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Abstract: This paper is concerned with a networked estimation problem in which sensor 

data are transmitted over the network. In the event-based sampling scheme known as level-

crossing or send-on-delta (SOD), sensor data are transmitted to the estimator node if the 

difference between the current sensor value and the last transmitted one is greater than a 

given threshold. Event-based sampling has been shown to be more efficient than the time-

triggered one in some situations, especially in network bandwidth improvement. However, 

it cannot detect packet dropout situations because data transmission and reception do not 

use a periodical time-stamp mechanism as found in time-triggered sampling systems. 

Motivated by this issue, we propose a modified event-based sampling scheme called 

modified SOD in which sensor data are sent when either the change of sensor output 

exceeds a given threshold or the time elapses more than a given interval. Through 

simulation results, we show that the proposed modified SOD sampling significantly 

improves estimation performance when packet dropouts happen. 

Keywords: Networked estimation; event-based sampling; send-on-delta; packet dropout. 

 

1. Introduction 

 

Recent works have discussed event-driven alternatives to traditional time-triggered sampling 

schemes. It has been shown to be more efficient than time-triggered one in some situations, especially 

in network bandwidth improvement. In [1-7], event-based sampling scheme was applied by adjusting 
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the threshold value at each sensor node, data transmission rate is reduced so that the network can be 

used for other traffic. 

However, analysis and simulation in the the works on event-driven sampling scheme were 

performed under ideal communication network conditions: no delays or packet dropouts are assumed, 

but in realistic applications, network induced delays and packet losses do happen.  

The issues of network delays and packet dropouts in time-triggered systems have been addressed 

and solved by researchers in [8-14]. In [8] the stability of the Kalman filter in relation to the data 

arrival rate is investigated. It is shown that there exists a critical data arrival rate for an unstable system 

so that the mean filtering error covariance will be bounded for any initial condition. In a very recent 

study [13], the optimal H2 filtering problems associated respectively with possible delay of one 

sampling period, uncertain observations and multiple packet dropouts are studied under a unified 

framework. The H2-norm of systems with stochastic parameters is defined and computed via a 

Lyapunov equation and a steady-state filter is designed via an LMI approach. In [14], the authors adopt 

a model similar to that of [13] for multiple packet dropouts to investigate finite-horizon optimal linear 

filtering, prediction and smoothing problems. 

In conventional event-based sampling systems, also called send-on-delta (SOD) sampling [5-7], the 

issues of network delay and packet loss are difficult to solve because data transmission and reception 

do not use a periodical time-stamp mechanism as in the time-triggered sampling systems. Motivated by 

those issues, in this paper, we introduce a modified SOD sampling scheme in which the event-driven 

sampling is combined with a time-triggered sampling scheme to detect packet dropouts. Then, a 

networked estimator based on a Kalman filter is formulated to estimate states of the system 

periodically even when the sensor nodes do not transmit data. The proposed SOD sampling scheme 

has properties inherited from the conventional SOD sampling: so the benefits from event-driven 

sampling are still hold. Through theoretical analysis and simulation results, we show that the proposed 

SOD sampling scheme gives better estimation performance than the conventional SOD one when 

packet loss happens. 

 

2. Modified SOD Sampling Scheme 

 

Consider a networked control system described by the linear continuous-time model: 

( ) ( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t w t

y t Cx t v t

= + +

= +

&
     (1) 

where ( ) nx t RÎ  is the state of the plant, u  is the deterministic input signal, ( ) py t RÎ  is the 

measurement output which is sent to the estimator node by the sensor nodes. ( )w t  is the process noise 

with covariance Q , and ( )v t  is the measurement noise with covariance R . We assume that ( )w t  and 

( )v t  are uncorrelated, zero mean white Gaussian random processes.  

The modified SOD sampling scheme illustrated in Figure 1b is stated as follows: 

Let ,last iy ( )1 i p£ £  be the last transmitted value of the i -th sensor output at instant ,last it . A new 

sensor value will be sent to the estimator node if one of two following conditions is satisfied: 

, ,( )i last i y iy t y d- >       (2a) 
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, ,last i t it t d- >       (2b) 

where , ,,  y i t id d  are the given magnitude, time threshold values respectively at the i -th sensor node. 

Figure 1. Principle of SOD and modified SOD sampling schemes. 

(a) SOD sampling (b) Modified SOD sampling 
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Using the modified SOD sampling scheme above we will obtain some benefits. Firstly, the 

estimator can detect signal oscillations or steady-state error if the difference of output value remains 

within the threshold range during a long time. Secondly, the estimator can detect multiple packet 

dropouts if it does not receive sensor data within the interval ,(0, )t id . Thirdly, theoretical analysis for 

SOD sampling is still applied for the modified SOD sampling. 

However, this scheme has one disadvantage that sensor data transmission rate will be increased due 

to condition (2b). If ,t id  is small, the estimator detects packet dropouts fast but data transmission rate is 

increased. If ,t id  is large, transmission rate is small but the estimator detects packet dropouts slowly. 

Therefore, an optimal ,t id  value is necessary to compromise these constraints. 

 

2.1. Multiple packet dropouts detection  

 

The estimator node detects packet dropouts of i-th sensor data by checking the instant i-th sensor 
data arrive. If there is no i-th sensor data arriving, the estimator node for the time , ,last i t it t d- > , then 

the estimator node knows that one-packet dropout happened at the i-th sensor node. Similarly, if there 
is no i-th sensor data arriving for , ,2last i t it t d- > , then two-consecutive-packet dropout happened. 

We state the general case for multiple packet dropouts as follows: 

If the estimator node does not receive i-th sensor data for time ( ), ,last i i t it t d d- >  ( 1,2,3,...)id =  

then the estimator knows that there have been at least d  consecutive packet dropouts at the i-th sensor 

node since the time receiving ,last iy .  

Note that the estimator just detects “at least” id  consecutive packet dropouts, not precise id  

consecutive packet dropouts because there exists a delay interval in detecting packet dropouts. As 

illustrated in Figure 2, although packet loss happens within the time range ( ), , ,,last i last i t it t d+ , the 

estimator only detects it at a time , ,( )last i t it d+ . Thus, if there is more than one packet dropout within 

the time range ( ), , ,,last i last i t it t d+ , the estimator also detects only one packet dropout at time 

, ,( )last i t it d+ . This is an inevitable flaw of the modified SOD sampling scheme. We can constraint this 



Sensors 2009, 9                            
 

 

3081

flaw by reducing the ,t id  value, but sensor data transmission rate will be increased. Therefore, an 

optimal ,t id  value is necessary to compromise between the two constraints. 

Figure 2. Multiple packet dropout detection. 

t
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td td td td td
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3. State Estimation with Modified SOD Transmission Method 

 

The networked estimation problem applying modified SOD transmission method can be described 

as follows: 

1. Measurement output ( )1iy i p£ £  are sampled at the period T but their data are only sent to 

the estimator node when (2a) or (2b) is satisfied. 

2. For simplicity in the problem formulation, transmission delay from the sensor nodes to the 

estimator node is ignored. 

3. The estimator node estimates states of the plant regularly at the period T  regardless of whether 

or not sensor data arrive. If there is no i -th sensor data received for ( ), ,last i i t it t d d- > , the 

estimator node considers that the measurement value of the i -th sensor output ( )iy t  is still equal 

to ,last iy  but the measurement noise increases from ( )iv t  to , ,( ) ( ) ( , )n i i i last iv t v t t t= +D . 

Note that if 0id =  then there is no packet dropout, the estimator acts like a conventional SOD 

filter [5]. To formulate a state estimation problem, the boundry of ,( , )i last it tD  needs to be determined 

as 0id ¹  (packet dropouts happen). In the next section, we will compute the covariance of , ( )n iv t  

when 0id ¹  and then a modified Kalman filter is applied for state estimation. 

 

3.1. Measurement noise increased due to multiple packet dropouts 

 

We know from (2a) that , ,( )i last i y iy t y d- £  as long as the estimator node does not receive a new 

i -th sensor data value. If one packet dropout happens, the i -th sensor output value has changed more 

than ,y id . The estimator should know that: 

, , ,( )i last i y i y iy t y d d- £ +  



Sensors 2009, 9                            
 

 

3082

For general cases, as shown in Figure 3, if there are id  consecutive packet dropouts then: 

, , ,( , ) ( ) ( 1)i last i i last i i y it t y t y d dD = - £ + .    (3) 

Note that (3) is also applied to the case of no packet dropout [5] by letting 0id = . Assuming that 

,( , )i last it tD  has a uniform distribution with (3), variance of ,( , )i last it tD  will be: 

( )

( )

,

22
, ,

2 2
, , ,

2

,

( , ) 0

( , ) ( 1) /3

( , ) ( , ) ( , )

( 1) /3

i last i

i last i i y i

i last i i last i i last i

i y i

E t t

E t t d

Var t t E t t E t t

d

d

d

é ùD =ë û

é ùD = +ë û

é ù é ù é ùD = D - Dë û ë û ë û

= +

    (4) 

Therefore, if there is no i -th sensor data received for ,last it t> , variance of measurement noise is 

increased from ( , )R i i  to ( )
2

,( , ) ( 1) / 3i y iR i i d d+ + . 

Figure 3. Measurement noise increased due to multiple packet dropouts. 
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3.2. State estimation 

 
A modified Kalman filter for state estimation k̂x  at step k, where there is a change in the 

measurement update part of the discrete Kalman filter algorithm [15], is given as in the Figure 4. We 

use the discretized system model sampled at period T : 

0

,  

T

AT Ar
d dA e B e Bdr= = ò , 

where dQ  is the process noise covariance of the discretized system: 

0

,

T

Ar A r
dQ e Qe dr¢= ò  

 and lasty  is the vector of p  last received sensor values: 

,1 ,2 ,...last last last last py y y y
¢é ù= ê úë û
. 



Sensors 2009, 9                            
 

 

3083

Figure 4. Structure of the modified Kalman filter. 
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In the modified Kalman filter in Figure 4, the states of the plant are estimated regularly at every 

period T, regardless of whether or not sensor data arrive. If i -th sensor data arrive then 

,( , ) 0i last it tD = , the modified Kalman filter acts like the conventional Kalman filter. Otherwise, if i -

th sensor data do not arrive due to packet loss, it uses ylast,i as the measurement value and 

( )
2

,( , ) ( , ) ( 1) / 3i y iR i i R i i d d= + +  as measurement noise covariance for state estimation. 

As stated in [8], if the system (1) is unstable and a packet loss rate is high, the proposed filter could 

diverge. For example, if all packets are lost, di will increase and thus iR  will become infinite. Thus 

P in Figure 4 could become infinite. 

 

4. Optimal δt,i Computing Problem 

 

As mentioned in Section 3, δt,i is a trade-off parameter between sensor data transmission rate and 

the response of packet dropouts detection. The response of packet dropout detection guarantees 

estimation performance. Because SOD sampling is more efficient than the time-triggered one in 

network bandwidth improvement, we should choose δt,i such that sensor data transmission rate is 

reduced to promote ability of SOD sampling. In the next section, we will investigate the relation of δt,i 
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with transmission rate and the effect of δt,i on estimation performance. Then an optimization problem 

is formulated to find the optimal δt,i value according to the given estimation performance. 

 

4.1. Sensor data transmission rate by condition (2b) 

 

The total sensor data transmission rate caused by condition (2b) in a time unit: 

( ),
,1

1
p

t i
t ii

f d
d=

å@       (5) 

where p  is the number of sensor output 

 

4.2. Estimation error covariance due to packet dropouts 

 
Let ( )0 1i ix x£ <  be the packet loss rate at the i-th sensor node, 0ix =  corresponds to no packet 

loss. Let iTD  be the average transmitting time per packet of the i-th sensor node in the conventional 

SOD method. Note that iTD  is dependent on the given ,y id  value, but independent on δt,i value. iTD  

is computed by running the simulation model in analysis. In practice, it can be computed by letting 

,t id = ¥  and monitoring the number of packets in a time unit. 

The average number of packet dropouts in the conventional SOD sampling per a time unit: 

i
i

i

d
T

x

D
@        (6) 

In the proposed SOD sampling, the average number of packet dropouts within the time interval ,t id  

will be: 

,t i i
i

i

d
T

d x
=

D
 

(7) 

We know from Section 4.1 that the larger number of consecutive packet dropouts is, the larger 

measurement noise covariance is. Measurement noise covariance is largest if id  packets are 

consecutively lost. Following the idea in (4), if there is id  packet loss, the measurement noise 

covariance should be increased as follows: 

( )
2

( , ) ( , ) ,

2
, 2

( , ) ,

( 1) /3

1 /3

i i i i i y i

t i i
i i y i

i

R R d

R
T

d

d x
d

= + +

æ ö÷ç= + + ÷ç ÷çè øD

     (8) 

 
4.3. Optimal ,t id  computation 

 

In this section, δt,i value is computed. Using (8), we assume that the measurement noise covariance 

is given by: 
22

,1 1 ,2 2
,1 ,

1

1 /3,..., 1 / 3
t t p p

y y p
p

R R Diag
T T

d x d x
d d

æ öæ öæ ö ÷ç ÷ç÷ ÷ç= + ç + + ÷÷ ç ÷ç ÷çç ÷÷ç ÷è øD D ÷ç è øè ø
  (9) 
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The estimation performance in this case can be computed from the following discrete algebraic 

Riccati equation: 

( )
1

d d d d dP A PA Q A PC CPC R CPA
-

¢ ¢ ¢ ¢= + - +
 

  (10) 

Note that (10) does not provide the actual estimation error covariance of the filter. The main 

purpose of (10) is to evaluate how δt,i affects the estimation performance. We can see that if δt,i is large, 

the estimation error covariance P increases.  

The solution of (10) is denoted by ( ),t iP d . In the following optimization algorithm to find δi, we try 

to reduce the sensor transmission rate caused by condition (2b) subject to the given estimation 

performance constraint: 

δt Optimization Problem 

( )

( )

, ,

, 0

min

subject to    

t i t i

t i

f

DiagP P

d d

d m£
     (11) 

where 0P  is the upper bound error covariance with given value ,y id  and no packet dropout (solution of 

(10) as (0,..., 0)d Diag= ). 0P  is also the estimation performance of the conventional SOD. m  is the 

ratio to the estimation performance of conventional SOD filter in case of no packet dropout. If m  is 

large, the ,t id  optimization problem (11) is done with weaker estimation performance constraints. 

 

5. Simulation 

 

To verify the proposed filter, we consider an example of the second-order system with step input 

where the output is sampled by the SOD and modified SOD sampling: 

00 1
( ) ( ) ( ) ( )

/1/ /

( ) 1 0 ( ) ( )

0.01,  0.01,  10

x t x t u t w t
M aa b a

y t x t v t

Q R T ms

é ù é ù
ê ú ê ú= + +ê ú ê ú- - ê úê ú ë ûë û
é ù= +ê úë û

= = =

&

 

where the system parameters for performance evaluation are given by 30,  a 5,  b 1M = = =  

(underdamped system) . The simulation process is implemented for 50 seconds.  
Choose 5m =  for the optimization problem (11). The solution ,1 ,2,  t td d  of (11) along with ,y id  and 

ix  are shown in Figures 5 and 6, respectively. We see that ,t id  is proportional to ,y id  and reversely 

proportional to ix . It means that when ,y id  is large, the i-th sensor data transmission rate is small, thus 

,t id  is also small to keep the overall transmission rate small. But if packet dropouts increase ( ix  is 

large), ,t id  value is lowered. As the result, the overall sensor data transmission rate is increased to 

guarantee estimation performance. 
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Figure 5. ,1td  of (11) along with ,1yd  and 1x . 

 

Figure 6. ,2td  of (11) along with ,2yd  and 2x . 

 

 

Table 1. Estimation error along with packet loss rate in two filters. 

Packet loss rate 

1 2x x=  
0.05(5%) 0.1(10%) 0.15(15%) 0.2(20%) 

n (SOD) 
n1 = 95 
n2 = 31 

,t id  ,1td  = 4.12 

,2td  = 4.69 
,1td  = 2.08 

,2td  = 2.31 
,1td  = 1.73 

,2td  = 1.91 
,1td  = 1.52 

,2td  = 1.66 

n (modified SOD) 
n1 = 101 
n2 = 36 

n1 = 109 
n2 = 44 

n1 = 112 
n2 = 47 

n1 = 115 
n2 = 50 

e (SOD) 
e1 = 0.0383 
e2 = 0.0167 

e1 = 0.0384 
e2 = 0.0168 

e1 = 0.0386 
e2 = 0.0169 

e1 = 0.0391 
e2 = 0.0172 

e (modified SOD) 
e1 = 0.0075 
e2 = 0.0096 

e1 = 0.0064 
e2 = 0.0089 

e1 = 0.0039 
e2 = 0.0082 

e1 = 0.0020 
e2 = 0.0069 

 

Table 1 shows the estimation error in two filters (SOD filter and modified SOD filter) as 

,1 ,2 0.5y yd d= = , 5m =  and 1 2,x x  are varying 5%, 10%, 15%, 20%. Estimation error is evaluated 

by: 
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( )
2

, ,
1

1
ˆ

N

i k i k i
k

e x x
N =

= -å       (12) 

where ix  is the reference state, îx  is the estimated state, and N = 5,000. 

In Table 1, we see that when applying the modified SOD filter, the estimation error is significantly 
improved. For instance, in the case 1 2 0.05x x= = , the total number of sensor data transmissions in 

the modified SOD (# 137) is just slightly greater than that in conventional SOD (# 126) but the 

estimation error is reduced so much ((e1 = 0.0075, e2 = 0.0096) compared to (e1 = 0.0383, e2 = 

0.0167)). 

Figure 7. Estimation error in two filters as 1 2 0.05x x= = . 

 

Figure 8. Instants the sensor node transmits data due to condition (2b). 

 
 
Figure 7 intuitively shows the estimation error in two filters as 1 2 0.05x x= = , ,1 ,2 0.5y yd d= = , 

,1 4.12td = , ,2 4.69td = . The boundry of 1e  in the modified SOD filter (SODa) is much smaller than 

that in the conventional SOD filter. Figure 8 shows the instants the sensor node transmits data to the 
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estimator node due to condition (2b). We see that the number of sensor data transmissions caused by 

condition (2b) is very small in comparison with the total number of sensor data transmissions [(n1 = 7, 

n2 = 7) compared to (n1 = 101, n2 = 36)]. When the modified SOD sampling is applied, the total 

number of sensor data transmissions is slightly increased, but the estimation error is significantly 

reduced. Therefore, the modified SOD sampling significantly improves estimation performance with 

only a little increase in the data transmission rate. 

Notice that if we just consider the transmission condition (Equation 2a), estimation error of the 

proposed method is worse for systems that the output varies slowly. However, an issue of conventional 

event-based sampling is that it can not detect signal oscillations or steady-state error if the difference 

of output value remains within the threshold range (because the output varies slowly). This fact causes 

estimation error to be increased. Whereas, the proposed method uses the transmission condition 

(Equation 2b) not only to detect packet dropouts but to reduce the error in case the output changes 

slowly. 

As illustrated in Figures 7 and 8, where the estimation error of the proposed method (top-right graph 

of Figure 7) and of the conventional method (top-left graph of Figure 7) are shown according to the 

output y1 (top-left graph of Figure 8). We see when y1 varies slowly (time interval from 20s to 50s), 

the proposed method gives much smaller estimation error than the conventional one.  

In case the output changes fast, it is obvious that ignoring packet dropout will introduce extremely 

incorrect result because we still use the wrong old measurement noise value even when we do not 

know how much the output value changes. 

 

5. Conclusions 

 

In this paper, the state estimation problem with modified SOD transmission method over networks, 

in which an event-based sampling is combined with a time-triggered sampling to detect packet loss 

situations, has been considered. We have shown that when using the proposed modified SOD filter, 

estimation performance is significantly improved with a small increase in sensor data transmission. If 

multiple packet dropouts happen, the estimator node will detect and compensate for them with an 

amount of additive measurement noise to improve estimation performance. This method is very useful 

for networks where data transmission is unreliable due to noise. 
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