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Abstract: The recent scientific literature abounds in proposals of seizure forecasting methods that ex-
ploit machine learning to automatically analyze electroencephalogram (EEG) signals. Deep learning
algorithms seem to achieve a particularly remarkable performance, suggesting that the implementa-
tion of clinical devices for seizure prediction might be within reach. However, most of the research
evaluated the robustness of automatic forecasting methods through randomized cross-validation
techniques, while clinical applications require much more stringent validation based on patient-
independent testing. In this study, we show that automatic seizure forecasting can be performed,
to some extent, even on independent patients who have never been seen during the training phase,
thanks to the implementation of a simple calibration pipeline that can fine-tune deep learning models,
even on a single epileptic event recorded from a new patient. We evaluate our calibration procedure
using two datasets containing EEG signals recorded from a large cohort of epileptic subjects, demon-
strating that the forecast accuracy of deep learning methods can increase on average by more than
20%, and that performance improves systematically in all independent patients. We further show that
our calibration procedure works best for deep learning models, but can also be successfully applied
to machine learning algorithms based on engineered signal features. Although our method still
requires at least one epileptic event per patient to calibrate the forecasting model, we conclude that
focusing on realistic validation methods allows to more reliably compare different machine learning
approaches for seizure prediction, enabling the implementation of robust and effective forecasting
systems that can be used in daily healthcare practice.

Keywords: seizure prediction; epilepsy; electroencephalography; cross-validation; machine learning;
signal processing; model validation; domain adaptation; model calibration; cross-subject

1. Introduction

Epilepsy is a chronic neurological disease characterized by repeated spontaneous
interruptions in normal brain activity, often manifested as epileptic seizures [1]. Seizure
attacks have a profound impact on various aspects of an individual’s life, including the
physical, psychological, and social domains [2], and can have severe consequences, such as
loss of consciousness or disruption of bladder function, leading to a significant reduction
in quality of life [3]. Although more than 60% of the patients can control their seizures with
medicines and another 10% can benefit from brain surgery, further advances in treatment
are needed to improve the condition of epileptic people [4,5].

EEG is a valuable tool for the diagnosis of epilepsy due to its capability to capture
anomalous electrical patterns in the brain with high temporal resolution at an affordable
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cost [6,7]. This non-invasive method is widely used to monitor the neuronal activity of
the patient and detect epileptic discharges [8,9]. However, in addition to localizing and
classifying seizures [10], forecasting epileptic activity before it occurs would be essential to
reduce the consequences of attacks, for example, by giving patients and clinicians enough
time to take the necessary action [11].

Despite decades of research on automatic seizure detection and forecasting [12–14],
the latter task turns out to be extremely challenging [15]. Nevertheless, inspired by the
successes of artificial intelligence (AI) in clinical diagnosis [16] and disease forecasting [17],
consistent research efforts are being made to tackle the seizure prediction problem using
advanced deep learning techniques [18–20]. For example, a study reported sensitivity rates
of 96% and 94% in two different benchmark datasets [21], while another study reported an
accuracy of almost 100% [22].

However, most published studies rely on the conventional use of randomized cross-
validation (RCV) to assess model performance, while it has been argued that clinical
applications of AI should be tested using more stringent validation methods [23]. The RCV
method increases the risk of overfitting, because the training and test sets contain data
from all patients; more robust evaluation procedures should test the forecasting model in a
patient-independent way, for example, by using leave-one-patient-out (LOO) validation
methods that completely exclude the data of the target patient from the training set [24–26].
Several studies have shown that achieving high forecast accuracy is very challenging under
patient-independent conditions [27,28], but performance can be improved using domain
adaptation techniques [29].

In this study, we address this problem by proposing an alternative framework based
on patient-independent calibration. In particular, we ask whether the generalization
of forecasting models can be significantly improved by fine-tuning the model on a few
seizure events recorded from left-out (i.e., unseen) patients. To this end, we compare
the performance of deep learning models for seizure forecasting under randomized and
leave-out validation schemes, and for the latter, we investigate whether performance can be
improved by exploiting a calibration method that relies on a single (Cal1) or a pair (Cal2) of
seizures. We evaluate the proposed method using two different datasets, and compare deep
networks against a standard machine learning approach. Compared to existing methods,
our approach guarantees that the model’s accuracy is evaluated using independent data
samples, which is a critical criterion to build forecasting methods that can be used in
clinical practice.

The paper is structured as follows. In the first part, we explain the details of the datasets
considered and their labeling procedure. After that, we describe the signal pre-processing
pipeline, the deep learning model optimized for solving the forecasting task, and the metrics
used to evaluate its performance. We then introduce our calibration method and report the
experimental results. We conclude the article by discussing the limitations of our study and
the most promising directions for future research.

2. Materials and Methods
2.1. EEG Datasets

We used two long-term continuous multichannel EEG datasets recorded at a sampling
rate of 256 Hz and the international standard 10–20 scalp electrode positioning system. To
ensure a sufficient distance from the ictal state and normal brain activity for the interictal
state, only patients with at least one seizure with more than four hours of data prior to the
seizure were selected [30]. Patients with a single seizure were only used to train the models,
while patients with at least two seizures were eligible to study leave-out validation and
calibration methods.

The first dataset was the popular CHB-MIT [31,32], in which we selected 22 common
channels from 19 patients (15 men and 4 women), totaling 89 total seizures after removing
patients chb12, chb13, chb15, chb23 and chb24 according to the selection criteria stated
above. Eight out of these nineteen patients were eligible for validation and calibration. The
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second dataset, which we call Conegliano throughout this paper, contained 20 common
channels of 22 patients (10 men and 12 women) with a total of 77 seizures, recorded by
the Epilepsy and Clinical Neurophysiology Unit of Eugenio Medea IRCCS Hospital in
Conegliano, Italy, during a standard clinical protocol of continuous patient monitoring.
Eight out of twenty-two patients in the Congeliano dataset were eligible for validation
and calibration.

2.2. Data Labeling

In the forecasting of epileptic EEG signals, two states before a seizure were considered:
preictal signals coming before a seizure, and normal interictal brain activity occurring far
from a seizure [33]. Since there is no standard to define the duration of a preictal state,
different periods ranging from 10 to 90 min are generally considered [34]. In this study,
after exploring various configurations between 10 and 40 min, we decided to select 15 min
before a seizure as the target preictal state, since this configuration allowed to generate
enough training data from each patient while preserving the distinctiveness of preictal
states from normal brain activity. The beginning and end of the ictal state of the CHB-MIT
dataset were extracted from the official website, while the Conegliano dataset was manually
marked by two clinicians based on video-EEG monitoring information.

After applying a four-hour interval between the preictal and interictal states, we
selected up to 60 min of data for the interictal class to reduce the probability of encountering
abnormal brain activity related to the preictal state [35]. Figure 1 represents our schematic
signal labeling process to distinguish between preictal and interictal states, including two
images of recordings from epileptic patients from the Conegliano dataset.

Figure 1. Segmentation of the pre- and interictal states for the binary seizure forecasting task. The trace
depicts 45 min of an EEG recording from the F7 channel of the Conegliano dataset during a seizure.
Panels (A,B) illustrate a magnification of 5 s of recordings from 20 common channels of the inter- and
preictal states, respectively.
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2.3. EEG Signal Pre-Processing

The signal was pre-processed by applying notch filters at 50 and 100 Hz to mitigate
power line interference [36], a high-pass filter at 1 Hz to remove DC offset and baseline
fluctuations [37,38], and a low-pass filter at 125 Hz to maintain higher frequencies that
could characterize abnormal brain activity [39,40]. Both datasets were also downsampled to
128 Hz to reduce the computational cost of model training [41,42]. EEG signals were divided
into time windows before being given as input to the deep learning models. We explored
different window sizes (1, 5, 10, and 30 s) to establish the most effective input format, which
turned out to be 5 s. Data pre-processing was implemented using Python (version 3.8.5)
and the MNE package [43].

To balance the binary classification task, we undersampled the number of data samples
in the interictal state by randomly selecting 15 min of contiguous data [44]. In the RCV
setting, the signal was standardized by computing the average and standard deviation
of the training set after splitting. In the LOO setting, instead, each training patient was
standardized separately, while test patients were standardized using the average and std
of all training patients to avoid information leakage [45]. In the calibration procedure, we
used the average and std of the calibration data (one or two seizures) to standardize the
entire signal of the target test patient.

2.4. Deep Learning Model

Seizure forecasting was carried out using a convolutional neural network (CNN),
which was implemented using the PyTorch framework (version 1.13.0) [46] and trained
on a virtual machine equipped with an NVIDIA V100 GPU allocated on the Google
Cloud Platform.

Although we had a two-dimensional input shape (number of common channels × time
window), the kernels moved in one direction in the early convolutional layers and then
in two directions in the subsequent convolutional layers. This approach was adopted to
better exploit the information on interchannel correlations between EEG channels [47,48].
The model architecture and learning hyperparameters were optimized using a hierarchical
strategy (see [48] for details), which considered the number of hidden layers (3 to 7), number
of kernels (8, 16, 32, and 64), kernel size (2, 3, 5, and 7), pooling size (2, 3, and 5), number of
dense layers (1 to 4), number of dense units (32, 64, 128, and 256), number of dropout layers
(1 to 8), dropout rate (0.1, 0.2, and 0.5), learning rate (0.01, 0.005, 0.001, 0.0002 and 0.0001),
and batch size (16, 32, 64, 128). Learning was performed using the Adam optimizer [49]
with binary cross-entropy loss, using an early-stopping criterion.

The final architecture consisted of six CNN layers with batch normalization and
Rectified Linear Units (ReLU) (see Figure 2 for a schematic representation). The stride of the
kernels in all layers was 1 × 1 (no padding), and the number and shape of these kernels were
16@1 × 3, 32@1 × 3, 64@1 × 5, 96@1 × 7, 128@5 × 5, and 256@3 × 3, respectively. The max-
pooling layers after each CNN layer were of size 1 × 2, 1 × 2, 1 × 5, 1 × 2, 2 × 2, and 2 × 2,
respectively. Six dropout layers were placed after each pooling layer, with a drop rate of 0.2,
except for the last dropout layer, which had a rate of 0.5. After flattening each data point
into 768 nodes, two dense layers with 128 and 32 hidden units were applied. A sigmoid
unit finally produced the binary classification output, encoding the discrimination between
pre- and interictal states.



Sensors 2024, 24, 2863 5 of 16

Figure 2. The deep learning architecture contains six convolutional layers followed by batch normaliza-
tion, pooling, and drop-out layers. Three dense layers are finally used to produce the output prediction.

2.5. Model Evaluation

We benchmarked our deep learning model against an Extreme Gradient Boosting
(XGBoost), a standard machine learning classifier that we trained on a set of 53 features
extracted from the EEG signal (for details, see [26]). The models were evaluated by comput-
ing the true positive (tp), false positive (fp), true negative (tn) and false negative (fn) rates
on the test set. These indicators were used to calculate accuracy (ACC), sensitivity (SEN),
and specificity (SPE), which are the standard metrics used to evaluate machine learning
algorithms for seizure forecasting [50]:

ACC = ((tp + tn)/(tp + tn + f n + f p)),

SEN = (tp/(tp + f n)),

SPE = (tn/(tn + f p)).

(1)

Accuracy is simply defined as the percentage of correct (true positives or true negatives)
responses over the entire set of test observations. Despite its intuitive meaning, accuracy is
not representative of model performance in presence of unbalanced data, which is often the
case in medical diagnosis. Sensitivity (also known as true positive rate) is the probability
of a positive test result, conditioned on the individual truly being positive. This metric
allows to refine the clinical evaluation, since a highly sensitive test implies that there are
few false negative results, and thus fewer cases of disease (seizure events, in our case) are
missed. Specificity (also known as true negative rate) instead represents the probability
of a negative test result, conditioned on the individual truly being negative. This metric
complements the information provided by Sensitivity, since a highly specific test implies
that there are a few false positive results.

We evaluated the models using both a RCV scheme, implemented through a five-fold
cross-validation considering all patient data, and a LOO scheme, where one targeted patient
data were ultimately considered as the test set, while the rest of the patients were included in
the training set. Since achieving high accuracy in the LOO setting is extremely challenging,
we considered this validation scheme as the baseline to evaluate the performance gain of
the proposed calibration method.
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2.6. Calibration Method

The proposed calibration method is illustrated in Figure 3. We postulated that accuracy
in the LOO setting could be improved by fine-tuning the model using one or more seizure
events recorded from the left-out patient under investigation: in the Cal1 version, we
exploited a single seizure to calibrate the model, thus including in the training set one
epileptic event featuring at least four hours of pre-seizure recording from the target patient.
At the end of the training phase, the model was tested with the remaining data of the target
patient. In the Cal2 version, we included two seizures of the target patient in the training
set. The first seizure was the same one used in Cal1, while the second was randomly
selected from the rest of the seizures available for that patient. In patients with only one
seizure with more than four hours of preceding data, the interictal state of the first seizure
was considered normal brain activity for the second seizure to balance the calibration
data points.

Figure 3. Graphical representation of the two validation settings (RCV and LOO) considered in
our experiments and the proposed calibration method, which exploits just one (Cal1) or two (Cal2)
seizures of the target patient to fine-tune the forecasting model.

It should be noted that model fine-tuning in Cal1 and Cal2 was carried out starting
from the CNN configuration obtained in the LOO baseline. We believe that such a two-stage
training procedure is more realistic than a single-stage training procedure, where the CNN
is simply trained from scratch on all training data, since in clinical settings the goal should
be to quickly adapt a pre-trained model (LOO baseline) with patient-specific seizure data,
rather than training a new CNN model on all available data.

The calibration phase of deep learning models can be carried out very efficiently: in
our specific case, the fine-tuning calibration phase required between 5 min and 10 min
to complete, which we believe could be considered a reasonable time for deployment in
real-world clinical settings.

3. Results
3.1. CHB-MIT Dataset

The performance obtained in the CHB-MIT dataset is reported in Figure 4. As expected,
the results show that RCV can lead to very high performance in terms of all evaluation
metrics, but these numbers dramatically drop when the model is tested under the more
realistic LOO validation condition.
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Figure 4. Performance of the CNN model in the CHB-MIT dataset obtained with randomized
cross-validation (RCV), leave-one-patient-out (LOO) validation and after Cal1 and Cal2 calibration.
The violin plots illustrate the distribution of ACC, SEN, and SPE. The box plots with horizontal lines
represent the interquartile range and the median.

Nevertheless, the performance significantly improves following model calibration.
Even using one single seizure from the left-out patient allows us to increase ACC, SEN,
and SPE of 12%, 22%, and 14%, respectively, compared to the LOO baseline. Introducing
a second seizure for calibration allows us to further improve the forecast performance,
leading to an increase of 16%, 29%, and 16% compared to the baseline. Detailed evaluation
metrics for each patient are reported in Table 1, along with information about gender
and number of available seizures. A statistical comparison was applied to the LOO, Cal1,
and Cal2 performance metrics to evaluate the improvement over the baseline resulting
from two calibration approaches. The results of repeated measures analysis of variance
(ANOVA) reported in Table 2 show significant differences (p-value < 0.001) in ACC, SEN,
and SPE.

Table 1. Performance of the CNN model for each patient in the CHB-MIT dataset. Each row corre-
sponds to the ID, gender, and number of seizures per patient followed by ACC, SEN, and SPE values.
Maximum values are highlighted in bold.

RCV LOO Cal1 Cal2

ID Gend. No.
Seizures

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

chb04 m 3 84.11 66.86 95.98 38.16 27.03 56.24 49.40 45.12 60.56 56.59 53.84 63.24
chb05 f 5 79.94 85.71 62.80 55.71 33.60 50.10 56.92 45.43 68.47 59.72 55.78 69.58
chb06 f 7 82.05 60.11 91.47 59.90 42.33 63.36 67.35 58.95 76.37 69.22 62.30 78.41
chb07 f 3 77.86 97.31 64.71 59.83 50.35 55.05 63.66 59.47 77.37 66.36 61.49 79.46
chb09 f 3 87.74 96.27 65.45 62.47 76.54 29.48 79.28 91.61 50.72 82.11 93.47 51.77
chb10 m 7 64.63 97.17 64.78 58.37 42.37 52.91 64.21 55.52 68.99 65.49 61.47 70.66
chb20 f 6 87.03 84.66 77.74 46.66 28.66 58.15 65.49 61.01 70.71 73.75 80.87 71.14
chb22 f 3 93.99 98.31 69.22 47.33 21.36 69.20 79.84 84.87 72.96 81.55 88.66 74.95

Average 82.17 85.80 74.02 53.55 40.28 54.31 65.77 62.75 68.27 69.35 69.74 69.90

Although epileptic patients have similar symptoms, their underlying brain dynamics
might be quite heterogeneous due to the different causes of epilepsy. Although this might
lead to an increase in variability in forecasting performance between patients, we can
still observe some consistent trends in our results. For example, patient chb22 obtains
the best accuracy among all patients in the RCV condition (93.99%) and, despite this
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number falling below the average accuracy in the LOO condition, it improves again to
the best score after calibrating with just one seizure (79.84%). This suggests that the
RCV performance was likely biased by overfitting, and that our calibration method can
significantly mitigate this phenomenon in the LOO case. In the case of patient chb10,
after calibration with two seizures, the accuracy is comparable to that achieved in the RCV
setup, and for patient chb09, the values of accuracy and sensitivity after calibration with
two seizures are remarkably high (ACC of 82.11% and SEN of 93.47%), demonstrating
that our calibration method is a promising solution to improve forecast accuracy in the
challenging LOO condition.

Table 2. The average ACC, SEN, and SPE of the CNN model obtained from LOO, Cal1, and Cal2 in
the CHB-MIT dataset, represented by the mean (%) ± std. The last two columns report the F-value
and p-value from the ANOVA test.

Metrics LOO
(Mean ± Std)

Cal1
(Mean ± Std)

Cal2
(Mean ± Std) F-Value p-Value

ACC 53.55 ± 8.54 65.77 ± 10.26 69.35 ± 9.34 14.30 <0.001
SEN 40.28 ± 17.47 62.75 ± 16.96 69.74 ± 15.51 15.24 <0.001
SPE 54.31 ± 11.70 68.27 ± 8.82 69.90 ± 8.98 36.79 <0.001

The receiver operating characteristic (ROC) curves for LOO, Cal1, and Cal2 are illus-
trated in the left panel of Figure 5, allowing for a more systematic comparison between
LOO and the performance of the calibration methods. Notably, the area under the curve
(AUC) for the calibration methods increased by approximately 0.34 and 0.40, respectively.

Figure 5. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) for
LOO, Cal1, and Cal2 methods in the CHB-MIT and Conegliano datasets. y-axis and x-axis correspond
to the true positive rate (sensitivity) and false positive rate (1—specificity), respectively.

3.2. Conegliano Dataset

The results obtained in the Conegliano dataset are reported in Figure 6. As observed
with the CHB-MIT dataset, randomized cross-validation seemingly leads to impressive
performance, but all evaluation metrics dramatically drop when the model is tested under
the more realistic LOO condition.

Nevertheless, also with the Conegliano dataset after model calibration we obtain
significant improvements in all metrics, with ACC, SEN and SPE gains of 15%, 10% and
16% for Cal1 and 23%, 22% and 30% for Cal2. The ROC curves of LOO, Cal1, and Cal2 for
the Conegliano dataset are illustrated in the right panel of Figure 5. The AUC improved by
approximately 0.26 and 0.43 for Cal1 and Cal2, respectively. Detailed evaluation metrics for
each patient are reported in Table 3. The performance of the two calibration versions was
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evaluated by applying a statistical comparison to the LOO, Cal1, and Cal2 performance
metrics. Repeated ANOVA tests demonstrated significant differences (p-value < 0.001)
between the calibration methods and the baseline in ACC, SEN, and SPE. The average and
std of the different methods and the results of the statistical tests are described separately
in Table 4.

Figure 6. Performance of the CNN model in the Conegliano dataset obtained with randomized
cross-validation (RCV), leave-one-patient-out (LOO) validation and after Cal1 and Cal2 calibration.
The violin plots illustrate the distribution of ACC, SEN, and SPE. The box plots with horizontal lines
represent the interquartile range and the median.

Table 3. Performance of the CNN model for each patient in the Conegliano dataset. Each row corre-
sponds to the ID, gender, and number of seizures per patient followed by ACC, SEN, and SPE values.
Maximum values are highlighted in bold.

RCV LOO Cal1 Cal2

ID Gend. No.
Seizures

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

ACC
(%)

SEN
(%)

SPE
(%)

p1 m 4 97.12 98.00 96.09 35.40 38.96 31.46 57.58 68.72 50.55 59.36 76.69 51.10
p2 m 5 89.33 93.18 84.70 50.97 43.23 60.44 52.88 49.33 61.93 63.96 83.61 62.46
p3 f 5 88.82 88.82 88.83 50.71 52.97 48.73 68.24 54.87 84.53 70.61 60.68 88.21
p4 f 6 94.84 91.98 97.66 48.45 31.80 64.46 69.35 62.28 74.17 75.13 78.76 74.68
p5 f 4 99.18 99.86 97.93 53.91 50.63 58.98 80.15 82.35 77.02 84.96 93.10 79.54
p6 f 3 98.48 99.10 97.20 29.93 16.35 57.46 66.42 72.71 64.51 77.23 75.14 78.45
p7 f 7 97.46 95.68 99.60 50.47 51.04 49.80 56.11 64.82 51.89 62.41 81.19 61.74
p8 m 10 84.98 82.27 86.61 45.94 40.80 49.12 55.39 45.90 72.93 71.72 53.79 74.05

Average 93.78 93.61 93.58 45.72 40.72 52.56 63.27 62.62 67.19 70.67 75.37 71.28

Table 4. The average ACC, SEN, and SPE of the CNN model obtained from LOO, Cal1, and Cal2 in
the Conegliano dataset, represented by the mean (%) ± std. The last two columns report the F-value
and p-value from the ANOVA test.

Metrics LOO
(Mean ± Std)

Cal1
(Mean ± Std)

Cal2
(Mean ± Std) F-Value p-Value

ACC 45.72 ± 8.50 63.27 ± 9.34 70.67 ± 8.53 28.00 <0.001
SEN 40.72 ± 12.18 62.62 ± 12.24 75.37 ± 12.60 19.97 <0.001
SPE 52.56 ± 10.34 67.19 ± 12.10 71.28 ± 11.96 16.03 <0.001
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Also in this case, we observe promising results with several patients, pointing to the
generalization of the proposed calibration method. For example, after calibration with two
seizures, p4, p5, and p6, achieve an ACC of 75.13%, 84.96%, and 77.23%, respectively. Fur-
thermore, p1 and p6, which obtained a very poor accuracy in the LOO condition, improved
by 23.96% and 47.30%, respectively, demonstrating that the proposed calibration method
can lead to impressive performance gains even in patients with low baseline performance.

3.3. How Many Seizures for Calibration?

The results presented in Figures 4–6 indicates that the use of two seizures rather than
one to calibrate the model could lead to a further increase in performance in both datasets.
However, Tukey post hoc analysis did not show statistical differences between the two
calibration versions in either CHB-MIT or Conegliano (for details about the statistical
results, see Table 5); therefore, our current results do not allow us to establish a statistical
difference between these two variants of the calibration method.

Table 5. Tukey post hoc tests comparing the performance of calibrated and baseline models in the
CHB-MIT and Conegliano datasets. Each row reports the p-value resulting from the comparison of
ACC, SEN, and SPE metrics.

Dataset Validation Methods ACC SEN SPE

LOO—Cal1 <0.05 <0.05 <0.05
CHB-MIT LOO—Cal2 <0.01 <0.01 <0.05

Cal1—Cal2 0.73 0.68 0.94

LOO—Cal1 <0.01 <0.01 <0.05
Conegliano LOO—Cal2 <0.01 <0.01 <0.05

Cal1—Cal2 0.23 0.12 0.76

Nevertheless, differences might emerge by expanding the sample size, and the overall
trends suggest that using more seizures is more effective in fine-tuning the CNN model.
This intuition is confirmed by the data reported in Figure 7, which shows the accuracy gains
obtained by the two calibration versions across all patients in the two datasets, ordered
according to the maximum gain achieved by Cal2 with respect to the LOO baseline. The plot
clearly shows that using two seizures for calibration (Cal2) always leads to an increase
in accuracy compared to using a single seizure (Cal1), suggesting that calibration could
benefit from a prolonged tuning phase on the target patient.

Figure 7. Comparison of accuracy gains obtained by Cal1 and Cal2 with respect to the LOO baseline
across all patients. Patients are sorted according to the maximum gain obtained by Cal2.
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3.4. Comparison with a Standard Machine Learning Classifier

We finally investigated whether our calibration method could also be used with
other machine learning algorithms, comparing the gains obtained by the CNN against
those obtained by a more standard supervised machine learning model implemented as
an XGBoost classifier [51] and trained on a set of standard features extracted from the
EEG recordings. These features contained time-domain features such as mean, variance,
standard deviation, skewness, and kurtosis, and essential frequency-domain features such
as power spectral density, spectral entropy, and Hjorth parameters (for details, see [26]).

It turns out that our calibration method is also effective with XGBoost, although the
performance gains are slightly lower compared to the CNN. The improvement in accuracy
resulting from the use of one and two calibration seizures is shown in Figure 8, while the
detailed evaluation metrics are reported in Table 6. In the CHB-MIT dataset, the ACC of the
XGBoost classifier improved by 6% (Cal1) and 10% (Cal2), while in the Conegliano dataset,
it improved by 8% (Cal1) and 13% (Cal2).

Figure 8. Comparison between the CNN model (solid lines) and the XGBoost classifier (dotted lines)
in terms of accuracy gain for the two calibration versions with respect to the LOO baseline. The blue
lines refer to the CHB-MIT dataset while the green lines refer to the Conegliano dataset.

Table 6. Average ACC, SEN, and SPE obtained by the XGBoost classifier in the CHB-MIT and
Conegliano datasets (mean (%) ± std).

Dataset Metrics LOO Cal1 Cal2

ACC 50.70 ± 7.83 56.26 ± 4.40 61.02 ± 5.81
CHB-MIT SEN 44.02 ± 10.38 52.89 ± 11.66 58.44 ± 10.47

SPE 60.95 ± 13.34 63.44 ± 12.65 66.84 ± 13.13

ACC 50.08 ± 6.71 58.49 ± 5.70 62.73 ± 4.71
Conegliano SEN 46.06 ± 19.54 69.22 ± 17.07 73.52 ± 16.34

SPE 50.21 ± 13.02 65.85 ± 11.44 70.68 ± 14.66

4. Discussion

In this study, we investigated the performance of automatic seizure forecasting al-
gorithms using two datasets of raw multichannel EEG recordings. We focused on deep
learning models, implementing a convolutional neural network (CNN) architecture that
was optimized to accurately distinguish between interictal and preictal brain states. We
compared the performance of the CNN model obtained in the most commonly used
randomized cross-validation (RCV) condition with that obtained in a more challenging,
but realistic, leave-one-patient-out (LOO) condition.

As expected, the RCV resulted in a very high forecast accuracy. In particular, the deep
learning model introduced in this work outperformed previous results obtained with the
same datasets using more traditional machine learning pipelines [26], according to all
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evaluation metrics. However, performance in left-out patients decreased dramatically.
At the same time, we showed that fine-tuning the LOO model using one or two seizures
from left-out patients can significantly improve LOO performance in terms of all evaluation
metrics: accuracy, sensitivity, and specificity. This is particularly relevant in clinical settings,
where the goal is to improve accuracy but also to ensure that the forecasting model produces
few false negatives and few false positives.

Improvement in performance was observed in both datasets and, although the spe-
cific gains were heterogeneous, calibration led to an increase in accuracy for all patients.
Furthermore, increasing the number of calibration seizures further boosted performance,
achieving an up to 25% accuracy gain in a CHB-MIT patient and up to 47% in a Conegliano
patient. It thus seems that, in general, it might be preferable to use the Cal2 method (or
even further increasing the number of calibrating events), although it should be noted that
being able to calibrate a forecasting system with minimal amount of data, as with Cal1,
could be desirable in situations of data scarcity. Our findings also demonstrated that the
proposed calibration method could be used with standard machine learning algorithms,
although performance gains were more marked with deep neural networks.

Table 7 compares our results with those obtained in other recent studies that proposed
to apply adaptation methods to improve the performance of machine learning classifiers in
the CHB-MIT dataset under cross-subject conditions. Although such a comparison should
be treated with caution, since these studies exploited different validation procedures to test
the model performance, it still indicates that our results are consistent with those reported
in previous work. It should also be noted that some of these approaches require to train
multiple models for each seizure [52,53], which increases the computational burden and
might be extremely time consuming in the case of large datasets.

Table 7. A comparison of different studies exploiting domain adaptation methods for cross-subject
seizure forecasting in the CHB-MIT dataset.

Authors Year Input Type Classifier SEN (%) AUC

Peng et al. [29] 2022 spectrograms Autoencoder 73 -
Zhao et al. [54] 2023 raw signal Gaussian mixture 71 0.68
Liang et al. [52] 2023 raw signal CNN 89 0.85
Zhang et al. [53] 2023 spectrograms Transformer 80 0.81
Jemal et al. [55] 2024 raw signal CNN - 0.75

This work 2024 raw signal CNN 70 0.85

5. Conclusions

The primary objective of this work was to demonstrate that by introducing calibration
procedures we can significantly improve automatic seizure forecasting algorithms even
in challenging leave-patient-out settings. Indeed, although many studies have reported
high performance with patient-specific approaches, building a clinical forecasting system
requires to develop patient-independent approaches that could be used in new epileptic
subjects with minimal tuning.

The proposed calibration method is easy to implement and guarantees a significant
improvement in forecasting performance, even with the use of a single calibrating seizure.
We believe that this constitutes an important first step to enable the implementation of
forecasting devices that could be finally used in clinical practice. For example, clinicians
might initially develop and deploy a generic forecasting model, which is then personalized
on each individual patient after the recording of one (or a few) epileptic events. However,
at the same time, it should be noted that the proposed calibration method requires to
have at least one seizure recorded in each independent patient, which constitutes a serious
limitation of our approach since it prevents its use with individuals who have never
had a seizure but are still considered at high risk. Future research should thus design
calibration procedures that can be used with individuals without prior seizures, for example
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by exploiting EEG signals recorded during normal daily activity or by using additional
information, such as biomarkers or data extracted from clinical records.

Furthermore, the non-negligible variability of forecasting accuracy between patients
suggests that further efforts should be spent to improve the reliability of predictive models.
The sources of variation can be extremely heterogeneous [56,57] and likely depend on the
etiology of the seizure, its spatial source (e.g., temporal lobe, hippocampus, parietal lobe,
etc.), the age and overall health condition of the patient, the severity of the epilepsy, the time
from the first appearance of the epileptic condition, the details of the EEG registration
devices (e.g., sensor cap) and possibly many other factors. Augmenting the models by
adding other variables as potential predictors might therefore be a promising research
direction to further boost the performance of forecasting systems and make them more
tailored for each patient.

In conclusion, building a generalized seizure forecasting system remains an extremely
challenging task, given the considerable variability between epileptic patients [58,59] and
the variability of seizure events even within the same patient [60]. More research is still
needed to establish a reliable forecasting system that could finally be used in the routine
health care of people with epilepsy.
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