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Abstract: The satellite imagery has been effectively utilized for classifying land cover 
types and detecting land cover conditions. The Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) sensor imagery has been widely used in classification 
process of land cover. However, atmospheric corrections have to be made by preprocessing 
satellite sensor imagery since the electromagnetic radiation signals received by the satellite 
sensors can be scattered and absorbed by the atmospheric gases and aerosols. In this study, 
an ASTER sensor imagery, which was converted into top-of-atmosphere reflectance 
(TOA), was used to classify the land use/cover types, according to COoRdination of 
INformation on the Environment (CORINE) land cover nomenclature, for an area 
representing the heterogonous characteristics of eastern Mediterranean regions in 
Kahramanmaras, Turkey. The results indicated that using the surface reflectance data of 
ASTER sensor imagery can provide accurate (i.e. overall accuracy and kappa values of 
83.2% and 0.79, respectively) and low-cost cover mapping as a part of inventory for 
CORINE Land Cover Project. 
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1. Introduction 
 

Monitoring and assessing land use/cover information is very important in managing natural 
resources. In recent decades, remotely sensed data have been widely used to provide the land use/cover 
information such as degradation level of forests and wetlands, rate of urbanization, intensity of 
agricultural activities, and other human-induced changes [1]. In remote sensing technology, 
classification as a common image processing technique is implemented to derive data regarding land 
use/cover types [2]. Especially in Mediterranean regions with complex and heterogeneous landscapes, 
classification techniques are crucial to generate accurate and inexpensive land use/cover maps [3, 4, 5, 
6]. Besides, the classification of land use/cover types provides useful information in mapping 
vegetation and ecosystem types [7, 8, 9]. Then, these thematic maps can be also used to generate 
necessary database for empirical and process-based models of soil loss, hydrological cycle, and carbon 
flux [10, 11, 12, 13, 14].  

The satellite imagery has been effectively utilized in classification process, especially, in generating 
land use/cover maps and detecting land cover conditions [6, 15, 16]. Landsat images have been 
commonly used in the studies of mapping and monitoring natural resources worldwide. Landsat 
imagery with a moderate spatial resolution of 30 m has been effectively used to classify homogeneous 
landscapes [5]; however, their accuracy may diminish in eastern Mediterranean regions with highly 
heterogeneous landscapes [17].  

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been 
recently developed by collaboration of NASA and Japan’s Ministry of International Trade and 
Industry to provide accurate satellite images with high spatial and spectral resolutions [18]. The 
ASTER sensor operates three different spectral regions including the visible and near infrared (VNIR), 
the short-wave infrared (SWIR), and the thermal infrared (TIR). According to Rowan and Mars [19], 
the visible and near-infrared telescope on ASTER with a spatial resolution of 15 m is very useful to 
acquire vegetative information. The ASTER images with high spatial and spectral resolutions can 
provide more accurate and low-cost land cover mapping [20, 21, 22].  

The electromagnetic radiation (EMR) signals received by the satellite sensors are subject to some 
type of distortion due to scattering and absorption effects of atmospheric gases and aerosols [23, 24]. 
Therefore, atmospheric corrections have to be made by converting radiance values to top-of-
atmosphere (TOA) reflectance, especially in multispectral VNIR bands [25]. The surface reflectance 
data results in better calibration of multi-sensor imagery, less blurring effects of atmospheric 
scattering, and easier interpretation, when comparing with original digital number (DN) value or 
calibrated radiance data [26, 27, 28, 29].  

In classification process, supervised classification has been widely used in remote sensing 
applications. In supervised classification, spectral signatures are collected from specified locations 
(training sites) in the image by digitizing various polygons overlaying different land use types. The 
spectral signatures are then used to classify all pixels in the scene. The supervised classification is 
generally followed by knowledge-based expert classification systems depending on reference maps to 
improve the accuracy of the classification process [30, 31].  

Expert systems have been successfully implemented in classifying land use/cover types, especially, 
for heterogeneous landscapes [32, 33]. Besides, expert systems can be used to reclassify the classified 
images according to some specific land use/cover classification standards. In this study, land use/cover 
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classification standards of COoRdination of INformation on the Environment (CORINE) Land Cover 
Project were used in the process of expert classification system. The CORINE was established by the 
European Union (EU) in 1985 to generate the European environmental landscape based on 
interpretation of satellite images and ancillary data [34]. It provides land use/cover maps for European 
countries for environmentalists and for policy makers.  

The main purpose of this study is to perform the land use/cover classification of a study area in the 
province of Kahramanmaras located in the Mediterranean region of Turkey. The classification was 
performed on an ASTER sensor imagery, which was converted into TOA reflectance. The capabilities 
and opportunities of applying ASTER imagery to provide accurate land use/cover classification of 
heterogeneous Mediterranean landscapes were investigated as a part of inventory for CORINE Land 
Cover Project.  

 
2. Material and Methods 
 
2.1 Study Area 
 

The study area is located in the eastern Mediterranean region of Turkey, about 20 km southeast 
from the city of Kahramanmaras (Figure 1). The study area covers approximately 21000 ha of land 
with the elevation of 500 to 850 m and slope of 0 to 39%. The area represents the heterogonous 
characteristics of the eastern Mediterranean regions consisting of the wide variety of agricultural 
systems (i.e. fallow land, rainfed and irrigated field crops), forest ecosystems, rangelands, shrub lands, 
bare rocks, wetland, water bodies, and residential areas.  

 
2.2. Image Processing 
 

The image processing was performed in four stages including preprocessing, converting ASTER 
radiance values to reflectance, land use/cover classification, and expert classification. The logic behind 
the image processing techniques was indicated in Figure 2.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The location of the study area on the topographic map of Turkey and on the ASTER image. 
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Figure 2. The flowchart indicating image processing stages. 
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2.2.1. Preprocessing 
 

A Level 1A ASTER image (VNIR) of the study area was acquired on the 16th of August, 2005 with 
a cloud cover of 0%. In preprocessing stage, first the images were imported into the “image” format in 
ERDAS Imagine 8.5 software [35] using the built-in ASTER import dialog. Then, the study area was 
clipped out from the ASTER image by using “Subset” function in ERDAS 8.5, referencing 7.5-minute 
topographic map (i.e. Gaziantep N38a1). The final image was georeferenced based on a topographic 
map with 1:25 000 scale and then re-projected into the UTM projection zone 37 and ED 50 datum, 
using a first-order polynomial nearest-neighbor transformation. Approximately 24 ground control 
points (GCPs) were used in the rectification process resulting in an overall RMS error of less than 0.5 
pixels using a second order polynomial model.  

2.2.2. Converting ASTER Radiance Values to Reflectance  

To eliminate the effects of atmospheric scattering and absorption in the VNIR and to increase the 
accuracy of surface type classification [24, 26, 29], the ASTER DN values were converted to TOA 
reflectance by using the procedure reported by [36]. This procedure is divided into two stages; (1) 
Converting DN values to spectral radiance and (2) Transferring the sensor detected radiance into TOA 
reflectance. In the first stage, DN values of the sensor measurements are converted into spectral 
radiance measured (Lrad) by satellite sensors using the following equation: 
 

( )cDNLrad ×−= )1             (1) 

where c is the unit conversion coefficient which differs for each ASTER band. In this study, the 
normal values of c for each band (Table 1) were obtained from the user guide of ASTER [37]. In the 
second stage, the sensor detected radiance was transferred into the ground surface reflectance (RTOA) 
using Eq. 2: 

))cos(()( 2 zESUNdLR iradTOA ×÷××= π          (2) 

where π ≈ 3.14159, ESUNi is the mean solar exoatmospheric irradiance of each band (Table 1), z is the 
solar zenith angle, (z = 90 – solar elevation angle), which is within the ASTER header file, and d is the  

Table 1. The values of unit conversion coefficient for the operating bands of ASTER (VNIR). 

Band  
Coefficient (W/m2*sr*um)/DN) 

*ESUNi 
High Gain Normal Low Gain 1 

1 0.676 1.688 2.25 1847 

2 0.708 1.415 1.89 1553 

3N 0.423 0.862 1.15 1118 

3B 0.423 0.862 1.15  
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*ESUNi = Calculated by convolving the ASTER spectral response functions [38]. 
earth-sun distance (in astronomical units), which can be calculated using the following equation in 
Microsoft EXCEL format [39, 40]: 

)))4_(9856.0((01672.01 −××−= DayJulianRADIANSCOSd      (3) 
To evaluate the effects of converting processes, NDVI was calculated for both radiance values and 

TOA reflectance of ASTER in Band 2 and Band 3N by using the following formula: 
NDVI = (Band 3N-Band 2) / (Band 3N+Band 2)        (4) 

where Band 3N is near infrared and Band 2 is visible red reflectance [41]. 
 

2.2.3. Land use/cover classification  
 

In subset image of the research forest, there was a high frequency of data variability due to 
heterogonous characteristics of the landscape features. The low-pass filtering technique has been 
widely used to reduce spatial frequency [42]. Using “Convolution” function in ERDAS 8.5 [43], the 
performances of three different low-pass filtering standards (3x3, 5x5, and 7x7) were compared [44].  

In classification process, Supervised Classification method in ERDAS 8.5 was performed based on 
a set of user-defined classes, by creating the appropriate spectral signatures from TOA reflectance 
data. In supervised classification process, “User-Defined Polygon” function reduces the chance of 
underestimating class variance since it involved a high degree of user control [32]. Over 80 training 
points were repeatedly selected from the whole study area by drawing a polygon around training sites 
of interests. Land use/cover classes of these training points were extracted with respect to general 
knowledge obtained from topographic maps and field visits. In selection process, “Signature Alarm” 
and “Signature Mean Plot” tools were used to accurately representing the land use/cover classes to be 
identified. Then, supervised classification was performed using the parallelepiped non-parametric rule 
provided by ERDAS 8.5. After the classification process, “Recode” function in ERDAS 8.5 was 
applied to combine the classes into 10 main classes including irrigated crops (1), fallow (2), stubble 
(3), rangeland (4), sparse forest (5), forest (6), bare land (7), residential (8), wetland (9), and river 
channel (10).  

To evaluate the accuracy of the classified image, “Accuracy Assessment” tool in ERDAS 8.5 was 
used based on random sampling method in which 256 points were automatically selected from 
referenced topographic map. The referenced values were recorded on the “Accuracy Assessment 
Table” based on previously generated topographic map and Color IR air photos of the region, and field 
reconnaissance taken place in October 2005. In error matrix utility, the reference class values were 
compared with the classified class values in a c x c matrix, where c is the number of classes (including 
class 0). Then, overall accuracy and kappa values were computed by using user’s accuracy (a measure 
of commission error) and producer’s accuracy (a measure of omission error) of each class.  
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2.2.4. Expert Classification 
 
After supervised classification process, classified image was post-processed by using “Expert 

Classification System” [43] according to the CORINE land cover nomenclature [34] (Table 2). Expert 
classification integrates the available knowledge about the area of interest into the classification data 
space to improve accuracy [41]. In expert classification, first, a referenced raster map was produced by 
digitizing irrigated and non-irrigated areas, water course, and residential areas  
 

Table 2. The classes used in classification process based on the CORINE land cover nomenclature. 
 

Level 1 Level 2 Level 3 
1. Artificial surfaces 1.1. Urban Fabric 1.1.2. Discontinuous urban fabric 
 1.2. Industrial, commercial, 

and transport units 
1.2.2. Road and rail networks and 
associated land 

2. Agricultural areas 2.1. Arable land 2.1.1.Non-irrigated arable land  
  2.1.2.Permanently irrigated land 
3. Forests and semi-
natural areas 

3.1. Forests 3.1.2. Coniferous forest  

 3.2. Shrub and/or herbaceous 
vegetation association 

3.2.1. Natural grassland  
3.2.4. Transitional woodland/shrub 

   
 3.3. Open spaces with little or 

no vegetation 
3.3.2. Bare rock 
 

4. Wetlands 4.1. inland wetlands 4.1. 1. Inland marshes 
5. Water bodies 5.1. Inland waters 5.1.1. Water courses 

 
from the referenced topographic map. Table 3 indicates class values in classified, referenced, and 
CORINE land use/cover maps used in expert classification process. In “Spatial Modeler” tool of 
ERDAS 8.5 [43], CORINE land use/cover maps were generated by using the conditional statement 
indicated under Table 3. In these statements, first, the discontinuous urban fabric was delineated when 
they were classified as fallow and stubble areas in classified land covers, while they were classified as 
residential in referenced map. Water courses were also delineated when they were classified as fallow 
and stubble areas in classified land covers, while they were classified as water courses in referenced 
map. When fallow and stubble were classified as irrigated in reference map, they were assigned as 
permanently irrigated land, while they were non-irrigated arable land when they were classified as 
non-irrigated in reference map.  
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Table 3. The class values in classified, referenced, and CORINE land use/cover maps used in expert 
classification process. 

Classified 
Land Covers 

Reference 
Land Covers 

CORINE 
Land Covers 

Class 
Values 

 Class  
Names 

Class  
Values 

 Class  
Names 

Class 
Values 

CORINE 
Nomenclature 

1 Irrigated Crops 1 Resident 1 Permanently irrigated land 
2 Fallow 2 Irrigated 2 Natural grassland 
3 Stubble 3 Water Course 3 Transitional woodland/shrub 
4 Rangeland 4 Non-irrigated 4 Coniferous forest 
5 Sparse forest   5 Bare rock 
6 Forest   6 Discontinuous urban fabric 
7 Bare land   7 Inland marshes 
8 Residential   8 Water Courses 
9 Wetland   9 Non-irrigated arable land  
10 Water Courses   10 Road and rail networks and 

associated land 
Statement Used in ERDAS Spatial Modeler: 
CONDITIONAL {(Reference = = 1) 6, (Reference = = 3) 8, (Classified = = 1) 1, (Classified = = 4) 2, (Classified = = 5) 3, 
(Classified = = 6) 4, (Classified = = 7) 5, (Classified = = 8) 6, (Classified = = 9) 7, (Classified = = 10) 8, (Classified = = 2 AND 
Reference = = 1) 6, (Classified = = 2 AND Reference = = 2) 1, (Classified = = 2 AND Reference = = 3) 8, (Classified = = 2 AND 
Reference = = 4) 9, (Classified = = 3 AND Reference = = 1) 6, (Classified = = 3 AND Reference = = 2) 1, (Classified = = 3 AND 
Reference = = 3) 8, (Classified = = 3 AND Reference = = 4) 9}

 
3. Results and Discussion 
 
3.1. Converting ASTER Radiance Values to Reflectance 
 

After converting ASTER radiance values to reflectance, their NDVIs were calculated for both 
radiance values and TOA reflectance to evaluate the effects of converting processes. In previous 
studies, NDVI was commonly used to evaluate the effects of atmospheric correction process [24, 45, 
46,47]. The results shown in Table 4 indicated that the NDVI of the TOA reflectance is greater than 
that of ASTER radiance values. Thus, quality of the image was improved after eliminating the 
negative effects of molecular scattering, gaseous observation, and aerosols. Vermote et al. [24] also 
reported that the NDVI values, on average, increased from -0.26 to 0.10 after atmospheric corrections.  
 

Table 4. Comparison of radiance and TOA reflectance values of NDVI 
Statistics Radiance Reflectance
Min -0.500 -0.365 
Max 0.400 0.501 
Mean -0.255 -0.100 
Median 0.342 -0.019 
Mode -0.402 -0.257 
Std. Dev. 0.187 0.188 

 
3.2. Land use/cover classification 

 
The results indicated that applying 7X7 low-pass filter removed the data variation prior to 

classifications process. Akay et al. [48] also reported that using 7X7 low-pass filter provided better 
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results in a study where tree and shrub species were classified. Then, supervised classification was 
applied to classify the land use/cover types into 10 main classes (Figure 3). The accuracy of the 
classified image was then assessed by using randomly selected 256 points based on referenced 
topographic map. The results indicated that classification process provided overall accuracy and kappa 
values of 83.2% and 0.79, respectively (Table 5). 

 Supervised classification provided satisfactory results in terms of distinguishing irrigated crops, 
forest, stubble, water courses, and rangeland; however, accuracy for fallow, sparse forest, bare land, 
and residential were relatively low due to large variation of spectral signatures. The highest producers 
and users accuracy was reached in classification of irrigated crops (96.61%) and stubble (94.87%), 
respectively. The lowest producers and users accuracy was for fallow (57.69%) and bare land 
(35.29%), respectively. It was assumed that low accuracy of the follow is due to close reflection values 
received from follows, sparse forest, and wetland (Figure 4). The results also indicated that supervised 
classification overestimated rangeland and bare land, while underestimated irrigated, forest, 
residential, and water courses. The roads in the study area could not be distinguished during the 
classification process due to close reflectance values with adjacent raster cells.  

 

 
Figure 3. Land use/cover classes after supervised classification of the study area. 
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Table 5. The results from the accuracy assessment process. 
 

Class 
Name 

 Class Names Reference
Total 

Classified
Totals 

Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy

1 Irrigated Crops 59 63 57 96.61% 90.48% 
2 Fallow 26 16 15 57.69% 93.75% 
3 Stubble 41 39 37 90.24% 94.87% 
4 Rangeland 71 70 62 87.32% 88.57% 
5 Sparse forest 33 30 20 60.61% 66.67% 
6 Forest 12 13 11 91.67% 84.62% 
7 Bare land 7 17 6 85.71% 35.29% 
8 Residential 6 7 4 66.67% 57.14% 
9 Wetland 0 0 0 -- -- 
10 Water Courses 1 1 1 100.0% 100.0% 

Totals  256 256 213   
*Overall Classification Accuracy = 83.20% 
*Overall Kappa Statistics = 0.79  
 

 

 
Figure 4. Mean pixel value of the ten classes generated by supervised classification. 
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3.3. Expert Classification 
 

In the Mediterranean region of Turkey, cereals grow in both irrigated and non-irrigated (rainfed) 
conditions in winter seasons. It is not easy to determine whether they grow in irrigated or rainfed 
conditions. Besides, some of the irrigated and non-irrigated lands were not cultivated, which leads to 
problems in distinguishing permanently irrigated lands from non-irrigated arable land. Thus, expert 
classification system was applied to improve the accuracy of the classified image and arrange the 
classes according to the CORINE nomenclature [49]. The results from the expert classification were 
shown in Table 6, indicating the total area and percentages of land use/cover classes based on 
CORINE Nomenclature. Figure 5 indicates the land use/cover map of the study area according to 
CORINE Land Cover Project. 
 
4. Conclusions  

 
ASTER sensor imagery, converted into TOA reflectance, was used to generate land use/cover maps 

according to the CORINE Land Cover Project. Supervised classification process using the TOA 
reflectance data provided accurate and low-cost land use/cover maps for heterogeneous Mediterranean 
landscapes. Knowledge-based expert classification system was further applied to improve the accuracy 
of the classified image and arranged the classes according to the CORINE nomenclature. The method 
used in this study is expected to contribute to the generation of land use/covers maps for the 
Mediterranean regions of Europe as a part of CORINE land cover dataset.  

 
Table 6. The total area and percentages of land use/cover classes based on CORINE nomenclature. 

 
 
 
 
 
 
 
 
 

   
* Class 10 could not be distinguished from the adjacent classes during the classification process.  

  

Class 
Values 

CORINE 
Nomenclature Percentage Area (ha) 

1 Permanently irrigated land 0.33 7206.17 
2 Natural grassland 0.28 6107.20 
3 Transitional woodland/shrub 0.11 2504.16 
4 Coniferous forest 0.06 1385.10 
5 Bare rock 0.05 1199.20 
6 Discontinuous urban fabric 0.04  778.21 
7 Inland marshes 0.00  36.45 
8 Water Courses 0.02  473.85 
9 Non-irrigated arable land  0.10 2121.39 
10 *Road and rail networks and associated land -- -- 
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Figure 5. The land use/cover map of the study area according to CORINE Land Cover Project. 
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