31)~(33) are averaged, with respect to ωnxt, over the interval [-π, π]. 

The averaged autonomous equations are: 

sup sup1 1
2 ( )( )

2 | | 2
xcnx d

x xc x nx x nx

K V z V za C n
a

Q x K m m


  

 
   


       (34) 

2

2 x nx

n

am



                            (35) 

2 | |
( )s xc nx

ref

V R K a
z G V




                    (36) 

where the bars denote averaged variables. The random processes n1(t) and n2(t) are independent white 

noise with the same intensity as n (t) [10]. Equations  (34)~(36) describe approximately how the 

displacement amplitude and phase evolve with time. According to Equations (34) and (35), it is 
evident that average amplitude a and average phase are decoupled – when one of them is changed, 

the other does not change, so the phase branch and the gain branch can be optimized respectively. 

Ignoring the influence of the random processes n1(t) and n2(t), the equilibrium of the averaged 

system described by Equations (34)~(36) is: 

2 | |
ref

o
s xc nx

V
a

V R K




                      (37) 

 
2

2
sup

18

ref x nx
o

d
x s xc

V m
z V

C
Q V RK

x

 
 




                (38) 

When the power is switched on, the system stabilizes finally in equilibrium. According to Equation 
(37), it is evident that the equilibrium of the average amplitude oa  is independent from the quality 

factor Qx, so the change of quality factor resulting from the variety of temperature and pressure does 
not impact on the equilibrium of the average amplitude oa , which is very important in the practical 

application. The speciality of this system is obviously different from the literature [16]. 

Ignoring the influence of the random processes n1(t) and n2(t), the Jacobian matrix of the nonlinear 

dynamic system of Equations (34)~(36) at equilibrium is: 
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2
21
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1

( , )
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2 | | 8
( , )

2 | |
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o o

ref x nxnx xc d

dx xc x nx
x s xc

a z

s xc nx

V mK C
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CQ K m xf Q V RK
xa z
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    
 
  

   (39) 

and its characteristic equation is: 

2
2 21

sup2
1

8
0

2 8

ref x nxnx d s xc

dx x
x s xc

V mC GV RK
V

CQ x m Q V RK
x

  



   




           (40) 

where   is the variable of the characteristic equation. All the eigenvalues of the linearized averaged 

system are asymptotically stable, if and only if all coefficients is positive. It is evident Equation (40) 

satisfies this condition because 1dC

x




is inverse-phase with Kxc. In order to make sure that the square 

root is in existence, the inequation hereinafter must be satisfied: 

2 2 1
sup /(8 ) 0d

ref x nx x s xc

C
V V m Q V RK

x
 


 


  

i.e.: 
2

sup 1
2

8 x s xc d
ref refo

x nx

V Q V RK C
V V

m x 
 

 


                  (41) 

where the Vref is the referring DC voltage used as a reference to the amplitude of the pre-amplifier 

output voltage. The Vrefo is the criterion voltage. When Vref < Vrefo, the gain control branch works 

normally. When Vref >Vrefo, the gain control branch loses the control ability. Because the Equations 

(34)~(36) are extremely complex, the averaged system is linearized in the equilibrium, i.e.: 

2
211

sup
1

4

2 | |2 8

ref x nxnx xc d
n n n

dx xc x nxx nx
x s xc

V mK Cn
a a V z

CQ K m xm Q V RK
x

 
 


    


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     (42) 

2

2 x nx

n
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


                      (43) 
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GV R K
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


                  (44) 

where n oa a a  ， n oz z z  . na can be expressed in Laplace transform domain as: 

1
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s s k
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where
1 2

2
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  


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, ( )nA s is Laplace transform of na , and
1
( )N s  is 

Laplace transform of the 1n , so the steady-state spectral density for the noise component of the na  is: 
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2 2
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              (46) 

So the noise power spectrum is:  

2 1

2 n

B
n a

x

k T
a S d

k
 







   （ ）  

The RMS noise amplitude due to thermal noise is: 

 2
2

B B
n n

x x nx

k T k T
a a

k m 
                    (47) 

Comparing Equation (14) with Equation (47), we know the RMS noise amplitude due to thermal 

noise in the opened-loop driving is equal to that in the closed-loop driving, so the closed-loop driving 

does not reduce the RMS noise amplitude due to thermal noise. By the way, the RMS noise amplitude 

is independent from the quality factor Qx . 
According to o n oa a a a   ，  Equation (43) can be rewritten as: 

2

2
n

o x nx

n

a m
 


                      (48) 

where n is the noise frequency, so the power spectral density of the noise frequency n  is  

22 2 2

1

2n n
o x nx

S S
a m  


（ ）= （ ）                (49) 

Suppose the work bandwidth is fBHz， the noise power is: 
2

2
2

2

21
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B

n
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f

B B nx
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o x xf

f k T
S d

a k Q
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


  






   （ ）            (50) 

The RMS noise frequency due to thermal noise is: 

2 2 2B B nx B B
n n

o x x o nx x x

f k T f k T

a k Q a m Q

 


             (51) 

It is useful to reduce RMS noise frequency by increasing quality factor Qx and drive amplitude 
oa . 

 

6. Experiment and Simulation 

 

6.1. Simulation 

In order to validate the feasibility of closed-loop driving and confirm the validity of the averaged 

equation and its stable criterion, the closed-loop driving in Figure 3 is simulated according to 

parameters shown in Table 1. Figure 4 is the Matlab simulation frame of the closed-loop driving.  
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Figure 4. The Matlab simulation frame of the closed-loop driving. 

 
 

Table 1. The value of simulation parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figures 5 and 6 are the simulation curves for closed-loop driving when 0.5ref refoV V   

and 0.7ref refoV V  [see Equation (41)]. It can be concluded from Figures 5(C) and 6(C) that the 

system resonant frequency approximately equals to the natural frequency of drive-mode after the 
system is stabilized, which indicates that the whole loop’s phase θ＝2nл(n is an integer)and the phase 
branch circuit below is controlled accurately. When ref refoV V , according to Figure 5 and Equation 

(37), the driving displacement goes along with the increase of refV  and the gain branch circuit above is 

controlled accurately. When ref refoV V , the driving displacement reaches the maximum. When refV  

increases persistently, that is to say, refV > refoV , according to Figure 6, the output of the integrator z≈0 

and the driving displacement does not go along with the increase of refV  and the gain branch circuit 

above does not work normally. The curve of the transient course of drive displacement along with the 

change of time goes smooth and the overshoot disappeares. Comparing Figure 5(A) to Figure 6(A), 

Parameter value(unit) 

Qx 2,500 

G 999 

Kxc 2.92×10-8 (F/m) 

Vs 10 (V) 

R 10 (MΩ) 

Vsup 5 (V) 

Vrefo 0.596 (V) 

L -50 

J -55 

|C/ x| 1.46×10-6 (F/m) 

ωnx 25120 (rad/s) 

mx 2.89×10-7 (kg) 
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when ref refoV V , we can see that the bigger the refV  is, the shorter the transient time is . When 

refV > refoV , the above gain branch circuit does not work normally and the closed-loop system loses the 

adjustable ability, with the overshoot fading away. 

 
Figure 5. The simulation curves of closed-loop driving when 0.5ref refoV V  . (A) The curve 

of the drive displacement with time. (B) The curve of the output of integrator z(t) with time. 

(C) The curve of the vibrating frequency of the drive-mode with time. 

(A)                                        (B)                                         (C) 
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Figure 6. The simulation curves of closed-loop driving when 0.7ref refoV V  . (A) The curve 

of the drive displacement with time. (B) The curve of the output of integrator z(t) with time. 

(C) The curve of the vibrating frequency of the drive-mode with time. 

(A)                                         (B)                                         (C) 
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Figures 7 and  8 are the simulated closed-loop response and averaged equation simulation curves 
when 0.3ref refoV V   and 0.7ref refoV V  . The simulation result indicates the envelope curve of the 

closed-loop response is basically the same as the curve of the averaged equation. The tiny differences 

come from the simplification of the integrator and truncation error in simulation. From Figure 8, when 
0.7ref refoV V  , we can see that the envelope curve of the closed-loop response is also basically the 

same as the curve of averaged equation. Meanwhile, z ≈0, revealing that the above gain branch circuit 

does not work normally, which is in agreement with the practical situation. Thus, the averaged 
equation can be applied to the situations when refV > refoV  through the limit of the working scale of z(t).  
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Figure 7. Closed-loop response (gray) and averaged equation simulation (black) when 
0.3ref refoV V  . (A) The curve of the drive displacement with time. (B) The curve of the 

output of integrator z(t) with time. 

(A)                                                               (B) 

     
 

Figure 8. Closed-loop response (gray) and averaged equation simulation (black) when 
0.7ref refoV V  . (A) The curve of the drive displacement with time. (B) The curve of the 

output of integrator z(t) with time. 

(A)                                                              (B) 

   
 

In Figure 9, the simulation curves of closed-loop driving between Qx=2,500 and Qx=5,000 are 

compared. From Figure 9(A), we can see that although the quality factor increases, the amplitude of 

the driving displacement, which is in agreement with the conclusion derived from Equation (37), 

doesn’t change. That is to say, the displacement amplitude has nothing to do with the quality factor. 

From Figure 9(B), we can see that the augment of quality factor results in the growth of output of the 

integrator z(t), which is accordant with the Equation (38). According to Equation (47) and Equation 
(51), when ωnx= 25,120 (rad/s), T=300 K, fB=100 Hz, Qx=2,500, oa = 5 μm, the influence of thermal 

noise on driving performance in different drive proof masses is shown in Figure 10. From Figure 10, 

we can see that the RMS noise displacement and the RMS noise frequency decrease with the increase 

of drive proof mass. 
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Figure 9. The simulation curve of closed-loop driving in Qx=2,500 (black) and Qx=5,000 
(gray) when 0.3ref refoV V  . (A) The curve of the drive displacement with time. (B) The 

curve of the output of integrator z(t) with time. 

(A)                                                    (B) 

     
 

Figure 10. The influence of thermal noise to driving performance when ωnx= 25,120 
(rad/s), T=300 K, fB=100 Hz, Qx=2,500, oa = 5 μm. (A) The RMS noise displacements 

with driving mass . (B) The RMS noise frequency with driving mass. 

(A)                                                     (B) 
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6.2. Experiment 

 

The whole experiment circuit is constructed on the idea of Figure 3 and shown in Figure 11. The 

experiment results show that the SMG achieves closed-loop driving and the drive frequency works 

around the natural frequency of SMG all the time. The vibrating waveshape of the closed loop driving 

signal is shown in Figure 11(C). It is practical to find a better working point for SMG by adjusting z(t) 

in Figure 3. The experiment results of amplitude control with temperature are shown in Figure 12. 

According to the Equation (5), when ωd=ωnx, the amplitude of driving displacement is proportional 

with the quality factor Qx, so the change of quality factor, due to the variety of temperature and 

pressure, impacts directly on the amplitude of driving displacement in the open-loop driving. But the 

new closed loop driving is immunized to the change of the quality factor [see Equation (37) and 

Equation (47)]. With a temperature increase from -40oC to +40oC, the quality factor of the drive-mode 

Qx decreases about 2.6 times [see Figure 12(A)], while the drive amplitude signal increases by only 

0.083% in the closed loop driving [see Figure 12(B)].  
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Figure 11. The experiment of closed-loop driving. (A) The PCB circuitry of SMG. (B) The 

test setup environment. (C)The vibrating waveshape of closed loop driving signal. 

(A)                                        (B)                                       (C) 

   
 

Figure 12. The experiment results of amplitude control with temperature. (A) The curve of 

the quality factor of the drive-mode Qx with temperature. (B) The signal amplitude of 

closed loop driving with temperature.  

(A)                                                                    (B)  
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The experiment results of closed-loop driving are shown in Figure 13. Figure 13(A) and Figure 13(B) 

are the frequency drift and amplitude drift of driving signal for 1 h respectively. The experiment 

results show that the standard deviation of drive frequency is 0.0205 Hz, with relative drift 5.0 ppm, 

the standard deviation of the amplitude 0.0165 mV and relative drift 14.7 ppm, respectively. Figure 

13(C) is the frequency spectrum of driving signal. The driving signal is about 100 dB bigger than the 

ground noise, which is accordance with the result of the Figure 13(B). As a result, both stabilities of 

driving frequency and amplitude are rather high and the closed loop control is very successful. 
According to Figure 10, when mx=2.89×10-7(kg), oa = 5um, ωnx= 25,120 (rad/s), we can find that the 

relative noise of drive frequency is approximately 0.0119 ppm and the relative noise of the amplitude 

is approximately 0.8 ppm, respectively. The noise comparison is shown in Table 2. So, in this 

situation, the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal 

noise. With the driving mass decreasing, the mechanical-thermal noise may get bigger than the 

electrical noise of closed-loop driving circuitry (see Figure 10). 
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Figure 13. The experiment results of closed-loop driving .(A) Frequency drift of driving 

signal for 1 h. (B) Amplitude drift of driving signal for 1h. (C) Frequency spectrum of 

driving signal.  

(A)                                   (B)                              (C) 
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Table 2. The noise comparison. 

 

7. Discussion and Conclusions 

 

The mechanical thermal noise on drive-mode is discussed, and then stochastic averaging is used to 

develop a model for the “slow” dynamics that represent the driving amplitude and frequency of the 

SMG. Both the steady-state and transient response of the model are obtained by stochastic averaging. 

The spectral density of the random error due to thermal noise on drive-mode is also derived. By 

calculating and comparing the RMS noise amplitude due to thermal noise both in the opened-loop 

driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS 

noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality 

factor and drive amplitude in the closed-loop driving system. The experiment and simulation validate 

the feasibility of closed-loop driving and confirm the validity of the averaged equation. The 

experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger 

than the mechanical-thermal noise and with the driving mass decreasing, the mechanical-thermal noise 

may get bigger than the electrical noise of closed-loop driving circuitry. 

 

 

 

 

 

Simulation thermal noise Measure noise(Driving signal) 
mx=2.89×10-7(kg), oa = 5μm, ωnx= 25,120 (rad/s) 

 Absolute value Relative value  Absolute value Relative value

Thermal noise 

frequency 
0.0000476 Hz 0.0119 ppm Noise frequency 0.0205 Hz 5.0 ppm 

Thermal noise 

amplitude 
4×10-12 m 0.8 ppm Noise amplitude 0.0165 mV 14.7 ppm 
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