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Abstract: A primary criterion of wireless sensor network rergy efficiency. Focused on
the energy problem of target tracking in wirelesas®r networks, this paper proposes a
cluster-based dynamic energy management mechanismget tracking problem is
formulated by the multi-sensor detection model & as energy consumption model. A
distributed adaptive clustering approach is ingedéd to form a reasonable routing
framework which has uniform cluster head distribatiDijkstra’s algorithm is utilized to
obtain optimal intra-cluster routing. Target pamitiis predicted by particle filter. The
predicted target position is adopted to estimageidte interval of sensor nodes. Hence,
dynamic awakening approach is exploited to prolsiegp time of sensor nodes so that the
operation energy consumption of wireless sensowarét can be reduced. The sensor
nodes around the target wake up on time and as¢rasng candidates. With the candidate
sensor nodes and predicted target position, thenapsensor node selection is considered.
Binary particle swarm optimization is proposed tmimize the total energy consumption
during collaborative sensing and data reportingpeexnental results verify that the
proposed clustering approach establishes a lowggr@mmunication structure while the
energy efficiency of wireless sensor networks isagted by cluster-based dynamic energy
management.

Keywords: Wireless sensor network, clustering, dynamic energgnagement, binary
particle swarm optimization.
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1. Introduction

Wireless sensor networks (WSNs) consist of a largmber of intelligent sensor nodes with
sensing, processing and wireless communicating bdéps. These sensor nodes implement
complicated tasks in the specific sensing fieldeRQa the strict energy constraint of sensor nodes,
optimization of energy consumption is essentialliraspects of WSN. Hence, energy management has
become a challenge issue. The recent interest iN W& led to network protocols. In [1], the authors
propose a new minimum spanning tree-based protaadled power efficient data gathering and
aggregation protocol (PEDAP). Its power-aware warsiPEDAP-PA, is proposed too. Some other
researches adopted cluster-based network archigedini enhance network scalability [2]. Focused on
the target tracking problem to be discussed, obsens can be fused on the cluster heads before
transmitting to the end user. A typical clusterdzhsetwork protocol, low-energy adaptive clustering
hierarchy (LEACH), is proposed in [3] to optimizenamunication energy. In LEACH, sensor nodes
choose themselves as cluster heads to route dathese cluster heads change every round to balance
energy consumption through network. Some improvésnehLEACH have been presented. Threshold
sensitive energy-efficient sensor network protaqd@@EN) and adaptive periodic threshold-sensitive
energy-efficient sensor network protocol (APTEEN® @ased on LEACH, both designed for time-
critical applications [4]. Some researchers proposew chain-based protocol based on LEACH. It is
called power-efficient gathering in sensor inforimat systems (PEGASIS), which minimizes the
energy consumption at each sensor node [5]. Howéittke effort has been made for the optimal
cluster head distribution, which is an importardtéa for the communication energy efficiency. Thus,
distributed cluster heads choosing approach shmeilelxploited to form reasonable clusters so that th
cluster heads can perform more energy-efficienvéoding tasks. Based on the cluster-based network
architecture, additional energy conservation could obtained by intra-cluster multi-hop
communication. For practical energy consumption efiod, we consider the dynamic power
management architecture, which is presented in N&jreover, target motion information can be
utilized to minimize the energy consumption of sensodes in target tracking applications. Specially
it is essential to schedule tasks for sensor nddesg the target detection.

Considering the energy management problem of targeking applications in WSN, we present a
dynamic energy management mechanism based on dyredaptive clustering with intra-cluster
optimal routing (DACIOR). A communication framewoiskdefined by distributed adaptive clustering
(DAC). Integrating the advantage of LEACH, the tdushead choosing approach is improved to form
more uniform cluster distribution. Clustering isfoemed in a distributed manner and the clustelesca
is adjustable. In addition, the optimal paths araimed by Dijkstra’s algorithm [7] in each cluster
reduce intra-cluster communication cost. Then, depa particle filter (PF) [8] to predict the target
position, as PF is usually applied to estimate lmgar and non-Gaussian dynamic process. With
predicted target position, sensor nodes can edith&ir idle interval and go to sleep. Moreover, as
candidate sensor nodes will wake up for sensin@riiparticle swarm optimization (BPSO) algorithm
is presented to select sensor nodes for collaberagnsing. Thereby, the total energy consump&on c
be optimized in WSN. In the experiments of targatking, energy consumption of the cluster-based
dynamic energy management is analyzed.
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The rest of this paper is organized as followstiB8e@ formulates the energy management problem
of target tracking in WSN, where the multi-sensetedtion model and energy consumption model are
presented. In Section 3, we propose the clustexebdgnamic energy management mechanism, where
the clustering mechanism of DACIOR is exploited. avehile, dynamic awakening approach and
BPSO sensor node selection optimization are studittdthe PF target position prediction. Section 4
provides experimental results of cluster-based myna@nergy management during the procedure of
target tracking. Finally, we conclude the papesattion 5.

2. Problem Formulation

We assume that WSN is composed of randomly deplegador nodes and one sink node in two-
dimension sensing field. Sensor nodes work coliiely for mobile target tracking with sensing
period T, while the sink node gathers the information sdrsethe sensor nodes [9,10,11]. A multi-
sensor detection model will be discussed as wedlamivhile, the sink node maintains sensor node state
and routing information to take charge of energyhaggement for the whole network. An energy
consumption model of sensor nodes will be descramedrdingly.

2.1. Multi-sensor detection model

It is assumed that each sensor node is equippédaviiearing sensor. It can produce direction angle
of the target in its sensing ran@e.sns [12]. For the time instant, we suppose that the target is

located at X = (Xarge , Yiarget ) - CONsidering the inherent redundancy of WSN, #ngeat can be detected

by a number of sensor nodes at the same timegioup of sensor nodes for detection, sensor mode
which is located a(x,y) will acquire the direction anglé , wherei=1,2:-- N (N> 2. The

direction finding error of the sensor has zero-maad Gaussian distribution. For sensor nodthe
standard deviation of direction finding &, . Then, we have the measurement equation as follow:

©@=H(X)+W, W ~Norm(0,R, ) (1)
where@=[8 6 --- 6], HX)=[h(X) h(X) --- hy(X)]" is the observation functiohy
is direction finding error matrix, andNorm is the normal distribution function. In addition,
h(X)=tan™ Vearget = ¥i ) /Karge =% ), Ro =diag[a§ b4 -+ Oa l.

Then, the likelihood function of the target pogitiX is calculated as:

1 ~o-H(X)]" Ry ©-H(X)] 1 -J 0-H( X)] "Ryt ©-H X]
PO[X)=——r e I

NN 2
Jdet(Z1Ry ) (2m)? |_j o
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To estimate the target position, we should exttiagtinformation from the data sét. A suitable
measure for the information contained@ncan be derived from the Fisher information ma¢fkv)
[13]. The FIM for target detection is calculated as

J=E{[%p(e| xm%na X1 e

where E means the expected value. According to Equatipnn@ have:

N1 9 d | £
=25 lax NGO =) (4)

i1 05 0X

where AX = Xargee =%, AYi = Viarge — Yi , i IS the Euclidean distance between the target andos
nodei . If all the sensor nodes have the same standatdtaba of direction findingo,, then FIM for
target detection is simplified as:

N AyIZ N AX.AM
3= 1 ;7 _; 5
i _iAXiAYi ZN:A i ©)

J7'is the estimation error covariance matrix, whigfies the Cramer-Rao lower bound (CRLB)
of target localization error. Its associated quadfarm depicts an error ellipse in two-dimenstase.

The sink node will gather the direction finding aldtom the sensor nodes and acquire the multi-
sensor detection results by maximum likelihood neation. Thereby, the collaborative sensing of
sensor nodes is accomplished and the sensing agdsrfaased on the error ellipse.

2.2. Energy consumption model

Assume that each sensor node consists of sensipgessing, memory and communication
components. With multiple power modes, these maduan support different levels of power

consumption and functionality. Accordingly, eacins@ node can have a set of sleep states based on
various combinations of module power states. Edebpsstates, has power consumptiap . The

transition time from statg to states; is denoted by ;, wherei and j are state indices. The power
consumption between the sleep states is modeladi@sar ramp.
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Here, four different sleep statés, s, S, S3 0of sensor nodes are defined. The transition tira&im
C={rn;l|i, j=0,1,2,3}is assumed as:

0 0 5 15
0 0 5 15
C= (6)
5 5 0 10
15 15 10 O

where the unitis ms;; =0, and7;,; =7j;.
The description of the sleep states is as follow:
(a) States
All the components of sensor node are active. Raguisition, reception and transmission are

enabled. Sensor nodes can accomplish target detewtd data forwarding tasks in this state. Assume
that the power consumption in stegeis 42 m\W+ ¢, where the extra power consumption for data

transmission is denoted k. The propagation distance between sensor nodesl j can be
denoted agl ;. Then transmission cost between the sensor nedeadulated agr, = air +a.d; °r ,

wherer denotes the data rate, denotes the electronics energy expended in tramsgnone bit of
data, anda, >0 is a constant related to the radio energy [14].

(b) States

Compared to stats,, the data transmission is disabled in s&teSensor node can receive orders
from the sink node in this state. Assume the pa@esumptiony; =42 mW.

(c) States,

In this state, only the sensing component is actlivis the transitional state to deeper sleepestat
Assume the power consumptign =22 mW.

(d) States;

This is the deepest sleep state, which consumedothest powery; =2 mW. The sensing,
processing, memory and communication componentsnactive in this state. Sensor nodes in this
state can only be wakened by its own timer.

Besides, we assume that the extra compressioriscbatl/bit/message in the cluster-base WSN to
be discussed. These energy consumption amoungsporrd to typical values.

3. Cluster-based Dynamic Energy Management

In a large scale WSN, direct transmission from datarce to sink node should be avoided due to
the large energy depletion. Cluster-based netwtnkctsire is encouraged to enhance the network
scalability and reduce energy consumption. We explmew clustering mechanism for cluster head
choosing and intra-cluster routing. Also, we stuhljypnamic energy management of target tracking
application under this communication framework. gedrposition is predicted for dynamic network
awakening and sensor node selection optimization.
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3.1. Distributed adaptive clustering with intra-cluster optimal routing

Clustering mechanism of WSN has been studied inviere LEACH is proposed to reduce and
balance the energy consumption of sensor noddsEACH, cluster heads are chosen in each round
based on a percentadk of total sensor node number. Each sensor magknerates a random number
in the interval[0,1]. If this number is less than a threshdhli), the sensor node becomes a cluster

head for the current round. The threshold is set as

{1 -R[rcMod(1/ 10G
Th(i):{ﬁ“{ AlieModw/ R 106 -

whereMod is the modulus operatiom; is the current round number, a@dis the set of sensor nodes
which have not been cluster heads in thelaBt rounds. Cluster heads send their announcement with
the same power, and then each sensor node catih@atuster with the closest cluster head according
to the received signal strength. During each rouwhdster heads collect the data of their cluster
members. In this way, cluster head can perform clat@pression and report the result to the sink node
Each sensor node can take its turn to be a clhstl-everyl/ R, rounds. However, as cluster heads
are randomly chosen, energy efficiency of theitrdigtion can not be guaranteed in each round.

To form a reasonable cluster head distribution,pnesent an approach of DAC to choose cluster
heads. It is assumed that the communication rahgaah sensor node is adjustable. During round
cluster heads can be decided in a distributed nmamitte following 4 steps.

Step 1:
Each sensor nodegenerates a numbey:

o 0 i0A(r) ®)
~|Rand(®) i0A ¢

where Rand(1 denotes a random number[1], A.(1) =0 . If the set of cluster heads in roundis
Bc(rc), then

Ac(re +1) = Ac (e )U Be (1) 9)

If Ac(rc)=1,thenAc(rc+1)=0.
Step 2:

Sensor nodes broadcast their number with the samenanication rangdR,. After receiving the
numbers from the neighboring sensor nofde}s, each sensor nodeset Flagheq (i) as:

|1 & =max({a}, &)
Flaghead(l)—{o a # max(@ad), a) (10)

If Flagned (i) =1, the sensor nodeis regarded as a cluster head.
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Step 3:

é)xisting cluster heads send their announcementnaitgeR, . For sensor nodg¢, if it can receive
the announcement, setagmeme (j) =1; otherwise, seFlagmeme (j) =0.
Step 4:

If the condition thatFlagned (k) =1 or Flagmeme (K) =1 is satisfied for all the sensor nodes, then
stop this process and form the clusters as LEACétdotherwise, the set of sensor nodes which have
not satisfied the condition continue to executg2te

Eventually, we can find that the distance betweay @vo cluster heads is larger thdh .
Meanwhile, there are at least one cluster headmwitte rangeR, for each sensor node. In this way,
the cluster head distribution can be more unifoonttgat cluster heads can provide more energy-
efficient data forwarding service for the wholeweik.

Moreover, as multi-hop communication still has pdigd to save intra-cluster communication
energy consumption, we propose DACIOR with adddlaoptimal path search in each cluster. Since
data of all cluster members should be transmitbeitheir cluster head, Dijkstra’s algorithm is wdd
here which can find the shortest paths from a sirgstination node to all the other nodes [15].

Considering only the transmission energy of WSM,globlem of each cluster is defined as:
(@) Cluster head, considered as the destinatiore,nisddenoted byp, and the set of cluster

members is denoted B ={p, Pz, Pn};
(b) According to Section 2.2, the edge weight betwp and p; is:

Zi,j =al+a2di,j2) i)j=01112'1" n |I¢J (11)
(c) Variable D represents estimate of the lowest cost franto p,. It converges to the real value

after iterations;
(d) The set of cluster members that find the lowest paths is denoted I6y.

Searching procedure for optimal routing in WSNesatibed as follow.
(i) Initialize the network:

Q=D1 DO = ol Di :Zi,o ) I = 1!2)“ r)] (12)
(i) Search for the next sensor node with the ldwest path top,. For p 0Q, if D; satisfies:
D =minD, (13)

the lowest cost path g is found, update):

Q=QU{p} (14)
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If Q=P, then search is completed; otherwise, continuekaay.
(iii) Update D; for all p; JQ according to the result of step (ii):

D; =min(D;,{;i +Di) (15)

Continue to execute step (ii).

Iterate step (ii) and (iii) until the lowest costths of all cluster members are found.

With the knowledge of all the clusters, the sinlda@erforms the intra-cluster path search and
maintains the routing information.

3.2. Dynamic awakening mechanism

In target tracking application, we discuss vehtalget which moves randomly with the maximum
speedvmax and the maximum accelerati@g. [16]. As the sink node can obtain the collaborativ
sensing result of target positions, the PF algorith performed on the sink node to predict thedfrg
position in the next sensing instant. PF is a setipleimportance sampling method which bases on
Monte Carlo simulation and Bayesian sampling edionatheories. It evolves from Bootstrap
nonlinear filtering algorithm [17]. The pseudo-caufePF is outlined as follow:

(a) Initialization

Generate the particle set according to the targgtipn probability distributionp(X(0)):

{Xi(0), i =1,---,Ns}~ p(X(0)) (16)
where X(k) is the target position estimation in thle-th sensing instant. Accordingly,

X, (k) =[x (Kk), y,(K)]" is the target position estimation for particleln addition, Ns is the number of
particles. Then, the importance weight of particie set as:

-1
w (0) = N 17)
(b) lterations
Sample each particle as:
Xi(K) =2Xi (k-1)- X; k- 2)+ 0.5; K- I+ X; k- 3y X; k- 2]+F (18)

where F is the process noise. The target velocity is estch according to the displacement, while the
target acceleration is estimated according to ikglacement increment. Then, evaluate the impogtanc
weights up to a normalizing constant and then nbema@nportance weights.
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Resampling needs to be performed when the variainitee importance weights becomes excessive.
The effective sample size is defined as

N

N, =———— (19)
1+ Var(w, (k))

where Var is the variance function. WhelN drops below a threshol,,, resampleNs samples
approximately distributed according o Xi (k) | Z(k)) and set importance weight of particl@s:

w (k) =Ni (20)

S

where Z(k) is the observation of target position.
Thus, the state of target position is updated as:

X(k) = i Xi (K)wi (k) (21)

In each sensing instant, the sink node can obtairioa state of target position for the next segsin
instant.

With the target position predicted by PF, we présetlynamic awakening mechanism. As shown in
Figure 1, sensor nodes are sent to statlor energy saving while the ones which have paént
sensing or transmission task wake up to statey their own timer. The sink node can estimateidies
period numbemyg. of each sensor node, while sensor nodes in statan receive the scheduling from
it. When there is no task (sensor nadesensor nodes will go back to sleep directlyragtg the next
sleeping interval. When there is a sensing (semsde j ) or forwarding (sensor node) task, sensor

nodes will implement the task, set the next slegpiterval and turns to sleep.
Figure 1. State transition of different sensor nodes withastgit awakening mechanism.

State
Sensor :(1) E/Mta\Skz‘ck to timer
node i s2 sleep driven
s3 )/ >

€ > Ll
~ )

n, (i)xT Time
Stateo transmit
Sensor 5[ S"S¢ back to timer
node j s2 [ sleep driven
-1 | ‘)/ _
) : n, (j)xT o Time
|
Stat%“ receive :tr nsmit
Sensor :] L back to timer
node k :g - //I/All*;f sleep drlvep/ -

€ 1 >

n, (k)xT Time
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As mentioned in Section 3.1, multi-hop communiagatis used to reduce transmission energy

consumption. However, activity of sensor nodes Wisigpport data forwarding leads to another part of
cost. The extra energy is marked in Figure 1 amibtsel byAE; . Then, we can add this part of energy

into Equation (11) to minimize the total energy somption during the optimal path search:

Zi,j =aqr +a'2di,,-2r +AEf /Ttx, |,J = 0,1,2'," n ,i * j (22)

whereTy is the data transmission time ands the data rate.
With the communication structure of WSN, the idkeripd number of each sensor node can be
estimated in the following way.

First, WSN should keep standby for any new targétirgg into it. Each sensor node can estimate
the minimum time for new target getting into thexgag range asmn = (dmin — Reensing) / Vmax, Where

dmin IS the shortest distance from the sensor nodéhéoWSN boundary. For the possible target
position at the next sensing instant, the neiglmgosensor nodes should be sent to stafer their
potential sensing task. Accordingly to the senspegiod T , the idle time of sensor node is
tiwe =tmin =T . Second, once a target enters the sensing fieédsink node can obtain the predicted
current target positiofXarget, Yiarger) - Then each sensor nodes that wakes up to stan get the
estimated idle timeiye = (iargeti — Reensing )/ Vmax — T, Wherediargerj 1S the distance between the target
and sensor node
As stated above, we can calculate the idle time as:

tige = min(ti'dle ,ti'éle) (23)
In addition, the sensor nodes that have forwarthisg should wake up on time. For sensor niodd

it has the responsibility of transmitting data éoset of sensor nodek}{ where k denotes the index of
sensor node. Then its idle time can be updated as:

tige(i) = mkin (tige (K)) (24)

Finally, the number of idle periods is:

Nae = Floor(tj_'e )+1 (25)

where Floor is the rounding operatiomg. iS employed to schedule the state transition okce
nodes. The sleep time of sensor nodes is proloag@&aduch as possible without loss any event. Besides
the multi-hop communication is guaranteed.
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3.3. Sensor node sel ection optimization

As sensor nodes transfer data to achieve collaleraensing, an efficient approach should be
exploited to optimize communication energy consuomptvith predicted target position and sensor
node sleep state.

With the dynamic awakening mechanism, sensor nodd® vicinity of target become candidates
for detection. Assume that there anecandidate sensor nodes. The optimization probseto select a
group of sensor nodes from the candidate sensa@srfod total energy consumption conservation. This
kind of combinatorial optimization problem is oftenlved by probabilistic heuristic algorithms, such
as genetic algorithms (GA) [18]. However, there amme deficiencies in GA performance. For
example, when the parameters to be optimized gtdyhcorrelated in some problems, the crossover
and mutation operations can not ensure that thed# of offspring is better. Moreover, the prenmatur
convergence of GA degrades its performance ancesdts search capability.

Kennedy et al. developed particle swarm optimiza{ldSO) through the simulation of a simplified
social system of bird and fish. PSO is an efficieptimization tool for solving combinatorial
optimization and dynamic optimization problems inltihdimension space. It can obtain high-quality
solutions with stable convergence characteriséiguiring only a concise program code [19]. Here, we
utilize a discrete binary particle swarm optimipati(BPSO) to solve the sensor node selection

problem.
The dimension of search spacems Assume the population of particlesNg . For the particle ,

Xi® = (%7, %%,--- X ) represents current position. Binary coding schemesed. If the sensor node
of the m candidate sensor nodes is used for sensing, ffienl; otherwise,x”, =0 . Besides,
ViP = (v, v, - vh,) represents the current velocity afd =(p7, p™,--- p'w) represents the best
position achieved so far for the particle

Taking semimajor axis of error ellipse as the neeifi collaborative sensing error, we assume that
sensing error should be less ti#gnn the target tracking application.

Figure 2 compares the power curves of sensor nadtbsand without sensing task. The extra
operation energy to accomplish task is denotedBywhile the execution time of task is denoted by
ts . FOr each solution, we denote the sensor node eusgbected to implement task ms According

to Section 2.2 and 3.2, the energy metric is ddfiioe the total energy consumption minimization:

En= > (aur +a2di ’r)Ty + AEN 26

(i,j)om

where M denote the set of sensor node pairs between whtehsthould be transmitted.
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Figure 2. Power curves of sensor node (a) which is not saletct implement task and (b)
which is selected to implement task.
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: ttm’k I Time
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Since purpose of the optimization is sensing acyuaad energy conservation in the target tracking
application, the minimization objective functid(X ") for potential solutionX " is defined as:

f(XP) = A+pE, A>A 27)
A+ PEn A< Ao

where A is defined as accuracy metric of the collaboraseasing errork, is the upper bound of
energy consumption metri€,, and o is a constant to balance the value of two metiMisimizing

the fitness function, the sensing accuracy is apgrohfirst to guarantee the sensing error thresigld
and then the energy metric is optimized for thegnefficiency of WSN.
The best position of theth particle can be calculated as:

RP(K)  f(XP(k+1)z f(RP(K))

(28)
XiP(k+1) f(XPk+D)<fR"K))

R%k+n={

wherek is the iteration number.
The overall best position of particle swarm is oidted as:

RP(t) = min(f (R (k). f (B” (k). f (AY, kD))= (Pg1:Pg2 - :Pgm ) (29)
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Velocity and position of particle are updated adony to Equation (30), (31) and (32) [20]:

W (k+1) =n (v (K)+an[ pf (k) = %% (K)] +card pg,;(K) = %%(K)] (30)
u’y(k+1)= —3-" (k+1) (31)
l+e ™
p _J1 ro<ufk+1)
xitkrd) {o fo = uP; (k +1) 32

wherec, andc, are acceleration constants, representing the wefghe stochastic acceleration terms
that pull each particle toward the local best posiand global best position respectivaly, rn andr;
are random numbers in intervi,1]. 77(k) is the inertia weight for balancing the global dodal
search ability. A large inertia weight facilitategjlobal search while a small inertia weight faatks a
local search. See Equation (33), the inertia wdigbtrly decreases during the iterations. Accagiyin
the optimization process can converge to the neidtdod of the global optimal solution smoothly at
the prophase, and converge to the global optimatiea quickly at the anaphase [21].

k

k)=0.9-———x 0.5
7 BPSO _ITER

133

where BPSO _ITER is the number of maximum iterations. AftBPSO ITER iterations, the optimal
particle presents the optimization result of semswle selection.

4. Experimental Results

In this section, we will analyze the efficiency oluster-based dynamic energy management
mechanism with simulation experiments.

4.1. Experiment environment

Assume that the sensing field of WSN is 400 m x 4Q0in which there are 256 sensor nodes
deployed randomly. Each sensor node is equippgeeinelectric infra-red (PIR) sensors with sensing
range Rensng =60 m. For each sensor, the standard deviation of DFis1 . In the energy

consumption model, we set parameters 50 nJ/k, a, =100 pJ/(1r .

For target tracking, the sensing peribds set ad).5s and the execution time of task is set as
te« =0.005¢ The data packet size is 2 KB. The optimizationetiof sensor node selection is set as
0.1s and the parametgw =10°. For the vehicle target, the maximum acceleratipn =6 m/$ and
the maximum velocitym. =30 m/s. The sensing error threshol =0.5 m. Simulations of target
tracking are performed using Opnet Modeler, whisha simulation platform for distribution
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communication system. Network models are estahlidhesed on the dynamic energy management
mechanism. The wireless channel model is bpskil@data rate is 11 Mbps.

4.2. Smulations of cluster-based dynamic energy management

The cluster head choosing of DAC is discussedaihyti As shown in Figure 3, the average cluster
head number is presented using different clusteximgmunication rang&, . The average cluster head
number monotonically decreases Rsincreases so that we can control the cluster Ineacber by

adjusting communication range during clustering.

Figure 3. Average cluster head number obtained by DAC witfedint R, .

300
250
200
150
100

50

Average cluster head number

0 50 100 150 200 250 300
R, (M)

Then, we compare energy efficiency of LEACH, DAQI&MACIOR. In this case, each sensor node
is set to transfer the same amount of packets @osthk node. Only energy consumption of data
communication and compression is taken into accolwb other communication approach, direct
transmission and lowest cost path, are discussatsob nodes transmit their data directly to thé sin
node in direct transmission, while the optimal mhtip routing from sensor nodes to the sink node is
used in lowest cost path approach. Figure 4(a) shinat LEACH has the best performance when
cluster head percentadg® =10%. In Figure 4(b), DAC and DACIOR have their bestfpemance
when R, =82 m and100 m respectively. It can be seen that DAC and DACIQ@Rehgreat potential to
performance better than LEACH in global data adtjais (DAQ).

Moreover, the number of sensor nodes which expemate energy than 3J during global DAQ is
presented in Figure 5. Here, the approaches ofdbwest path, LEACH, DAC and DACIOR are
compared with their best cluster head settings. toted energy of sensor node is assumed to be 3J.
Sensor nodes will die out soon at the beginningugdlication due to uniform energy consumption
distribution. Thus, DACIOR have the most unifornesgy consumption among sensor nodes.
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Figure 4. Energy efficiency comparison in global DAQ withféifent cluster head
settings: (a) LEACH; (b) DAC and DACIOR.
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Energy consumption of these communication appreacheing target tracking is studied. The
target moves randomly in the sensing field for 308nd every sensor node in its vicinity will send
packets. For LEACH and DACIOR, the parametBrand R, are adjusted. 20 tracking procedures are
simulated and cluster heads change every procedine.average energy consumption of the 20
tracking procedures is shown in Figure 6. It cansken that the performance of cluster-based
approaches is degraded in target tracking. Thaetawuse there is not as much data as that in global
DAQ for fusion, which contributes much to energyieg. Even in the best case of LEACH
(R =10%) energy consumption is larger than the approaclowést cost path, while DACIOR still
have better performance in its best cale<100 m).

However, Figure 7 presents the energy consumpti@ach sensor node, which is presented from
small to large. It shows that LEACH and DACIOR masch more uniform energy consumption over
sensor nodes during target tracking. HeRe=10% in LEACH while R, =100 m in DACIOR.
Compared with LEACH, DACIOR achieves an overallrggesaving through the network.
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Figure 5. Number of sensor nodes which expend more energy3hauring global DAQ
with lowest cost path, LEACH, DAC and DACIOR.
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Figure 7. Energy consumption of each sensor node after ténayeking with lowest cost
path, LEACH and DACIOR.
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Then we will study the energy efficiency of dynamitergy management mechanism. Scenarios of
routing for lowest cost path, LEACH and DACIOR atewn in Figure 8. The optimal paths in Figure
8(a) and (c) are found according to Equation (22 cluster heads of LEACH are generated with
R =10%, while DACIOR setsR, =100 m. The target trajectory is generated as showngdnrgi9(a).

For the target trajectory, the start poin{@0) and the target moves for 60 s. The target is desigo
move at its maximum velocity and accelerate in sgads of the trajectory. Also, the trajectory
involves different moving situations. ThereforeistBcenario can represent the generalization of the
target tracking problem. PF is adopted to predietthrget position, where the particle numblgris

set as 200. Figure 9(b) shows the prediction estach is constrained ifD,1]. With the predicted
target position, dynamic awakening mechanism campé&emented then.

We take the time interval from 10s to 50s of thget motion for discussion. With all the sensor
nodes in the target vicinity sending packets, thtaltenergy consumption with lowest cost path,
LEACH and DACIOR is shown in Figure 10. We can skat DACIOR achieves lower energy
consumption than LEACH, while the approach of lowesst path consumes the highest energy.
Considering sensor node selection, optimizationlte®f BPSO is presented in Figure 11, where the
particle numbem, is set as 40 and the iteration numB&SO ITER is set as 20. It can be seen in
Figure 11(a) that much less sensor node is useddomplish the target tracking task. Also, Figure
11(b) shows that the collaborative sensing errdh whe selected sensor nodes does not exceed the
given sensing error thresholy . Hence, the target tracking accuracy can be satisf
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Figure 8. Routing scheme with different approaches: (a) lawest path; (b) LEACH,;
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Figure 9. Target prediction results: (a) target trajectoby;fosition prediction error.
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Figure 11. Sensor node selection optimization results by BR&Dselected sensor node

number; (b) collaborative sensing error.
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Figure 12. Convergence curves of energy metric obtained by@BS&] GA in sensor
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Figure 13. Total energy consumption in target tracking simalatvith BPSO.
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Moreover, we compare the optimization performanté&Aa and BPSO. Here, the same coding
scheme for solution is used in GA, of which theusioh population is also set as 40. One single
simulation of sensor node selection is given, asvshin Figure 12. The premature convergence injures
the performance of GA, while BPSO can acquire atgoi with lower energy metric.

Finally, the simulation of target tracking is implented with the sensor nodes selected by BPSO.
Figure 13 shows the total energy consumption dutivegtarget tracking procedure. WSN spends
41.00J for target tracking without sensor nodecsigle, but only 33.03J is spent for the same taish w
BPSO sensor node selection, where energy consamvatil9.44% is obtained.

From the experiments, the cluster-based dynamigggmaanagement is implemented in specified
applications. Under the communication frameworkrfed by DACIOR, the energy consumption of

target tracking is evaluated. The dynamic awakemiogroach and sensor node selection implements
notable energy conservation.

5. Conclusions

Focusing on the energy efficiency problem in tatgatking problem of WSN, this paper proposed
a cluster-based dynamic energy management mechariiBe presented approach of DACIOR
establishes routing framework of WSN, where Dijii'stralgorithm is adopted to search intra-cluster
optimal routing. Then PF is applied to predict thgget position, which is used to estimate the idle
interval of each sensor node according to its sgrend transmission task. Therefore, sensor nades a
sent to sleep and also became candidates for geasitime. Meanwhile, we accomplish the sensor
node selection optimization with BPSO so that teta¢érgy consumption can be minimized without
degrading the accuracy performance. Simulations tariget tracking demonstrate that the
communication framework formed by DACIOR leads torenuniform energy consumption over the
whole network. Moreover, the proposed dynamic enengnagement mechanism enhances energy
efficiency of WSN. This paper presents a low-enatigigtering network structure for dynamic energy
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management in WSN. Our future work will involve raaobust prediction algorithm and more energy-
efficient awakening approach.
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