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Abstract: An intelligent sensor for light wavelength readout, suitable for visible range 

optical applications, has been developed. Using buried triple photo-junction as basic pixel 

sensing element in combination with artificial neural network (ANN), the wavelength 

readout with a full-scale error of less than 1.5% over the range of 400 to 780 nm can be 

achieved. Through this work, the applicability of the ANN approach in optical sensing is 

investigated and compared with conventional methods, and a good compromise between 

accuracy and the possibility for on-chip implementation was thus found. Indeed, this 

technique can serve different purposes and may replace conventional methods.  

Keywords: Buried photo PN junctions; Artificial Neural Network; wavelength 

measurement. 

 

1. Introduction 

 

The use of wavelength measurement has a wide range of applications, varying from fiber-optic 

communication to biological purposes, such as DNA sequencing, including many engineering 

applications. This increase of applications has provided motivation to improve all elements of the optical 

sensing chain, as well as the photodetector fabrication process, conditioning circuits and readout 
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algorithms. In this sense, the most state-of-the-art BICMOS (combination of bipolar and CMOS 

technology) optical sensors involve a trade-off between implementation cost and readout accuracy.  

In general, the well known methods for either color identification or wavelength measurement use 

color filters. In principle three photodetectors are covered respectively by red, green and blue filters 

which increases both silicon surface and implementation cost due to the deposition of optical filters 

(nonstandard BICMOS processing) [1-3]. In this perspective, the buried triple pn junctions (BTJ) 

structure, using BICMOS process (Figure 1), provides a promising alternative. Unlike the conventional 

photodetectors the BTJ has three outputs according to captured light; hence three different spectral 

responses (Figure 2) carry the wavelength value. Different process parameters, such as doping profiles 

allow conceiving three bandpass filters curves adjusted, with a limited resolution, in blue, green and red 

areas [1]. Due to process parameters variations from one chip to another, the bandpass filters shape 

change significantly, and as a result, this lowers the readout accuracy. This drawback can be 

compensated using learning algorithms, such as artificial neural networks.  

Figure 1. Cross-section view of BJT. 

 
 

In the past few years, artificial neural networks (ANNs) have emerged in many engineering 

applications as a learning technique to achieve complex tasks, as well as image analysis, high nonlinear 

modeling and system control [4,5]. They present interesting characteristics, such as the capability of 

universal approximation, generalization, and fault tolerance [6]. Furthermore, it is shown that ANNs 

based approximation of measurement data perform better than those of classical methods of data 

interpolation, in particular the mean square regression [7]. Thus, ANNs are commonly used for 

measurement sensor systems, in this scope, several works has been reported in [8-20], where the aims of 

their applications are to increase the selectivity, sensitivity, and reliability of many sensor types. This 

work carries this ideas one step further by applying similar techniques for wavelength readout, 

structured in a row of BTJs, in purpose of an embedded system for real time applications; featuring 

relative low full-scale error and a compatibility with BICMOS process which increase the system 

portability. 
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2. Modeling and Problem Formulation 

 

The basic structure of the CMOS BTJ is illustrated in Figure 1. Three buried junctions are stacked 

between p-subtract to n+ diffusion, thus the device has three outputs through contacts in the peripheral 

areas: p+ diffusion, n+ diffusion and n-well. All junctions operate in reverse bias mode by applying 

external voltages VA, VB and VC (with VB < 0, VA > VC > 0). In principle, the absorption of visible light 

in the silicon bulk induces generation of electron-hole pairs; where the generation rate depends on the 

wavelength of the incident light and on the depth from the silicon surface. Therefore, three stacked 

junctions result different spectral responses depending on the junction depth [1,21,22]. Figure 2 shows 

an example of BJT spectral response given at room temperature, the characterized cell is fabricated 

using 1.2 μm standard BICMOS process with an area of 28 by 28 μm [1]. The spectral response curves 

are approximated with fifth degree polynomials (1), with a limited precision.  

௡ܫ ൌ ∑ ܽ௜௡. ௜ߣ
ହ
௜ୀ଴                      (1) 

where, λ is the wavelength and In is the photocurrent of the three junctions. This analytical approach can 

be used to get a linear transformation between the light wavelength and the currents measurement. In this 

case, the photocurrent variation versus light power and temperature is assumed linear.  

Figure 2. BTJ Spectral responses [1]. 

 
 

Obviously, the device can detect either light intensity or wavelength variation. Indeed, the resulting 

currents are proportional to both variations, while the photocurrent ratio is sensitive to the optical 

wavelength [23]. The use of photocurrents ratios (I1/I2 and I1/I3) eliminate the need to fit BTJ spectral 

response to bandpass curves of optical RGB filters (red, green and blue), which is more suitable for 

colors recognition. Depending on photocurrent ratios, the wavelength can be modeled as non-linear 

function (2) of both ratios I1/I2, I1/I3 and the temperature T.  
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This asymmetric response is illustrated further in Figure 3, which shows simulated current ratios 

variation as function of wavelength. This model provides sufficient accuracy in determining the 

wavelength, including temperature influence on sensor response characteristics. However, the device 

response is 3D nonlinear function which gives rise to several difficulties for on-chip readout. Either an 

analytical or a numerical model can be used for wavelength readout; their drawbacks are the readout 

error caused by analytical model approximations and the time cost induced by numerical model 

calculations. Therefore, ANNs present an interesting alternative, where the network is trained to invert 

the sensor's transfer function “ f -1” by feeding current ratios I1/I2, I1/I3 and the temperature T.  

Figure 3. Photocurrent ratios vs. wavelength (simulation). 

 
 

3. ANN Based-on Signal Readout  

 

ANNs are powerful data modeling tools, where the advantage lays in their ability to represent both 

linear and non-linear models by learning directly from data measurements. In this field, the multilayer 

perceptron (MLP) is the most used ANN concept, according to the well known ANN state-of-the-art. It’s 

demonstrated in [24,25] that a MLP with one hidden layer suffices to approximate any function with an 

arbitrary precision (universal approximation theorem). MLP is a supervised network, where the training 

data consists of inputs and desired outputs. The error between MLP outputs and desired outputs is used 

to update the network weights (Figure 4), using back propagation (BP) algorithms [6]. In this scope, the 

magnitude of the problem is often seen from two perspectives: examples number necessary to attain a 

good convergence and the network size.  

Based on measurement values, input/output dataset vectors, arranged as: Ԧܺ ൌ ሾ2ܫ/1ܫ, , 3ܫ/1ܫ ܶ, λሿ, 
are used for the MLP training phase with 234 samples, and tested in a separated set with 36 samples. 

Once the training set is achieved by reaching the minimum mean square error (MSE), of the estimated 
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wavelength, the network performance is checked again using test samples. This procedure is applied to 

several networks having one hidden layer and different neuron numbers per layer.  

Figure 4. MLP-based wavelength readout (training set). 

 
 

For these different architectures, both train and test MSE is evaluated and compared, the results are 

shown in Figure 5. Starting from 3 neurons per layer up to 14 neurons, the most training errors are less 

than 0.8, while the minimum test error is attained with 7 neurons per layer.  

 

Figure 5. MSE of test and training for different architectures. 

 
 

For this structure the MSE test is equal to 2.2 which represents a full scale error less than 1.5%. Thus, 

the selected network has one hidden layer containing seven neurons. The ANN optimized parameters are 

summarized in Table 1. Furthermore, Figure 6 illustrates the predictive property of the optimized 

network, the ANN response and measurement values are compared, thus a good agreement between 

measurement and ANN model is founded. It’s noted that the full scale error (%FS) is expressed as a 
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percentage of the ratio between the absolute error and the maximum output (wavelength) variation 

range. 

Figure 6. ANN model validation. 

 

Table 1. ANN optimized parameters. 

Parameters  Optimized values 

Architecture  Normal feed-forward MLP 

Hidden layer  1 

Training algorithm Back-propagation 

Number of neurons Input layer 3 
Hidden layer 7 
Output layer  1 

Transfer function Hidden layer Sigmoid 
Output layer  Linear  

Output range Wavelength (nm) 
Max 780 
Min 400 

Data base size Training set 234  
Test set  36 
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4. Implementation and Simulation Results 

 

The resulting currents of one BTJ cannot be directly exploited; therefore a typical acquisition chain is 

employed. One pixel path contains an analog interface circuit for BTJ conditioning, analog multiplexer, 

analog to digital converter (ADC), on chip temperature sensor and digital part for logical and 

mathematical calculations including ANN model (either on-chip FPGA or CPU implementation is 

possible). The complete embedded system top level diagram is shown in Figure 7. For a typical 

measurement, the analog interface circuit adapts BTJ signal to ADC voltage input range (both interface 

circuit and BTJ form one pixel) while the analog multiplexer allows the selection of desired pixel signal. 

Once the A/N conversion is achieved, the ANN data inputs A1/A2, A1/ A3 and T according to I1/ I2, I1/ I3 

and I(T), are calculated and fed to the net, thus the ANN model yields the estimated wavelength. 

Figure 7. Top level simulation diagram. 

 
 

The wavelength row sensor performances is tested and evaluated with Cadence post simulation tools, 

based on the above diagram and high accurate BTJ model. For one pixel path, a row of different 

wavelength lights is applied starting from 400 up to 780 nm. At room temperature, the estimated 

wavelength and both current ratios are plotted in Figure 8, while Figure 9 shows the readout error versus 

wavelength at temperatures of 4 and 85 °C. According to these results, the smart sensor response 

presents a good linearity and a full scale error less than 1.5% over the temperature range of 80 °C. The 

ANN based-on wavelength readout is compared with analytical approach, previously explained, both 

responses are reported in Figure 10. Furthermore, Due to the non-ideal component characteristics, such 

as mismatch and tolerance, a statistical study to predict system reliability is done, using statistical 

models for BTJs and pixel path devices, the ANN approach performance is evaluated once more. The 

statistical distribution according to the mean square error (MSE) is reported in Figure 11. The obtained 

results shows that, in 50.7% of the tested cases the error yielded is less than 1.5%. 
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Figure 8. Estimated wavelength, I1/I2 and I1/I3 vs. applied wavelength. 

 

Figure 9. Readout error vs. wavelength at T = 4 and 85 °C. 
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Figure 10. Comparison of ANN and analytical approach. 

 
 

Figure 11. Statistical MSE distribution. 

 
 

5. Conclusions 

 

The use of an artificial neural network approach to achieve wavelength readout is promising. Indeed, 

the ANN can learn the BTJ sensor properties, and thus they can produce the inverse model, which is used 

as readout interface to improve sensor performances. Both ANNs model and BTJs can be implemented 



Sensors 2009, 9          
 

2893

in one chip, using standard BICMOS process, featuring a good agreement between obtained 

performances and the implementation cost. The challenge of such application is how to keep a good 

chip-yield when the chip is in mass production; in fact, devices mismatch and tolerance, which refers to 

the used technology, decrease the system performances. Depending on both targets the maximum error 

and the chip-yield, the ANN weights adaptation for each pixel is needed. However the required space 

memory for such weights storage is relatively low compared to an on-chips VLSI memory capacitance. 

Furthermore, increasing applications of artificial neural networks carries the motivation for intensive 

research in this field. Thus dramatic improvements are yielded every year; such as, ANNs on-chip 

learning techniques. This topic provides good perspectives for the present work.  
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