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Abstract: A primary criterion of wireless sensor network is energy efficiency. Focused on 

the energy problem of target tracking in wireless sensor networks, this paper proposes a 

cluster-based dynamic energy management mechanism. Target tracking problem is 

formulated by the multi-sensor detection model as well as energy consumption model. A 

distributed adaptive clustering approach is investigated to form a reasonable routing 

framework which has uniform cluster head distribution. Dijkstra’s algorithm is utilized to 

obtain optimal intra-cluster routing. Target position is predicted by particle filter. The 

predicted target position is adopted to estimate the idle interval of sensor nodes. Hence, 

dynamic awakening approach is exploited to prolong sleep time of sensor nodes so that the 

operation energy consumption of wireless sensor network can be reduced. The sensor 

nodes around the target wake up on time and act as sensing candidates. With the candidate 

sensor nodes and predicted target position, the optimal sensor node selection is considered. 

Binary particle swarm optimization is proposed to minimize the total energy consumption 

during collaborative sensing and data reporting. Experimental results verify that the 

proposed clustering approach establishes a low-energy communication structure while the 

energy efficiency of wireless sensor networks is enhanced by cluster-based dynamic energy 

management. 

Keywords: Wireless sensor network, clustering, dynamic energy management, binary 

particle swarm optimization. 
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1. Introduction 
 

Wireless sensor networks (WSNs) consist of a large number of intelligent sensor nodes with 

sensing, processing and wireless communicating capabilities. These sensor nodes implement 

complicated tasks in the specific sensing field. Due to the strict energy constraint of sensor nodes, 

optimization of energy consumption is essential in all aspects of WSN. Hence, energy management has 

become a challenge issue. The recent interest in WSN has led to network protocols. In [1], the authors 

propose a new minimum spanning tree-based protocol, called power efficient data gathering and 

aggregation protocol (PEDAP). Its power-aware version, PEDAP-PA, is proposed too. Some other 

researches adopted cluster-based network architectures to enhance network scalability [2]. Focused on 

the target tracking problem to be discussed, observations can be fused on the cluster heads before 

transmitting to the end user. A typical cluster-based network protocol, low-energy adaptive clustering 

hierarchy (LEACH), is proposed in [3] to optimize communication energy. In LEACH, sensor nodes 

choose themselves as cluster heads to route data and these cluster heads change every round to balance 

energy consumption through network. Some improvements of LEACH have been presented. Threshold 

sensitive energy-efficient sensor network protocol (TEEN) and adaptive periodic threshold-sensitive 

energy-efficient sensor network protocol (APTEEN) are based on LEACH, both designed for time-

critical applications [4]. Some researchers propose a new chain-based protocol based on LEACH. It is 

called power-efficient gathering in sensor information systems (PEGASIS), which minimizes the 

energy consumption at each sensor node [5]. However, little effort has been made for the optimal 

cluster head distribution, which is an important factor for the communication energy efficiency. Thus, 

distributed cluster heads choosing approach should be exploited to form reasonable clusters so that the 

cluster heads can perform more energy-efficient forwarding tasks. Based on the cluster-based network 

architecture, additional energy conservation could be obtained by intra-cluster multi-hop 

communication. For practical energy consumption modeling, we consider the dynamic power 

management architecture, which is presented in [6]. Moreover, target motion information can be 

utilized to minimize the energy consumption of sensor nodes in target tracking applications. Specially, 

it is essential to schedule tasks for sensor nodes during the target detection. 

Considering the energy management problem of target tracking applications in WSN, we present a 

dynamic energy management mechanism based on dynamic adaptive clustering with intra-cluster 

optimal routing (DACIOR). A communication framework is defined by distributed adaptive clustering 

(DAC). Integrating the advantage of LEACH, the cluster head choosing approach is improved to form 

more uniform cluster distribution. Clustering is performed in a distributed manner and the cluster scale 

is adjustable. In addition, the optimal paths are obtained by Dijkstra’s algorithm [7] in each cluster to 

reduce intra-cluster communication cost. Then, we adopt particle filter (PF) [8] to predict the target 

position, as PF is usually applied to estimate non-linear and non-Gaussian dynamic process. With 

predicted target position, sensor nodes can estimate their idle interval and go to sleep. Moreover, as 

candidate sensor nodes will wake up for sensing, binary particle swarm optimization (BPSO) algorithm 

is presented to select sensor nodes for collaborative sensing. Thereby, the total energy consumption can 

be optimized in WSN. In the experiments of target tracking, energy consumption of the cluster-based 

dynamic energy management is analyzed. 
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The rest of this paper is organized as follows. Section 2 formulates the energy management problem 

of target tracking in WSN, where the multi-sensor detection model and energy consumption model are 

presented. In Section 3, we propose the cluster-based dynamic energy management mechanism, where 

the clustering mechanism of DACIOR is exploited. Meanwhile, dynamic awakening approach and 

BPSO sensor node selection optimization are studied with the PF target position prediction. Section 4 

provides experimental results of cluster-based dynamic energy management during the procedure of 

target tracking. Finally, we conclude the paper in Section 5. 

 

2. Problem Formulation 
 

We assume that WSN is composed of randomly deployed sensor nodes and one sink node in two-

dimension sensing field. Sensor nodes work collaboratively for mobile target tracking with sensing 

period T , while the sink node gathers the information sensed by the sensor nodes [9,10,11]. A multi-

sensor detection model will be discussed as well. Meanwhile, the sink node maintains sensor node state 

and routing information to take charge of energy management for the whole network. An energy 

consumption model of sensor nodes will be described accordingly. 

 

2.1. Multi-sensor detection model 

 

It is assumed that each sensor node is equipped with a bearing sensor. It can produce direction angle 
of the target in its sensing range sensingR  [12]. For the time instant t , we suppose that the target is 

located at  ( , )target targetX x y= . Considering the inherent redundancy of WSN, the target can be detected 

by a number of sensor nodes at the same time. In a group of sensor nodes for detection, sensor node i  
which is located at ( , )i ix y  will acquire the direction angle iθ , where 1,2, ,  ( 2)i N N= >L . The 

direction finding error of the sensor has zero-mean and Gaussian distribution. For sensor node i , the 
standard deviation of direction finding is iθσ . Then, we have the measurement equation as follow: 

 
( ) ,  ~ Norm(0, )Θ = +H X W W Rθ                                                 (1) 

 
where 1 2[ ]T

Nθ θ θΘ = L , 1 2( ) [ ( ) ( ) ( )]T
NH X h X h X h X= L  is the observation function, W  

is direction finding error matrix, and Norm is the normal distribution function. In addition, 
1( ) tan ( ) /( )i target i target ih X y y x x−= − − , 1 2

2 2 2diag[ ]NRθ θ θ θσ σ σ= L . 

Then, the likelihood function of the target position X  is calculated as: 
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To estimate the target position, we should extract the information from the data set Θ . A suitable 

measure for the information contained in Θ  can be derived from the Fisher information matrix (FIM) 

[13]. The FIM for target detection is calculated as: 

 

{[ ( | )][ ( | )] }TJ E p X p X
X X

∂ ∂= Θ Θ
∂ ∂

                                                 (3) 

 

where E  means the expected value. According to Equation (2), we have: 
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where argi t et ix x x∆ = − , argi t et iy y y∆ = − , ir  is the Euclidean distance between the target and sensor 

node i . If all the sensor nodes have the same standard deviation of direction finding θσ , then FIM for 

target detection is simplified as: 
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                                                     (5) 

 
1J −  is the estimation error covariance matrix, which defines the Cramer-Rao lower bound (CRLB) 

of target localization error. Its associated quadratic form depicts an error ellipse in two-dimension case. 

The sink node will gather the direction finding data from the sensor nodes and acquire the multi-

sensor detection results by maximum likelihood estimation. Thereby, the collaborative sensing of 

sensor nodes is accomplished and the sensing accuracy is based on the error ellipse. 

 

2.2. Energy consumption model 

 

Assume that each sensor node consists of sensing, processing, memory and communication 

components. With multiple power modes, these modules can support different levels of power 

consumption and functionality. Accordingly, each sensor node can have a set of sleep states based on 
various combinations of module power states. Each sleep state ks  has power consumption kψ . The 

transition time from state is  to state js  is denoted by ,i jτ , where i  and j  are state indices. The power 

consumption between the sleep states is modeled as a linear ramp. 

 

 

 

 



Sensors 2007, 7                            

 

 

1197

Here, four different sleep states 0 1 2 3{ , , , }s s s s  of sensor nodes are defined. The transition time matrix 

,{ | , 0,1,2,3}i jC i jτ= =  is assumed as: 

 
0 0 5 15

0 0 5 15

5 5 0 10

15 15 10 0

C

 
 
 =
 
 
 

                                                             (6) 

 
where the unit is ms, , 0i iτ = , and , ,i j j iτ τ= . 

The description of the sleep states is as follow: 
(a) State 0s  

All the components of sensor node are active. Data acquisition, reception and transmission are 

enabled. Sensor nodes can accomplish target detection and data forwarding tasks in this state. Assume 
that the power consumption in state 0s  is 42 mW Txψ+ , where the extra power consumption for data 

transmission is denoted by Txψ . The propagation distance between sensor nodes i  and j  can be 

denoted as ,i jd . Then transmission cost between the sensor nodes is calculated as 2
1 2 ,Tx i jr d rψ α α= + , 

where r  denotes the data rate, 1α  denotes the electronics energy expended in transmitting one bit of 

data, and 2 0α >  is a constant related to the radio energy [14]. 

(b) State 1s  

Compared to state 0s , the data transmission is disabled in state 1s . Sensor node can receive orders 
from the sink node in this state. Assume the power consumption 1 42 mW=ψ . 

(c) State 2s  

In this state, only the sensing component is active. It is the transitional state to deeper sleep state. 
Assume the power consumption 2 22 mW=ψ . 

(d) State 3s  
This is the deepest sleep state, which consumes the lowest power 3 2 mW=ψ . The sensing, 

processing, memory and communication components are inactive in this state. Sensor nodes in this 

state can only be wakened by its own timer. 

Besides, we assume that the extra compression cost is 5nJ/bit/message in the cluster-base WSN to 

be discussed. These energy consumption amounts correspond to typical values. 

 
3. Cluster-based Dynamic Energy Management 

 

In a large scale WSN, direct transmission from data source to sink node should be avoided due to 

the large energy depletion. Cluster-based network structure is encouraged to enhance the network 

scalability and reduce energy consumption. We exploit a new clustering mechanism for cluster head 

choosing and intra-cluster routing. Also, we study dynamic energy management of target tracking 

application under this communication framework. Target position is predicted for dynamic network 

awakening and sensor node selection optimization. 
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3.1. Distributed adaptive clustering with intra-cluster optimal routing 

 

Clustering mechanism of WSN has been studied in [5], where LEACH is proposed to reduce and 

balance the energy consumption of sensor nodes. In LEACH, cluster heads are chosen in each round 
based on a percentage hP  of total sensor node number. Each sensor node i  generates a random number 
in the interval [0,1] . If this number is less than a threshold ( )Th i , the sensor node becomes a cluster 

head for the current round. The threshold is set as: 

 
/{1 [ Mod(1/ )]}

( )
0

− ∈
=  ∉

h h C hP P r P i G
Th i

i G
                                           (7) 

 
where Mod  is the modulus operation, Cr  is the current round number, and G  is the set of sensor nodes 

which have not been cluster heads in the last 1/ hP  rounds. Cluster heads send their announcement with 

the same power, and then each sensor node can join the cluster with the closest cluster head according 

to the received signal strength.  During each round, cluster heads collect the data of their cluster 

members. In this way, cluster head can perform data compression and report the result to the sink node. 
Each sensor node can take its turn to be a cluster-head every 1/ hP  rounds. However, as cluster heads 

are randomly chosen, energy efficiency of their distribution can not be guaranteed in each round. 

To form a reasonable cluster head distribution, we present an approach of DAC to choose cluster 

heads. It is assumed that the communication range of each sensor node is adjustable. During round r , 

cluster heads can be decided in a distributed manner with following 4 steps. 

Step 1: 
Each sensor node i  generates a number ia : 

 
0 ( )

Rand(1) ( )

C
i

C

i A r
a

i A r

∈
=  ∉

                                                         (8) 

 
where Rand(1) denotes a random number in [0,1] , (1)CA = ∅ . If the set of cluster heads in round Cr  is 

( )C CB r , then 

 
( 1) ( ) ( )C C C C C CA r A r B r+ = U                                                        (9) 

 
If ( )C CA r I= , then ( 1)C CA r + = ∅ . 

Step 2: 
Sensor nodes broadcast their number with the same communication range hR . After receiving the 

numbers from the neighboring sensor nodes { }ka , each sensor node i  set ( )headFlag i  as: 

 
1 max({ }, )

( )
0 max({ }, )

i k i
head

i k i

a a a
Flag i

a a a

=
=  ≠

                                             (10) 

 
If ( ) 1headFlag i = , the sensor node i  is regarded as a cluster head. 
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Step 3: 
Existing cluster heads send their announcement with range hR . For sensor node j , if it can receive 

the announcement, set ( ) 1memberFlag j = ; otherwise, set ( ) 0memberFlag j = . 

Step 4: 
If the condition that ( ) 1headFlag k =  or ( ) 1memberFlag k =  is satisfied for all the sensor nodes, then 

stop this process and form the clusters as LEACH does; otherwise, the set of sensor nodes which have 

not satisfied the condition continue to execute Step 2. 
Eventually, we can find that the distance between any two cluster heads is larger than hR . 

Meanwhile, there are at least one cluster head within the range hR  for each sensor node. In this way, 

the cluster head distribution can be more uniform so that cluster heads can provide more energy-

efficient data forwarding service for the whole network. 

Moreover, as multi-hop communication still has potential to save intra-cluster communication 

energy consumption, we propose DACIOR with additional optimal path search in each cluster. Since 

data of all cluster members should be transmitted to their cluster head, Dijkstra’s algorithm is utilized 

here which can find the shortest paths from a single destination node to all the other nodes [15]. 

Considering only the transmission energy of WSN, the problem of each cluster is defined as:  
(a) Cluster head, considered as the destination node, is denoted by 0p  and the set of cluster 

members is denoted by 1 2{ , , , }nP p p p= L ;  

(b) According to Section 2.2, the edge weight between ip  and jp  is:  

 
2

, 1 2 , ,  , 0,1,2, , ,  i j i jd i j n i jζ α α= + = ≠L                                        (11) 

 
(c) Variable iD  represents estimate of the lowest cost from ip  to 0p . It converges to the real value 

after iterations;  
(d) The set of cluster members that find the lowest cost paths is denoted by Q .  

Searching procedure for optimal routing in WSN is described as follow.  

(i) Initialize the network:  

 
0 ,0,    0,    ,    1,2, ,i iQ D D i nζ= ∅ = = = L                                         (12) 

 
(ii) Search for the next sensor node with the lowest cost path to 0p . For ip Q∉ , if iD  satisfies: 

  

1
min

n

i k
k

D D
=

=                                                                  (13) 

 
the lowest cost path of ip  is found, update Q :  

 
{ }iQ Q p= U                                                                (14) 
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If Q P= , then search is completed; otherwise, continue searching. 

(iii) Update jD  for all jp Q∉  according to the result of step (ii):  

 
,min( , )j j j i iD D Dζ= +                                                         (15) 

 

Continue to execute step (ii). 

Iterate step (ii) and (iii) until the lowest cost paths of all cluster members are found.  

With the knowledge of all the clusters, the sink node performs the intra-cluster path search and 

maintains the routing information.  

 

3.2. Dynamic awakening mechanism 

 

In target tracking application, we discuss vehicle target which moves randomly with the maximum 
speed maxv  and the maximum acceleration maxa  [16]. As the sink node can obtain the collaborative 

sensing result of target positions, the PF algorithm is performed on the sink node to predict the target 

position in the next sensing instant. PF is a sequential importance sampling method which bases on 

Monte Carlo simulation and Bayesian sampling estimation theories. It evolves from Bootstrap 

nonlinear filtering algorithm [17]. The pseudo-code of PF is outlined as follow: 

(a) Initialization 
Generate the particle set according to the target position probability distribution ( (0))p X : 

 
{ (0),  1, , } ~ ( (0))= Li sX i N p X                                               (16) 

 
where ( )X k  is the target position estimation in the - thk  sensing instant. Accordingly, 

( ) [ ( ), ( )]T

i i iX k x k y k=  is the target position estimation for particle i . In addition, sN  is the number of 

particles. Then, the importance weight of particle i  is set as: 

 
1

(0)i
s

w
N

=                                                                (17) 

 

(b) Iterations 

Sample each particle as: 

 
2( ) 2 ( 1) ( 2) 0.5[ ( 1) ( 3) 2 ( 2)]i i i i i iX k X k X k X k X k X k F= − − − + − + − − − +

)
            (18) 

 

where F  is the process noise. The target velocity is estimated according to the displacement, while the 

target acceleration is estimated according to the displacement increment. Then, evaluate the importance 

weights up to a normalizing constant and then normalize importance weights. 
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Resampling needs to be performed when the variance of the importance weights becomes excessive. 

The effective sample size is defined as  

 

1 Var( ( ))
s

eff

i

N
N

w k
=

+
                                                         (19) 

 

where Var  is the variance function. When effN  drops below a threshold thN , resample sN  samples 

approximately distributed according to ( ( ) | ( ))ip X k Z k  and set importance weight of particle i  as: 

 
1

( )i
s

w k
N

=                                                                  (20) 

 

where ( )Z k  is the observation of target position. 

Thus, the state of target position is updated as: 

 

1

( ) ( ) ( )
sN

i i

i

X k X k w k
=

=∑                                                          (21) 

 

In each sensing instant, the sink node can obtain a prior state of target position for the next sensing 

instant. 

With the target position predicted by PF, we present a dynamic awakening mechanism. As shown in 
Figure 1, sensor nodes are sent to state 3s  for energy saving while the ones which have potential 

sensing or transmission task wake up to state 1s  by their own timer. The sink node can estimate the idle 

period number idlen  of each sensor node, while sensor nodes in state 1s  can receive the scheduling from 

it. When there is no task (sensor node i ), sensor nodes will go back to sleep directly after set the next 
sleeping interval. When there is a sensing (sensor node j ) or forwarding (sensor node k ) task, sensor 

nodes will implement the task, set the next sleeping interval and turns to sleep.  

 

Figure 1. State transition of different sensor nodes with dynamic awakening mechanism. 
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As mentioned in Section 3.1, multi-hop communication is used to reduce transmission energy 

consumption. However, activity of sensor nodes which support data forwarding leads to another part of 
cost. The extra energy is marked in Figure 1 and denoted by fE∆ . Then, we can add this part of energy 

into Equation (11) to minimize the total energy consumption during the optimal path search: 

 
2

, 1 2 , / ,   , 0,1,2, , ,  = + + ∆ = ≠Li j i j f txr d r E T i j n i jζ α α                               (22) 

 
where txT  is the data transmission time and r  is the data rate. 

With the communication structure of WSN, the idle period number of each sensor node can be 

estimated in the following way.  

First, WSN should keep standby for any new target getting into it. Each sensor node can estimate 
the minimum time for new target getting into the sensing range as min min max( ) /sensingt d R v= − , where 

mind  is the shortest distance from the sensor node to the WSN boundary. For the possible target 

position at the next sensing instant, the neighboring sensor nodes should be sent to state 1s  for their 

potential sensing task. Accordingly to the sensing period T , the idle time of sensor node is 

minidlet t T′ = − . Second, once a target enters the sensing field, the sink node can obtain the predicted 
current target position ( , )target targetx y . Then each sensor nodes that wakes up to state 1s  can get the 

estimated idle time max( ) /idle target,i sensingt d R v T′′ = − − , where arg ,t et id  is the distance between the target 

and sensor node i . 

As stated above, we can calculate the idle time as: 

 
min( , )idle idle idlet t t′ ′′=                                                             (23) 

 

In addition, the sensor nodes that have forwarding task should wake up on time. For sensor node i�if 

it has the responsibility of transmitting data for a set of sensor nodes {k}, where k  denotes the index of 

sensor node. Then its idle time can be updated as: 

 
( ) min( ( ))idle idle

k
t i t k=                                                            (24) 

 

Finally, the number of idle periods is: 

 

Floor( ) 1idle
idle

t
n

T
= +                                                            (25) 

 
where Floor  is the rounding operation. idlen  is employed to schedule the state transition of sensor 

nodes. The sleep time of sensor nodes is prolonged as much as possible without loss any event. Besides, 

the multi-hop communication is guaranteed. 
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3.3. Sensor node selection optimization 

 

As sensor nodes transfer data to achieve collaborative sensing, an efficient approach should be 

exploited to optimize communication energy consumption with predicted target position and sensor 

node sleep state.  

With the dynamic awakening mechanism, sensor nodes in the vicinity of target become candidates 

for detection. Assume that there are m  candidate sensor nodes. The optimization problem is to select a 

group of sensor nodes from the candidate sensor nodes for total energy consumption conservation. This 

kind of combinatorial optimization problem is often solved by probabilistic heuristic algorithms, such 

as genetic algorithms (GA) [18]. However, there are some deficiencies in GA performance. For 

example, when the parameters to be optimized are highly correlated in some problems, the crossover 

and mutation operations can not ensure that the fitness of offspring is better. Moreover, the premature 

convergence of GA degrades its performance and reduces its search capability. 

Kennedy et al. developed particle swarm optimization (PSO) through the simulation of a simplified 

social system of bird and fish. PSO is an efficient optimization tool for solving combinatorial 

optimization and dynamic optimization problems in multi-dimension space. It can obtain high-quality 

solutions with stable convergence characteristic, requiring only a concise program code [19]. Here, we 

utilize a discrete binary particle swarm optimization (BPSO) to solve the sensor node selection 

problem. 
The dimension of search space is m . Assume the population of particles is pN . For the particle i , 

,,1 ,2( , , )p p p p
i i mi iX x x x= L  represents current position. Binary coding scheme is used. If the sensor node j  

of the m  candidate sensor nodes is used for sensing, then , 1p
i jx = ; otherwise, , 0p

i jx = . Besides, 

,,1 ,2( , , )p p p p
i i mi iV v v v= L  represents the current velocity and ,,1 ,2( , , )p p p p

i i mi iP p p p= L  represents the best 

position achieved so far for the particle i . 

Taking semimajor axis of error ellipse as the metric of collaborative sensing error, we assume that 
sensing error should be less than0A  in the target tracking application. 

Figure 2 compares the power curves of sensor nodes with and without sensing task. The extra 
operation energy to accomplish task is denoted by tE∆  while the execution time of task is denoted by 

taskt . For each solution, we denote the sensor node number selected to implement task as tn . According 

to Section 2.2 and 3.2, the energy metric is defined for the total energy consumption minimization: 

 
2

1 2 ,

( , )

( )
∈

= + + ∆∑m i j tx t t

i j M

E r d r T E nα α                                                   (26) 

 

where M denote the set of sensor node pairs between which data should be transmitted. 
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Figure 2. Power curves of sensor node (a) which is not selected to implement task and (b) 

which is selected to implement task. 
 

 
(a) 

 
(b) 

Since purpose of the optimization is sensing accuracy and energy conservation in the target tracking 
application, the minimization objective function ( )pf X  for potential solution pX  is defined as:  

 
0 0

0 0

( )
+ >

=  + ≤

p

m

A E A A
f X

A E A A

ρ
ρ

                                                      (27) 

 
where A  is defined as accuracy metric of the collaborative sensing error, 0E  is the upper bound of 
energy consumption metric mE , and ρ  is a constant to balance the value of two metrics. Minimizing 

the fitness function, the sensing accuracy is optimized first to guarantee the sensing error threshold 0A ,  

and then the energy metric is optimized for the energy efficiency of WSN. 

The best position of the -thi  particle can be calculated as: 

 

( ) ( ( 1)) ( ( ))
( 1)

( 1) ( ( 1)) ( ( ))

p p p
i i ip

i p p p
i i i

P k f X k f P k
P k

X k f X k f P k

 + ≥
+ =  + + <

                                  (28) 

 

where k  is the iteration number. 

The overall best position of particle swarm is calculated as:  

 

,0 1 ,1 ,2( ) min( ( ( )), ( ( )), , ( ( ))) ( , , , )
p

p p p p p p p
g g mg gNP t f P k f P k f P k p p p= =L L                  (29) 
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Velocity and position of particle are updated according to Equation (30), (31) and (32) [20]: 

 

1 1 2 2, , , , , ,( 1) ( ) ( ) [ ( ) ( )] [ ( ) ( )]p p p p p p
i j i j i j i j g j i jv k k v k c r p k x k c r p k x kη+ = + − + −                    (30) 

 

     
,

, ( 1)

1
( 1)

1
p
i j

p
i j v k

u k
e

− +
+ =

+
                                                        (31) 

 

0 ,
,

0 ,

1 ( 1)
( 1)

0 ( 1)

 < +
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where 1c  and 2c  are acceleration constants, representing the weight of the stochastic acceleration terms 

that pull each particle toward the local best position and global best position respectively. 0r , 1r  and 2r  
are random numbers in interval (0,1]. ( )kη  is the inertia weight for balancing the global and local 

search ability. A large inertia weight facilitates a global search while a small inertia weight facilitates a 

local search. See Equation (33), the inertia weight linearly decreases during the iterations. Accordingly, 

the optimization process can converge to the neighborhood of the global optimal solution smoothly at 

the prophase, and converge to the global optimal solution quickly at the anaphase [21].  

 

( ) 0.9 0.5
_

k
k

BPSO ITER
η = − ×                                                 (33) 

 
where _BPSO ITER  is the number of maximum iterations. After _BPSO ITER  iterations, the optimal 

particle presents the optimization result of sensor node selection.  

 

4. Experimental Results 
 

In this section, we will analyze the efficiency of cluster-based dynamic energy management 

mechanism with simulation experiments.  

 

4.1. Experiment environment 

 

Assume that the sensing field of WSN is 400 m x 400 m, in which there are 256 sensor nodes 

deployed randomly. Each sensor node is equipped by peroelectric infra-red (PIR) sensors with sensing 
range 60 msensingR = . For each sensor, the standard deviation of DF is 1θσ = o . In the energy 

consumption model, we set parameters 1 50 nJ/bα = , 2
2 100 pJ/(b m )α = ⋅ .  

For target tracking, the sensing period T  is set as 0.5 s and the execution time of task is set as 
0.005 staskt = . The data packet size is 2 KB. The optimization time of sensor node selection is set as 

0.1 s and the parameter 510ρ = . For the vehicle target, the maximum acceleration 2
max 6 m/sa =  and 

the maximum velocity max 30 m/sv = . The sensing error threshold 0 0.5 mA = . Simulations of target 

tracking are performed using Opnet Modeler, which is a simulation platform for distribution 
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communication system. Network models are established based on the dynamic energy management 

mechanism. The wireless channel model is bpsk, and the data rate is 11 Mbps. 

 

4.2. Simulations of cluster-based dynamic energy management 

 

The cluster head choosing of DAC is discussed initially. As shown in Figure 3, the average cluster 
head number is presented using different clustering communication range hR . The average cluster head 

number monotonically decreases as hR  increases so that we can control the cluster head number by 

adjusting communication range during clustering.  

Figure 3. Average cluster head number obtained by DAC with different hR . 

 

 
 

Then, we compare energy efficiency of LEACH, DAC and DACIOR. In this case, each sensor node 

is set to transfer the same amount of packets to the sink node. Only energy consumption of data 

communication and compression is taken into account. Two other communication approach, direct 

transmission and lowest cost path, are discussed. Sensor nodes transmit their data directly to the sink 

node in direct transmission, while the optimal multi-hop routing from sensor nodes to the sink node is 

used in lowest cost path approach. Figure 4(a) shows that LEACH has the best performance when 
cluster head percentage 10%hP = . In Figure 4(b), DAC and DACIOR have their best performance 

when 82 mhR =  and 100 m respectively. It can be seen that DAC and DACIOR have great potential to 

performance better than LEACH in global data acquisition (DAQ). 

Moreover, the number of sensor nodes which expends more energy than 3J during global DAQ is 

presented in Figure 5. Here, the approaches of lowest cost path, LEACH, DAC and DACIOR are 

compared with their best cluster head settings. The total energy of sensor node is assumed to be 3J. 

Sensor nodes will die out soon at the beginning of application due to uniform energy consumption 

distribution. Thus, DACIOR have the most uniform energy consumption among sensor nodes. 
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Figure 4. Energy efficiency comparison in global DAQ with different cluster head 

settings: (a) LEACH; (b) DAC and DACIOR. 

 

 
(a) 

 
(b) 

Energy consumption of these communication approaches during target tracking is studied. The 

target moves randomly in the sensing field for 300 s and every sensor node in its vicinity will send 
packets. For LEACH and DACIOR, the parameters hP  and hR  are adjusted. 20 tracking procedures are 

simulated and cluster heads change every procedure. The average energy consumption of the 20 

tracking procedures is shown in Figure 6. It can be seen that the performance of cluster-based 

approaches is degraded in target tracking. That is because there is not as much data as that in global 

DAQ for fusion, which contributes much to energy saving. Even in the best case of LEACH 
( 10%hP = ) energy consumption is larger than the approach of lowest cost path, while DACIOR still 

have better performance in its best case (100 mhR = ).  

However, Figure 7 presents the energy consumption of each sensor node, which is presented from 

small to large. It shows that LEACH and DACIOR has much more uniform energy consumption over 
sensor nodes during target tracking. Here, 10%hP =  in LEACH while 100 mhR =  in DACIOR. 

Compared with LEACH, DACIOR achieves an overall energy saving through the network. 
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Figure 5. Number of sensor nodes which expend more energy than 3J during global DAQ 

with lowest cost path, LEACH, DAC and DACIOR. 

 

 
Figure 6. Energy consumption during global DAQ and target tracking: (a) Comparison of 

lowest cost path and LEACH; (b) Comparison of lowest cost path and DACIOR. 

 

 
(a) 

 
(b) 
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Figure 7. Energy consumption of each sensor node after target tracking with lowest cost 

path, LEACH and DACIOR. 

 

 

 

 

Then we will study the energy efficiency of dynamic energy management mechanism. Scenarios of 

routing for lowest cost path, LEACH and DACIOR are shown in Figure 8. The optimal paths in Figure 

8(a) and (c) are found according to Equation (22). The cluster heads of LEACH are generated with 
10%hP = , while DACIOR sets 100 mhR = . The target trajectory is generated as shown in Figure 9(a). 

For the target trajectory, the start point is (0,0) and the target moves for 60 s. The target is designed to 

move at its maximum velocity and accelerate in some parts of the trajectory. Also, the trajectory 

involves different moving situations. Therefore, this scenario can represent the generalization of the 
target tracking problem. PF is adopted to predict the target position, where the particle number sN  is 
set as 200. Figure 9(b) shows the prediction error which is constrained in [0,1] . With the predicted 

target position, dynamic awakening mechanism can be implemented then. 

We take the time interval from 10s to 50s of the target motion for discussion. With all the sensor 

nodes in the target vicinity sending packets, the total energy consumption with lowest cost path, 

LEACH and DACIOR is shown in Figure 10. We can see that DACIOR achieves lower energy 

consumption than LEACH, while the approach of lowest cost path consumes the highest energy. 

Considering sensor node selection, optimization results of BPSO is presented in Figure 11, where the 
particle number pN  is set as 40 and the iteration number _BPSO ITER  is set as 20. It can be seen in 

Figure 11(a) that much less sensor node is used to accomplish the target tracking task. Also, Figure 

11(b) shows that the collaborative sensing error with the selected sensor nodes does not exceed the 
given sensing error threshold 0A . Hence, the target tracking accuracy can be satisfied.  

 

 

 

 



Sensors 2007, 7                            

 

 

1210

Figure 8.  Routing scheme with different approaches: (a) lowest cost path; (b) LEACH; 

(c) DACIOR. 
 

 
(a) 

 
(b) 

 
(c) 
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Figure 9. Target prediction results: (a) target trajectory; (b) position prediction error. 

 

 
(a) 

 
(b) 

 

Figure 10. Total energy consumption during target tracking using lowest cost path, 

LEACH and DACIOR. 
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Figure 11. Sensor node selection optimization results by BPSO: (a) selected sensor node 

number; (b) collaborative sensing error. 
 

 
(a) 

 
(b) 

 

Figure 12.  Convergence curves of energy metric obtained by BPSO and GA in sensor 

node selection optimization. 
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Figure 13. Total energy consumption in target tracking simulation with BPSO. 

 

 
 

Moreover, we compare the optimization performance of GA and BPSO. Here, the same coding 

scheme for solution is used in GA, of which the solution population is also set as 40. One single 

simulation of sensor node selection is given, as shown in Figure 12. The premature convergence injures 

the performance of GA, while BPSO can acquire a solution with lower energy metric. 

Finally, the simulation of target tracking is implemented with the sensor nodes selected by BPSO. 

Figure 13 shows the total energy consumption during the target tracking procedure. WSN spends 

41.00J for target tracking without sensor node selection, but only 33.03J is spent for the same task with 

BPSO sensor node selection, where energy conservation of 19.44% is obtained. 

From the experiments, the cluster-based dynamic energy management is implemented in specified 

applications. Under the communication framework formed by DACIOR, the energy consumption of 

target tracking is evaluated. The dynamic awakening approach and sensor node selection implements 

notable energy conservation. 

 

5. Conclusions 
 

Focusing on the energy efficiency problem in target tracking problem of WSN, this paper proposed 

a cluster-based dynamic energy management mechanism. The presented approach of DACIOR 

establishes routing framework of WSN, where Dijkstra’s algorithm is adopted to search intra-cluster 

optimal routing. Then PF is applied to predict the target position, which is used to estimate the idle 

interval of each sensor node according to its sensing and transmission task. Therefore, sensor nodes are 

sent to sleep and also became candidates for sensing on time. Meanwhile, we accomplish the sensor 

node selection optimization with BPSO so that total energy consumption can be minimized without 

degrading the accuracy performance. Simulations of target tracking demonstrate that the 

communication framework formed by DACIOR leads to more uniform energy consumption over the 

whole network. Moreover, the proposed dynamic energy management mechanism enhances energy 

efficiency of WSN. This paper presents a low-energy clustering network structure for dynamic energy 
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management in WSN. Our future work will involve more robust prediction algorithm and more energy-

efficient awakening approach. 
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