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Abstract: Near Infrared Hyperspectral Imaging (NIRHSI) is emerging technology
platform that integrates conventional imaging apectroscopy to attain both spatial and
spectral information from an object. Two importanbblems in NIRHSI are those of data
load and unserviceable pixels in the NIR sensompdrspectral imaging experiments
generate large amounts of data (typically > 50 M image), which tend to overwhelm
the memory capacity of conventional computer systeftis inhibits the utilisation of
NIRHSI for routine online industrial applicatiom general, approximately 1% of pixels
in NIR detectors are unserviceable or ‘dead’, doirig no useful information. While this
percentage of pixels is insignificant for single weength imaging, the problem is
amplified in NIRHSI, where > 100 wavelength images typically acquired. This paper
describes an approach for reducing the data lodd/pérspectral experiments by using
sample-specific vector-to-scalar operators for tiea feature extraction and a systematic
procedure for compensating for ‘dead’ pixels in N sensor. The feasibility of this
approach was tested for prediction of moisture euinih carrot tissue.
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1. Introduction

Non-destructive, non-contact and fast measuremesthaods are in great demand for on-line
industrial quality control tasks. Optical methodi&e machine vision systems, allow real-time
classification or discrimination of objects on h@cessing line. By processing the spatial distiiou
of its RGB coordinates, an object can be identjfiexdspatial location can be determined and ggole
properties, such as colour and shape, can be deddry quantitative properties [1-3]. Spectroscspy
another optical method used for routine qualitylgsis in industry. Spectral properties, such as NIR
reflectance, can detect invisible features, e.gstemce of chemical components on the surface. In
order to detect a certain feature on a particubgeat, characteristic wavelengths must be deteminine
by the analysis of sample spectra from that oljfcFeatures of interest can be detected by mewsur
the reflectance on the characteristic waveleng#tsrthined by this analysis. Multi-spectral imaging,
much like RGB imaging, can measure the spatiatidigion of reflectance at numerous wavelengths
(typically < 10). This fast and non-contact measurement mettaod be also used for real-time
controlling or quality control tasks [5, 6].

Hyperspectral imaging extends the concept of npétiral imaging to the measurement of images
at hundreds of contiguous wavelengths. This notraigs/e, non-contact technology was first used for
airborne remote sensing applications [7], and sthea it has been demonstrated as feasible for many
quality control applications in the food and phaceagical industries [8]. A number of configurations
exist for acquiring hyperspectral images, includihg “push-broom” setup [9] and the variable filter
focal-plane array [10]. In the push-broom setugspactrograph disperses light reflected from a line
segment of a sample into a spectrum, mapping aitpof the examined line into a rectangular arfea o
a sensor matrix (Figure 1).

Figure 1. Push-broom measurement setup.
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The sensor scans this rectangular area with gipatias, spectral and signal resolution, grabbing an
Intensity(X,W) matrix, where X is the spatial assd W represents the spectral axis. Moving steadily
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perpendicular to the examined line in the Y dittand performing a line scan at each spatial
position, the spectra of each pixel can be measoinetthe surface. The result is an Intensity(X,Y,W)
matrix, commonly called a "data hypercube". Thistpbroom method can be used in preliminary
experiments for determining characteristic wavellea@f a certain property for a given sample type.

Spectra from hyperspectral experiments are gegeraliher noisier than those obtained in
instrumental spectroscopy. This is due to a nunabdactors: in NIRHSI the sample surface is not
isolated, so the illumination is not homogeneobs; inevenness of the sample surface causes high
intensity variance; the sensitivity of the systesmot homogeneous, and some pixels of the sensor-
matrix can be unserviceable. Moreover, the outpfits/perspectral measurements (hypercubes) are of
enormous size, typically in the order of mega- igaghytes, which poses significant problems foadat
storage and processing. This array of data canniéysed by robust mathematical or statistical
methods to extract significant features, howevechsanalysis tends to be time consuming, given the
large size of the datasets to be analysed.

In this paper, a strategy for compensation of wiseable pixels in the NIR detector is presented,
and an approach for the reduction of hyperspedaitd by real-time extraction of examined features
using vector-to-scalar operators is discussed. Msapplication of the approaches presented, the
NIRHSI properties of carrot have been investigdtadestimation of the moisture decrease during
drying. Preliminary experiments were performed &iednine the suitable data reduction operator
(target function) for extraction of the moisturentent feature. Image processing and statistical
algorithms were used to analyse the data in ooldetermine the optimal target function.

2. Hyperspectral imaging system

The hyperspectral imaging system employed in tesearch (Figure 2) allowed two different
configurations: one for imaging in the visible-vé&iR range (400 — 1000 nm) and another for imaging
in the NIR range (900 — 1700 nm).

Figure 2. Hyperspectral imaging system.
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The NIR configuration was used in this study. Tlgstam consists of a linear translation table,
illumination source (DC regulated light feedbadirdi optic, Model 3900, www.illuminationtech.com),
objective lens (2/3" C-mount broadband coated knSehneider—Kreuznach CINEGON), Specim
N17E spectrograph (Spectral Imaging Ltd., Oulu)dfid) operating in the wavelength range of 900 —
1700 nm, detector (LUXNIR camera with InGaAs foglne array, effective resolution of 320 x 256
pixels by 12 bits, 30x30 um pixel pitch, 98% pirekerability) and PC. The linear translation tablsw
driven by Isel LF4 mechanics and Isel TMO-4403 (RIC) stepping motor that could be controlled
by textual commands via an RS-485 interface (wwekdgsm). Wavelength calibration was performed
using Mercury-Cadmium and Helium lamps in NIR amglble ranges and the heat extracted from the
NIR camera sensor by a Peltier cooler was remoyeathtexternal liquid pump.

Reflectance calibration was required to accounhfor-homogeneous spectral response of detector.
The relative absorbance value (‘RA’) was calculatexn the measured signal (‘x’) as shown in
equation 1, where the dark field reading (‘min’)saabtained by covering the optics with a lens cap
and the bright field reading (‘max’) was obtaingdrnbeasuring the reflectance of a gold-covered plate
Reflectance (‘R’) and absorbance (‘A’) are defime@quations 2 and 3.

RA= X 595 1)
max— min
R=1- RA (2)
409F
4095
g(409E—-RA)

3. Methodology

3.1. Unserviceable NIR sensor pixels

Two types of unserviceable pixels observed for KB sensor (InGaAs focal plane array) are
described below:

I.  Extraordinarily dark pixels: These pixels behdike a stone dropped into water, resulting in a
slightly higher intensity level for their four ndigours [Figure 3 (a)]. The superposition effectsene
additive, therefore one fourth of the missing sigfadark pixels had to be subtracted from thathef
four neighbours.

Il. Extraordinarily bright pixels: These pixels wigd in a “light shadow” on the pixel directly to
their right; this “light shadow” also affected faeighbours with exponentially decreasing intensity
[Figure 3(b)].
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Figure 3. Dark (a) and bright (b) pixel’s effect and superpos.

Standard noise removal algorithms for image prangsare not applicable to the problems listed
above. Therefore, the following steps are propaseattliver suitably homogeneous frames:

A. Identification of extraordinarily dark and bright pixels

Dark and bright pixels have to be identified oraarfe of a grey (mid-intensity level) surface when
calibrating extraordinary pixels. Firstly, the ing#ty variance for a square area of a given sizg (e
10x10 pixels) on the grey surface is calculatecenTthis variance is multiplied by a number, N (e.g.
4), to define a threshold value. Pixels with intgnsalues above this threshold are classified as
extraordinarily bright, while pixels with intensityalues below this threshold are classified as
extraordinarily dark.

Figure 4. Schematic showing correction of extraordinarilykdaixel based on interpolation.

i ii
@ Neighbouring pixzels with (i)
A signal increased
(Va1 & Vi) 4
. L =
Ve 1= _ |
‘ VED
VED ‘ ‘
N1 S1 ED 82 N2 New estimated value

for ED {(Vep)
iii iv
(i) Neighbouring pixels with (iv)
A signal corrected by 4
subtracting Y4 missing
signal of dark pixel

/\.:>

Vepr

VED’ —

Final estimated value
for ED(VEDf)



Sensors 2008 8 3292

B. Correction of extraordinarily dark and bright pixels

The steps required for correction of an extraondlyndark pixel (ED) by interpolation in shown in
Figure 4. Surrounding the ED are 2 bright shadoxelpi (S1, S2) which are neighboured by two
normal pixels (N1, N2); firstly, a linear regressic made between N1, N2 to estimate the valueDof E
[Figures 4(i) & (ii)]. S1 and S2 are then correctsdsubtracting ¥ of the error (i.e. differencevissn
actual and estimated values) of ED [Figure 4 (iiBinally, a linear regression is made between the
corrected values of S1 and S2 to re-estimate tieevaf ED [Figure 4 (iv)]. A similar linear
interpolation correction scheme was used to congierisr extraordinarily bright pixels.

3.2. Real-time data reduction

The procedure developed in this research enablddimee pre-processing of hyperspectral data
during data acquisition for reduction of the enoasétntensity hypercube, 1(x}), into Score matrices,
S(x,y), each representing a particular features Tdiachieved by multiplying the spectral emissidn
the target by an feature extraction operator preddfby experimentation. The simplest example of
feature extraction is the pre-processing functibhwoman vision. The spectral emission of a scene is
multiplied by Red, Green and Blue (RGB) filtersgtiCIE 1931 colour matching functions [11]
resulting three scalar values as score of features.

To perform real time feature extraction of hypecid images, the vector-to-scalar operator of the
desired feature, Op), must first be estimated by experimentation. Aareple of how this may be
done is given further on in this paper. Once thas been done, while scanning the frame of an
examined line, the 2-D (spatial vs spectral) Intgn®atrix, I(x, 1), is real-time pre-processed into a
score vector, T(x), by multiplying the spectrumeaich pixel by Op( (see Figure 5). By moving the
object under the camera (in the y-direction) armbging the frames of subsequent lines, the scores
matrix of features, T(x,y), is built. This matrixay be displayed while scanning as a pseudo-image,
showing the distribution of the selected featuretlom surface. Selected score matrices, which are
substantially smaller in size than the correspapdiypercube (3-4 score image planes as opposed to
>100 spectral planes in the hypercube) may thersaved for further analysis by usual image
processing methods.

Figure 5. Conversion of 2-D spatial-spectral matrix, AXinto score matrix, T(x), as a
result of a vector multiplication operator.
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Optimal vector-to-scalar functions are usually deiaed by mathematical and statistical methods.
For instance, Principal Component Analysis is fergly used in chemometrics. This analysis
determines a set of independent base vectorsirgdeiwv of which optimally describe the variande o
the sample population. The measured spectrum @an ik transformed into the base vector-space
[12]. For determining optimum data-reduction opersit spectra of samples have to be obtained where
the examined feature of interest (e.g. moisturdesd is known. The optimal operator must then be
determined by statistical analysis. The followirggteon of this article shows an example of how to
estimate an efficient operator for a given featlmethis case, the goal of the data reduction dpera
was to predict the moisture-content of carrot gssduring storage.

4. Experiments

Non-invasing monitoring of the impact of posthaitvanditions on carrots can be an important tool
in supply chain management. Spectrophotometricnigales have been adapted and evaluated with
conventional chromatographic methods to test tHeasibility for monitoring of compounds
determining the quality of carrot during storag@&][linvestigating and modelling the behaviour of
different tissues could be another interesting @g@gh to describe the changes of carrot.

Sample preparation

Carrot samples (Barbara cultivar) sourced fromcallsupplier were stored prior to analysis in a
controlled atmosphere at a temperature of 4°C araelasive humidity of 90%. Cross-sectional slices
were cut from the middle third of the carrot lengtimce this part is generally free from qualityees.
Interior carrot structure is shown in Figure 6.e@ch time point studied, hyperspectral imageseshfr
cut slices from the middle third of the carrot léngvere examined (Figure 7). Cross-sectioned carrot
slices were measured rather than grated carrate gynated carrot experienced rapid darkening by
enzymatic oxidation of phenolic compounds. Re-mesament of a given slice resulted spectrally
homogeneous whitening caused by drying of the sarfayer; therefore it was necessary to measure
fresh-cut surfaces at each time point. Plastic iogegrevented the examined section from lengthwise
drying since intact carrots lose moisture primanlyhe radial direction during drying.

Figure 6. Cross section of carrot structure
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Figure 7. Film covered section (left) was cut each time tovjde a fresh surface.

Carrot samples were dried to different moisturelewy storage in a drying chamber at’G0for 0,

90, 180, 270, 360, 450 min. Five carrots were usé¢lde experiment: one slice was obtained from each
of the 5 carrots at each time point, making fiveessamples for each time point. Slices were wealghe
immediately after each hyperspectral measuremehtemne then dried completely for 24 hours drying
in a chamber at 10%. Moisture content (% d.b.) was calculated by naffsrence.

Five hyperspectral line scans were obtained altvegcentral region of selected carrot slices, as
shown in Figure 8. The distance between scannimgglivas 1 mm, and the average and variance of
relative absorption was calculated along 3 mm ek¢hlines at the sites of the phloem and xylem.
Spectral data was limited to the range 950 — 16BGimce the signal to noise ratio was unacceptably
low beyond these limits. Due to temporal signattilations, all spectra were normalized by dividing
them by the mean value of the background signaioét at respective time points.

Figure 8. Areas of carrot tissue selected for analysis

1 mm (80 step)

5. Results

The average of 525 spectra was calculated for efttte drying times on both tissue types (Figure
9). Differences in spectral shape for the differiémie points studied were not readily visible, etce
for xylem absorbance in the 1050 — 1300 nm intemvlich showed a trend of decreasing absorbance
with increasing drying time. The observed decreasgbsorption for longer drying times is probably
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related to water content, since liquig@exhibits an intermolecular stretch band at arol2@d0 nm

[14].

Figure 9. Average absorbance of carrot phloem and xylemrécted by mean
normalization) versus wavelength for different ag® time intervals.
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Discriminant analysis proved that both the tissgmes$ could be classified with very high scores
along the whole measurement time (Table 1), andite of storage could also be classified on both
tissue-types (Table 2).

Table 1. Classification results of DA grouping tissue type@ylem and phloem) for
2x630 spectra in calibration set and 2x2520 spéctrast set (data of each time intervals
are contained)

predicted group membership
original group | xylem phloem
learning set: 2*630 spectra  count xylem 630 0
phloem 0 630
% xylem 100.0 0.0
phloem 0.0 100.0
test set: 2*2520 spectra count xylem 2504 16
phloem 20 2500
% xylem 99.4 0.6
phloem 0.8 99.2

100.0% of selected original grouped cases (learsiigcorrectly classified.
99.3% of unselected original grouped cases gt$tcorrectly classified.

Finally, U-test or PLS analysis can be used toutate the optimal wavelengths for discrimination.
The linear combination of significant wavelengtte de divided by a wavelength that is invariant
from the investigated property, to eliminate tharues of absorbance, caused by other circumstances,
like illumination.

Then the displayed pseudo-images of data-reduotp@nators can real-time display the distribution
of examined property. Figure 10 illustrates thailtesf operator that classifies xylem tissue typetioe
base of significant wavelengths. The brighteningydém tissues can be observed on the distribution
of discriminant function that describes the chaoipeylem by time (Figure 11).



Sensors 2008 8 3296

Table 2. Classification results of DA grouping differentni intervals (0..5x90 min) for
6x210 spectra in calibration set and 6x840 spécttast set (data of each tissue types are
contained)

predicted group membership
group | 0 90 180 270 | 360 | 450
learning set: 6*210 spectra 9 0 100.0 | 0.0 0.0 0.0 0.0 0.0
90 0.0 98.6 | 1.4 0.0 0.0 0.0
180 0.0 43 |95.7 |0.0 0.0 0.0
270 0.0 0.0 0.0 81.0 | 15.7 | 3.3
360 0.0 0.0 0.0 5.2 | 80.5 | 14.3
450 0.0 0.0 0.0 4.8 11.9| 83.3
test set: 6*840 spectra % O 98.1 1.9 0.0 0.0 0.0 0.0
90 0.1 91.2 | 8.7 0.0 0.0 0.0
180 0.0 75 1925 |0.0 0.0 0.0
270 0.0 0.0 0.0 78.6 | 16.9 | 45
360 0.4 0.1 1.0 41.0| 419 | 15.7
450 0.0 0.0 0.0 38.9] 26.2| 34.9
89.8% of selected original grouped cases (lears@tpcorrectly classified.
72.9% of unselected original grouped cases (téstsgectly classified.

These pseudo-images of the measured object sdiecprocessed later by the conventional image
processing methods.

Figure 10.Pseudo-images of different ranges and one forreriihg xylem tissue type

i

1300 - 1400 nm 1400 - 1500 nm 1500 - 1600 nm operator of tissue types

Figure 11.Pseudo-images to detect changes of xylem. Sliees wut after 0, 90 and 180
minutes storage time from a definite carrot.
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6. Conclusions

Measurement method was developed for insuring preigeal level of push-broom NIRHIS system
and for reducing the data load of hyperspectrakergents by using sample-specific vector-to-scalar
operators for real time feature extraction. Thesitaity of this approach was tested for describing
changes of carrot tissues during storage. The rdetlas able to distinguish the different behavidur o
different tissues. Surfaces of food and raw mdgedan be investigated and tested by this method in
preliminary measurements for using multispectradteay for industrial tasks or quality control.
Studying and modelling the behaviour of differaasties could be an interesting approach to describe
more detailed changes in agricultural produce leetfi@rvest and during storage.
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