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Abstract: The transition to Industry 4.0 and 5.0 underscores the need for integrating humans into
manufacturing processes, shifting the focus towards customization and personalization rather than
traditional mass production. However, human performance during task execution may vary. To
ensure high human–robot teaming (HRT) performance, it is crucial to predict performance without
negatively affecting task execution. Therefore, to predict performance indirectly, significant factors
affecting human performance, such as engagement and task load (i.e., amount of cognitive, physical,
and/or sensory resources required to perform a particular task), must be considered. Hence, we
propose a framework to predict and maximize the HRT performance. For the prediction of task
performance during the development phase, our methodology employs features extracted from
physiological data as inputs. The labels for these predictions—categorized as accurate performance
or inaccurate performance due to high/low task load—are meticulously crafted using a combination
of the NASA TLX questionnaire, records of human performance in quality control tasks, and
the application of Q-Learning to derive task-specific weights for the task load indices. This
structured approach enables the deployment of our model to exclusively rely on physiological
data for predicting performance, thereby achieving an accuracy rate of 95.45% in forecasting
HRT performance. To maintain optimized HRT performance, this study further introduces a
method of dynamically adjusting the robot’s speed in the case of low performance. This strategic
adjustment is designed to effectively balance the task load, thereby enhancing the efficiency of
human–robot collaboration.

Keywords: human–robot teaming; Q-learning; machine learning; performance prediction; performance
maximization; task load; task engagement; physiological data

1. Introduction

In traditional settings, robots have typically worked independently from humans.
Even in settings where collaboration is potentially beneficial, such as in manufacturing,
industrial robots have mostly operated in physically separated environments. This is due
to safety and production design simplicity concerns [1–3]. Consequently, robots have
been relegated to performing well-defined and repetitive tasks. However, as illustrated
in Figure 1, the evolution towards Industry 5.0 is steering manufacturing from mass
production to mass customization and personalization, leading to more complex and
varied operational settings. To meet this demand, it is necessary to integrate humans into
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the manufacturing process, enabling the synergy of human critical thinking with robotic
precision for tasks that are tedious, hazardous, or beyond human capabilities, such as
operations at the nanoscale [4]. This underscores the growing significance of human–robot
teaming (HRT) in the future of manufacturing [5–7].

Figure 1. Evolution of industrial revolutions from Industry 1.0 to 5.0, showcasing the transition from
mechanization to mass customization and the integration of human cognitive systems with robotics
in modern manufacturing.

In this research, we focus on a specific application within this evolving landscape:
HRT for quality control (QC) tasks. In this configuration, a collaborative robot is pro-
grammed to deliver parts to a QC station where a human operator performs precision
measurements using a caliper. These QC tasks are vital for maintaining product quality
in manufacturing environments close to industrial machines that often lack advanced
safety systems. Utilizing collaborative robots equipped with robust safety features sig-
nificantly mitigates risks, enhancing both the safety and efficiency of the manufacturing
process. This arrangement allows human operators to focus on accurate measurements,
ensuring high-quality outcomes without the risks associated with high-speed indus-
trial machinery.

In dynamic and less structured environments, the variability of numerous param-
eters—including the internal state of human operators—can significantly influence the
performance of HRT [1]. Managing task load and engagement levels is crucial for opti-
mizing HRT performance. This management hinges on the Yerkes–Dodson Law, which
posits that performance is optimal at a moderate level of arousal and deteriorates if arousal
becomes too low or too high [8]. Figure 2 illustrates how, in adherence to this principle,
our framework operationalizes the task load by dividing it into three distinct states—low,
optimal, and high—each approximately one-third of the task load continuum [1]. This
segmentation correlates with understimulation leading to disengagement, optimal arousal
corresponding to peak performance, and overarousal resulting in stress or errors. Both
disengagement and excessive stress can negatively impact accuracy, productivity, and
multitasking capabilities, highlighting the need for a delicate balance to maintain team
efficacy [9,10].

In this paper, task engagement within HRT for QC tasks is defined as the process
through which operators initiate, maintain, and conclude their involvement with QC tasks.
This engagement encompasses the execution of tasks in collaboration with the robot and
is characterized by the operators’ sustained attention and commitment to achieving task
objectives, alongside their capacity to adapt to and interact dynamically with the robot.
Effective engagement is crucial, ensuring that operators remain focused on delivering high
accuracy in measurements [11].
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Figure 2. The relationship between task load and performance, with the task load scale derived
from the NASA-TLX as a percentage. Performance varies with task load, where lower performance
is associated with disengagement (task load < 33%), optimal performance corresponds to peak
engagement (task load 33–66%), and higher task load leads to stress and reduced performance (task
load > 66%) [1,8,10].

Similarly, task load is defined within the context of HRT for QC tasks as the operator’s
subjective experience, influenced by the task’s objectives, the conditions under which the
task is performed, and the interaction between the operator’s skills and perceptions. This
experiential load includes mental and physical demands, temporal pressures, and subjective
assessments of performance, effort, and frustration. It is measured through subjective
evaluations that reflect the complex and dynamic nature of task load in collaborative
environments with robots [12].

Furthermore, continuous exposure to stressful working conditions has been associated
with an increased risk of work-related injuries and other health issues stemming from
stress [13–15]. It is therefore critical to devise a predictive model capable of accurately
estimating human performance within HRT settings. Such a model would enable adaptive
decision-making and actions by both human and robotic agents, ensuring optimal collabo-
ration. Implementing this model promises not only to uphold high levels of productivity
but also to enhance the mental and physical health of human participants engaged in
HRT operations.

To effectively predict and optimize HRT performance, focusing on variables with a
significant impact is crucial, especially when direct measurement is unfeasible. Human
engagement in task execution is a key variable significantly influencing performance [16,17].
High engagement and familiarity with a task typically correlate with enhanced performance.
Conversely, disengagement or tasks perceived as overly challenging can lead to reduced
performance [18]. Thus, continuously monitoring and accurately assessing a human’s level
of engagement in a specific task is essential for predicting and maximizing performance
in HRT.

Numerous factors contribute to an individual’s levels of engagement, disengagement,
or stress during task execution. A pivotal element among these is the cognitive demand
imposed by the task on the individual. Insufficient cognitive load can lead to task dis-
engagement, whereas an excessive cognitive load may surpass the individual’s capacity,
adversely affecting their performance [1,19]. Consequently, optimizing cognitive load is
crucial for achieving optimal performance, sustaining engagement, and fostering healthy
working conditions.

Temporal demand plays a pivotal role in influencing an individual’s engagement with
a task [20,21]. In the context of HRT, discrepancies in pace between the human and the
robot can lead to engagement issues. Specifically, if the human outpaces the robot, they
might experience boredom and disengage. Conversely, if the individual struggles to keep
up with the task’s pace, stress can ensue. Other factors, such as physical demand [22]
and negative emotions [23], also significantly impact task engagement. The NASA TLX
(National Aeronautics and Space Administration Task Load Index) is an established tool
for evaluating these indices [24]. Task load encompasses both cognitive and physical efforts
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required for task completion, varying with task complexity, the allocated time, and the
individual’s expertise.

The NASA TLX has proven to be a reliable and widely used method for assessing task
load in various domains, including healthcare [25], manufacturing [26], and education [27].
This tool assesses task load based on six indices; however, the importance of each index
varies significantly across different tasks, and assigning accurate weights to each index
presents a complex challenge [28]. To tackle this, we implemented Q-Learning. This ap-
proach allows us to precisely calibrate the weights for each index, enhancing the reliability
of our task load evaluations.

Reinforcement learning (RL) provides a robust framework for decision making in
environments where explicit models are infeasible. Among various RL algorithms, Q-
learning, a model-free and off-policy reinforcement learning algorithm, is particularly
suited for scenarios where the sample size is small compared with the dimensions of
the state space. Its robustness and its capability to learn optimal policies without prior
knowledge of the environment’s dynamics significantly enhance its applicability to our
study. Other RL methods, each with distinct characteristics and operational demands, offer
complementary approaches that will be explored in future research to fully harness their
strengths in complex interaction tasks.

In higher levels of HRT autonomy, where the robot adapts to the varying inner states
of the human, relying solely on self-reported task load may not be reliable. Recent research
indicates that human physiological signals offer a robust measure of cognitive and task
loads [29–31], providing a more reliable indicator than self-report methods alone. These
signals can be conveniently captured using wearable devices, such as wristbands, during
task execution. Employing a range of machine learning (ML) techniques, our objective is
to highlight the relationship between task load, performance, and their physiological re-
sponses. Additionally, the insights garnered from this study have implications that extend
beyond HRT to sectors such as healthcare, aviation, and education, where understand-
ing the weighted task load indices is crucial for optimizing performance and enhancing
individual well-being.

Following the assessment of HRT performance through predictive analytics, as shown
in Figure 3, task load management can be achieved by modulating the robot’s operational
speed. This action directly influences the task’s temporal demand [32] and indirectly affects
other task load indices, thereby altering the overall task load [33]. Such adjustments also
modify individuals’ engagement levels with the task. Accurately measuring the task load
and developing sophisticated models to predict task load and human performance based
on physiological data are essential steps toward guiding individuals to an optimal task
load and engagement zone. Implementing these models ensures seamless integration
within the human–robot workflow, facilitating an automated HRT system that optimizes
performance outcomes.

This study builds upon our earlier research [34], wherein we devised a framework
to predict HRT performance through the analysis of task load via eye movement. While
our initial findings affirmed that eye movement acts as a proxy for task load and closely
correlates with human neurophysiology [29], we encountered limitations, notably that
eye movement monitoring is impractical in numerous real-world scenarios. Additionally,
our prior work did not offer a methodology to enhance HRT performance following its
prediction. To overcome these challenges and expand upon our foundational work, the
present study extends our contributions by performing the following:

• Exploring the relationships between task engagement, task load, performance, and
physiological data through classification. This framework aims to lay a foundation for
enhancing HRT autonomy and optimizing performance.

• Identifying crucial physiological indicators from ML models that correlate with en-
hanced HRT performance. Analyzing these indicators helps to uncover deeper insights
into physiological influences on HRT performance, enabling targeted improvements
in team dynamics and efficiency.
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• Applying Q-Learning to accurately determine the optimal weights for the NASA TLX
questionnaire indices, presenting a versatile and effective approach to assess task load
and engagement across diverse tasks and improve human performance.

• Developing a computational pipeline utilizing accessible physiological data to predict
and adjust HRT performance in manufacturing environments, aiming to enhance
collaboration and productivity and reduce errors.

Figure 3. This diagram depicts our approach to predicting and improving HRT performance, starting
with collecting physiological and QC measurement data, alongside task load information from
NASA TLX questionnaire responses. A Q-Learning algorithm calculates task load weights to classify
participants into three groups: those with accurate performance, those with stress-induced inaccurate
performance, and those with disengagement-induced inaccurate performance. We then predict HRT
performance and adjust it by changing the robot’s speed. If task load is too high for speed adjustment,
the robot stops; if it is too low, an alert is issued. Dashed lines represent development-phase steps,
while solid lines are for both development and deployment phases.

2. Related Work
2.1. Task Engagement, Task Load, and Performance

The relationship between task engagement, task load, and performance is a rapidly
growing area of research across multiple fields of study. Researchers have focused on
analyzing neurophysiological data, such as electroencephalography (EEG), pupilometry,
and blood pressure, alongside performance metrics, to evaluate individuals’ levels of
engagement when performing specific tasks [16,35]. Another study assessed the effect of
task engagement on driving performance. With the increasing availability of sensors and
automation systems in modern vehicles, drivers often engage in nondriving tasks while
driving, resulting in multitasking. The authors aimed to investigate the impact of the level
of engagement employed in parallel activities on drivers’ overall driving performance
based on their physiological data [36]. The authors conducted an investigation examining
the potential of a concurrent task to improve the outcome of a vigilance task. They used a
driving scenario to determine whether a concurrent conversation could enhance a driver’s
performance during a monotonous drive, which is typically considered a lower-load task.
The study revealed that, for the particular case analyzed, a concurrent conversation was
conducive to improving the driver’s vigilance, lane-keeping performance, and steering
control [37].

2.2. Predicting Task Load Using the NASA TLX

The measurement of human task load is critical to ensure safety and efficiency in
various industries, including healthcare. The NASA TLX questionnaire is a commonly used
tool to assess task load. In healthcare, tasks with high loads can negatively affect patient
safety and increase the risk of stress-related illnesses. Researchers have utilized the NASA
TLX to measure the task load of Intensive Care Unit (ICU) nurses and found it to be the
most reliable method. Their study provides benchmark data for healthcare managers to
evaluate the task load of their ICU nurses [25]. Another study in healthcare sought to assess
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the task load of surgeons performing laparoscopic procedures in a virtual reality setting.
The authors combined eye-tracking data analysis with the NASA TLX questionnaire scores
to characterize the task load of the surgeons. By analyzing the eye-tracking data and using
the NASA TLX results as a reference, the authors determined that blinking frequency and
duration can be used to estimate task load [38]. Previous research has shown the usefulness
of the NASA TLX questionnaire in designing machine equipment. In this study, the authors
tested two Human–Machine Interface (HMI) designs for excavator operators to determine
their impact on physical and mental task load. The NASA TLX questionnaire was used to
measure the mental load experienced by the operators while interacting with the different
HMI designs. The results indicate that the different HMI designs directly affected the
operators’ physical and mental task loads. Based on these findings, the authors identified
the optimal HMI design [39].

2.3. Physiological Data for Prediction of Task Engagement and Task Load

Previous research has indicated that electrodermal activity, respiratory rate, and ac-
celerometry data, in combination with the Flow Short Scale, a self-reported engagement
measure, can be utilized to accurately assess learner engagement levels. These measures
have been effective in discriminating between engagement levels across different envi-
ronments, such as classroom, simulation, and live settings, using physiological data [40].
Also, by monitoring heart rate and electrodermal activity measures, the researchers were
able to identify individual differences in electrodermal liability, which predicted whether
participants would engage affectively or strategically with the emotionally expressive
agents in reacting to emotionally expressive agents during the decision task [41]. Moreover,
a supervised ML approach was employed to classify the level of cognitive load based on
physiological feedback. Specifically, a random forest algorithm was used, resulting in an
accuracy of 94% in decoding the physiological data associated with the stated cognitive
load in the NASA TLX [1].

Previous research has predominantly explored the relationship between cognitive
load—a singular index of the NASA TLX—and physiological data, or it has utilized physio-
logical measurements to assess task load and engagement. However, a holistic methodology
that integrates all indices of task load, engagement, performance, and physiological data
to evaluate and subsequently enhance performance in work environments remains unex-
plored. This study seeks to bridge this gap by delving into the interconnections among
these diverse data types, encompassing various physiological signals, task load indices,
and HRT performance metrics. It aims to identify the physiological features that most
significantly influence task performance. Although electroencephalography (EEG) data
have yielded promising insights, their high cost and vulnerability to noise limit their practi-
cality. In response, this study adopts a more cost-effective (approximately USD 1700 for
a wristband collecting human physiological data) and less susceptible to noise method.
Furthermore, this research culminates in the creation of a model designed to predict and
enhance task load management and human engagement during task execution.

3. Overview of Our Approach

Our framework introduces an innovative method to forecast and optimize HRT per-
formance by examining the dynamics between task load, task engagement, and physio-
logical activation. This approach posits that task load directly influences task engagement
(Figure 2) [1,15], which in turn affects performance [17,42,43]—a key metric we predict
using physiological data. Central to our strategy is the adjustment of the robot’s speed, a
modification aimed at optimizing task load, thereby influencing task engagement and ulti-
mately improving performance. By ensuring that task load, engagement, and performance
are maintained within optimal parameters, our framework seeks to maximize efficacy in
QC tasks. To achieve this, we developed a computational pipeline designed to precisely
predict HRT performance in QC scenarios, striving for peak performance.
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3.1. Performance Prediction

As illustrated in Figure 3, performance prediction is achieved by utilizing participants’
QC performance data (Section 5.1) and NASA TLX questionnaire responses to determine
the task load experienced post-experiment (Section 5.2). The NASA TLX evaluates task
load across six indices, and a weighted average is computed from the responses, which
range from 1 to 20 for each index. Q-Learning is applied to determine task-specific weights,
critical for assessing the imposed task load on individuals. These weights inform the
creation of three performance labels: inaccurate due to disengagement, accurate within
optimum engagement, and inaccurate due to stress. Our approach replaces the use of the
NASA TLX questionnaire and QC performance records with physiological data, which are
continuously recorded during HRT tasks, to predict performance without interrupting the
workflow (Section 5.3). Subsequently, we show the effectiveness of our weighted average
TLX approach, facilitated by Q-Learning for performance prediction (Section 5.4).

3.2. Performance Maximization

For performance maximization, the framework’s objective is to optimize HRT perfor-
mance through task load adjustments within the HRT workflow, primarily by modulating
the robot’s operational speed to adjust the temporal load, as detailed in Section 5.5. Our
methodology, depicted in Figure 3 (in the Performance Maximization part), begins by
correlating physiological data with temporal load experienced by participants. We then
assess the direct and indirect effects of temporal load alterations on task performance
through robot speed adjustments. This analysis aims to identify the ideal robot speed ad-
justment that ensures participants operate within the most favorable task load conditions.
If adjustments to the robot’s speed cannot adequately manage task load levels that are
too high or too low, the framework recommends implementing rest breaks or providing
timely warnings, respectively. These interventions are considered through a monitor placed
adjacent to the robot, serving as a channel for visual feedback. The overarching aim is to
enhance HRT performance while keeping task load and stress at manageable levels.

4. Materials and Methods
4.1. Participants

This study involved 22 graduate and undergraduate students, of which 10 were fe-
male, with an age range of 19 to 37 years and a standard deviation of 5.3 years. Prior to the
experiment, all participants demonstrated proficiency in using QC devices, including the
caliper, to ensure that they could perform the task accurately. However, their experiences
using calipers and working with robots varied. While some participants had prior experi-
ence working with robots on a daily basis, others had limited or no experience working
alongside a robot. Additionally, participants were instructed to complete the task as quickly
as possible, resulting in variations in their completion time relative to the robot’s pace.
Some participants completed the measurements before the robot brought in a new part,
while others fell behind and were unable to complete the necessary measurements before
the arrival of the next part. These variations in participants provided diverse performance,
task load, and physiological data.

4.2. Experiment

In this experiment, which was approved by the Institutional Review Board of The
University of Alabama (23-01-6294), a collaborative HRT simulated an industrial application
of QC for manufactured parts, as depicted in Figure 4. The experimental setup comprised a
measurement station, a caliper as the measurement tool, a HC10DT Yaskawa collaborative
robot (Kitakyushu, Japan), an Intel RealSense D455 camera (Santa Clara, CA, USA), two E4
wristbands, and three manufactured parts. The Empatica E4 wristband (Boston, MA, USA)
is a noninvasive, wearable research device designed to collect physiological data.
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Figure 4. The HRT experiment setup featuring the parts subject to measurement, encompassing
8 distinct dimensions.

4.3. Data Collection

During data collection, the human operator wore an E4 wristband on each wrist, while
the robot transported the manufactured parts to the measurement station. As the parts
arrived at the measurement station, the human operator performed the assigned measure-
ments using a caliper and recorded the corresponding values on a control document. Each
participant measured eight dimensions across three parts during HRT for QC task. The data
collection was conducted in two scenarios: 1—Normal Speed Human–Robot Teamwork
(NS-HRT) with the robot operating at regular speed (225 mm per second); 2—Reduced
Speed Human Detection-Based HRT (RS-HD-HRT), where the robot reduced its speed to
one-third of its original speed upon detecting the human operator within the robot’s work
envelope. The average completion time of participants for the QC task in the NS-HRT
scenario was 2 min and 59 s, and 3 min and 54 s in the RS-HD-HRT scenario. Two different
scenarios were designed for data collection to observe the impact of varying robot behaviors
(i.e., robot’s speed) on participants’ task load. Therefore, conducting the experiment in
two different scenarios helps to collect various data that can contribute to developing a
more robust prediction model. Following the collection of the assigned measurements, the
participants filled out the NASA TLX questionnaire to assess the task load experienced
while performing the QC task alongside the robot.

4.4. Data Preprocessing

To facilitate the analysis of the collected data, automated recording of the start and
end times of the experiments was performed. The E4 wristband also generates the start
time of the recording automatically and the relevant portion of data falling within the
experiment time was extracted. The E4 wristband was used to acquire various physiological
data, including hand acceleration (ACC), blood volume pulse (BVP), heart rate (HR),
electrodermal activity (EDA), and skin temperature (TEMP). The sampling frequencies for
these physiological data were 32, 64, 1, 4, and 4 data samples per second, respectively.

5. Results
5.1. Performance Evaluation

To evaluate the participants’ performance, the absolute values of measurement error
(ME) were used:

ME =
8

∑
i=1
|Di

c − Di
p| (1)
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where Di
c and Di

p represent the correct measurements and the participants’ measurements
for the i-th part in the quality control (QC) task, respectively. As demonstrated in Figure 4,
each participant measured a total of eight dimensions across three different parts in each
HRT scenario. The distribution of the ME is depicted in Figure 5. The minimum, maximum,
and standard deviation of the ME are 0.15 mm, 1.96 mm, and 0.4895 mm, respectively.
The top-performing third of the participants were deemed to have achieved the best
performance and were used to determine the weights for the NASA TLX. This method of
selecting the highest-performing participants allowed for a more accurate determination
of the weighting factors for each of the TLX indices. By focusing on the top performers,
we were able to derive a more precise set of weights that reflected the most efficient and
effective ways of managing task load levels during the HRT task.

Figure 5. The distribution of the participants’ performance (Box plot of measurement error as a
function of data variation. The central red line within the blue box represents the median error value.
The edges of the blue box depict the interquartile range, indicating the middle 50% of the data. The
dashed lines extending vertically from the box indicate the variability outside the upper and lower
quartiles, representing the total spread of the data).

5.2. NASA TLX Analysis with Q-Learning

We employed a Q-Learning algorithm, illustrated in Figure 6, to identify the weights
that produce a weighted average of the NASA TLX responses from the participants with
the best performance. The Q-Learning algorithm utilizes a Q-table, a matrix combining all
possible states and actions, to record expected rewards for actions based on given states.
The Q-table is initialized with zeros, and initial weights are set to one. These weights are
iteratively adjusted. The weighted average TLX score for a given set of weights (an action)
is calculated next. To determine the optimum range for task load, we considered a range of
33–66 on a scale of 1–100, which results in the optimum engagement of the participants [1].
The algorithm then assesses the reward for a specific weighted average to ascertain if it falls
within this optimum range. An epsilon-greedy policy directs the action selection process in
each state. The Q-Learning updates within each episode are conducted as follows:

1. Initiating the process with an initial state that reflects the beginning of a task or
specific conditions.

2. Making decisions based on the current policy by selecting weights for the TLX indices.
3. Observing outcomes to assess whether the resulting task load falls within the optimal

range of 33–66.
4. Receiving rewards based on the effectiveness of the chosen weights in placing the task

load within the optimal range.
5. Updating the policy by refining the Q-values, thereby enhancing the strategy for

subsequent decision-making processes.
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Figure 6. Application of the Q-Learning algorithm to determine the task load weights that place the
maximum possible number of participants, with the highest performance, within the optimal range.
A reward of +1 is assigned for weighted averages falling within this optimal range, while a reward of
−1 is given for those outside of it.

The fundamental Q-Learning update rule applied in our algorithm is represented by
the following equation:

Q(s, a)← Q(s, a) + α

[
R(s, a) + γ max

a′
Q(s′, a′)−Q(s, a)

]
(2)

where, Q(s, a) is the current Q-value of being in state s and taking action a, α is the learning
rate, R(s, a) is the reward received after taking action a in state s, γ is the discount factor,
maxa′ Q(s′, a′) is the maximum Q-value for the next state s’ over all possible actions a’, and
Q(s, a)← denotes the update of the Q-value.

Our Q-Learning model’s states are derived from the NASA TLX questionnaire’s six
task load indices, defining six dimensions per state. Actions in this model adjust weights
for these indices to compute a weighted average task load, creating an action space with six
dimensions as well—one for each task load index. Weighted average values are calculated
as shown in Equation (3):

weighted average of the TLX =
∑6

j=1 wjTLXj

∑6
j=1 wj

× 100 (3)

where TLXj represents the participants’ responses to the NASA TLX indices, and wj
are the weights assigned to each of these indices. To optimize computational efficiency,
the range of potential action weights was limited to increments of 0.5, extending from
0.5 to 20. This constraint yields a total of 406 possible combinations of action weights.
We established a reward mechanism: a reward of +1 is granted for any set of weights
that positions a participant’s weighted average within the optimal performance range.
Conversely, a penalty of −1 is applied for weights resulting in averages outside this range,
thus incentivizing the alignment of participant performance with desired outcomes.

The Q-Learning process was conducted over up to 1000 episodes. During each episode,
the agent selects actions (a) based on the ϵ-greedy policy, as defined in Equation (4). This
policy dynamically adjusts between exploring new actions and exploiting known rewards,
guided by the decay of ϵ outlined in Equation (5). After executing an action, the agent
assesses the reward and updates the Q-values in accordance with Equation (2). This iterative
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process enables the agent to refine its strategies continually, optimizing the learning of
effective policies over time.

In our Q-Learning framework, initially set to 1.0 to foster exploration, ϵ undergoes
gradual reduction, as specified by Equation (5), transitioning the agent towards prioritizing
more reliable actions as it gains confidence in its learned values. This controlled reduction
in ϵ prevents premature convergence on suboptimal policies and promotes thorough
exploration of the action space. Table 1 below details the hyperparameters used in our
Q-Learning model, including the learning rate (α) and the discount factor (γ), which are
essential for influencing how future rewards are valued relative to immediate rewards.

a =

{
random action with probability ϵ,
arg maxa′ Q(s, a′) with probability 1− ϵ.

(4)

ϵ← max(ϵmin, ϵ× ϵdecay) (5)

Table 1. Q-Learning Parameters.

Parameter Value

Exploration Rate (ϵ) 1.0
Minimum Threshold (ϵmin) 0.8
Decay Rate (ϵdecay) 0.999
Learning Rate (α) 0.1
Discount Factor (γ) 0.99

Our analysis determined the optimal weights for the NASA TLX indices to be Mental
Demand at 6.5, Physical Demand at 2.5, Temporal Demand at 7, Performance at 8.5, Effort
at 3.5, and Frustration at 4.5. This particular set of weights was deemed optimal, as it
achieved the highest reward of 12 in our model, as shown in Figure 7. This indicates
that the weights, derived from our Q-Learning process, successfully categorized 13 out of
14 participants’ responses within the desired task load range of 33 to 66. While there are
a few other weight configurations that reach a reward of 12, they are very close to these
identified optimal weights.

Figure 7. The relationship between rewards and episodes during the training of the Q-Learning
algorithm, aimed at identifying the optimal weights. These weights adjust the NASA TLX weighted
averages to fall within the optimal range. The highest reward obtained was 12, which is indicated by
red circles.

After applying the determined weights to the remaining participants’ responses, a
weighted average was calculated for each. This process classified 10 responses as inaccurate
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due to disengagement (below 33) and 19 responses as inaccurate due to stress (above 66),
while 15 responses fell within the optimum range (33–66). Notably, the count of responses
in the optimum range rose from 13 to 15, attributable to the inclusion of two additional
participants’ responses, specifically ranked 15th and 17th in terms of performance, based
on calculations with Equation (1). These responses were placed in the optimum range
following the application of the weights for weight averaging. In this regard, the histogram
distribution of participants ranging from 0.15 to 1.96 in terms of ME, is presented in stacked
bar charts in Figure 8. Lower measurement errors indicate higher performance, while
higher measurement errors signify lower performance. The vertical axis of the histogram in
Figure 8 displays the count of participants grouped by these measurement error intervals.

Figure 8. Histogram of measurement errors: This figure illustrates the distribution of measurement
errors spanning from 0 to 2 mm in quality control tasks, where task load indices weights, derived
through Q-Learning, are applied to categorize participants’ performance and engagement. Each
bar indicates the frequency of occurrences within specific measurement error ranges, categorized
by performance accuracy: blue for accurate measurements within optimal engagement, orange for
inaccuracies due to disengagement, and yellow for errors associated with stress.

5.3. Task Performance Prediction Using Physiological Data

Maximizing HRT performance without interrupting human–robot collaboration re-
quires predicting HRT performance through a computational pipeline, as shown in Figure 3.
The pipeline utilizes information from humans’ stated TLX, performance, and physiological
states while working with a collaborative robot. To clarify, the collection of TLX responses
and performance evaluation are conducted exclusively during the model/pipeline training
phase, after which the model can operate solely on physiological data inputs. Previous
sections discuss the performance evaluation, analysis of NASA TLX, determination of opti-
mized Q-Learning weights, and their importance. This section focuses on the prediction of
HRT performance using physiological data without disrupting the collaboration.

To establish the relationship between task load and physiological data through an
ML model, it is essential to generate high-quality features. The method of obtaining such
features is crucial for achieving accurate results. Traditional manual selection methods,
such as choosing statistical measures such as mode and mean, have been shown to capture
only a fraction of the physiological signal’s complexity. Specifically, characteristics such as
nonlinear dynamics, temporal variations, and spectral components, which are crucial for a
comprehensive representation of human physiology, are often neglected. This oversight
can result in a poor depiction of physiological activities [44]. To surmount these limitations,
we employed the tsfresh feature engineering library [45], which systematically and auto-



Sensors 2024, 24, 2817 13 of 21

matically extracts a broad spectrum of statistical features, thus encompassing the intricate
nature of physiological signals more effectively.

For each HRT scenario (i.e., NS-HRT and RS-HD-HRT), feature extraction from phys-
iological data was performed, and a total of 1109 features were computed for each type
of physiological data (i.e., ACC, BVP, HR, EDA, and TEMP), amounting to a combined
5545 features. The feature space was comprehensive, leveraging all available statistical
features provided by tsfresh, which includes simple features such as mean, as well as more
advanced ones, such as entropy of the power spectral density, thereby ensuring a nuanced
analysis of the physiological data.

However, the extensive feature set presented challenges related to computational
efficiency and the potential for model underperformance due to irrelevant feature inclusion.
To address these concerns, we streamlined the feature set by implementing a feature
significance testing procedure postextraction. Utilizing the one-way analysis of variance
(ANOVA) F-value enabled us to discern the most predictive features, narrowing the focus
to the top 200 features for subsequent classification tasks. This approach not only mitigated
computational burdens but also enhanced model accuracy by prioritizing features with
the highest relevance to the target outcome. The efficacy of this refined feature set is
demonstrated in the classification results presented in Table 2.

In this study, six models were developed for predicting the engagement level of
individuals during HRT tasks. These models include Naive Bayes, K-Nearest Neighbors
(KNN), Decision Tree (DT), Linear Discriminant (LD), Neural Network (NN), and Support
Vector Machine (SVM). Accurate performance with optimum engagement, inaccurate
performance due to disengagement, and inaccurate performance due to stress are the three
classes of ground truth for the predictive models. In this regard, 70% of the data were
utilized for training, 15% for validation, and 15% for testing. To prevent the ML model
from exhibiting bias towards any specific data subset, it is important to conduct a fair
evaluation. Therefore, a 5-fold cross-validation approach was utilized to obtain the results
from the average of all folds. The evaluation of the model’s performance was based on
five criteria, which include accuracy, kappa, recall, precision, and the Area Under the
Curve (AUC) of the Receiver Operating Characteristic (ROC). These metrics were used
to evaluate the performance of the models on the test data. The accuracy represents the
percentage of correctly classified samples. The kappa measures the agreement between the
predicted and actual labels. The recall calculates the proportion of true positives over the
total actual positives, while the precision measures the proportion of true positives over
the total predicted positives. Additionally, the average AUC for all classes indicates the
probability of ranking a random positive example higher than a random negative example.

Table 2. Evaluating classification models utilizing features extracted from physiological data for
predicting performance categories obtained with the weighted TLX—accurate performance, inaccu-
rate performance due to disengagement, and inaccurate performance due to stress. The maximum
accuracy, 95.45%, is achieved by the LD method.

Model Accuracy
(%) Kappa

Recall
(Weighted

Mean in %)

Precision
(Weighted

Mean in %)
AUC

Naive Bayes 82.95 0.6165 82.05 81.45 0.8941
KNN 81.82 0.5909 77.37 82.02 0.9129

DT 86.36 0.6932 85.70 87.31 0.9029
LD 95.45 0.8977 94.44 95.00 0.9353
NN 92.94 0.8412 92.78 92.82 0.9941

SVM 94.32 0.8722 93.57 93.44 0.9989

Moreover, our analysis of feature importance revealed that certain features used in ML
played a critical role in predicting human performance. Specifically, the ACC Fast Fourier
Transform (FFT) features, HR Fourier entropy, and EDA number of peaks were found to be
the top three important features. These features can potentially provide valuable insights
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into the underlying physiological processes that affect human performance during QC
tasks in HRT.

5.4. Results without Using Q-Learning in TLX Weight Determination

To further clarify the role of weighted task load indices obtained with Q-Learning in
the developed pipeline for predicting the performance of HRT, the results without using
Q-Learning to find the optimal TLX weights are presented. In this case, normal averaging is
employed, and each index of the TLX is assigned a weight of one. The resulting performance
distribution of the participants, which is calculated with Equation (1), is shown in Figure 9.
As depicted in the figure, due to the inappropriate weight assignment to the TLX indices,
an acceptable distribution between task engagement and performance cannot be observed.

Figure 9. Histogram of measurement errors: This figure illustrates the distribution of measurement
errors spanning from 0 to 2 mm in quality control tasks prior to applying weighted task load
indices. Each bar represents the frequency of errors within specific measurement ranges, categorized
by performance accuracy: blue for precise measurements within optimal engagement, orange for
inaccuracies due to disengagement, and yellow for errors induced by stress.

Furthermore, the ML approaches employed, as demonstrated in Table 3, cannot
generate a dependable prediction based on the labels obtained through normal averaging
to determine task engagement. Thus, the proposed framework with using Q-Learning
can play a significant role in predicting the performance of HRT in a QC task, and the
developed computational pipeline could be utilized for any other task to forecast task
performance based on physiological data.

Table 3. Evaluating classification models utilizing features extracted from physiological data features
to classify three performance categories—accurate performance, inaccurate performance due to dis-
engagement, and inaccurate performance due to stress—without incorporating Q-Learning-derived
labels. The highest accuracy of 64.77% is achieved by the KNN method.

Model Accuracy
(%) Kappa

Recall
(Weighted

Mean in %)

Precision
(Weighted

Mean in %)
AUC

Naive Bayes 57.95 0.0540 57.70 57.57 0.6923
KNN 64.77 0.2074 65.21 64.88 0.7405

DT 63.64 0.1818 62.91 65.76 0.7024
LD 54.55 0.0222 53.95 54.50 0.6255
NN 61.36 0.1307 60.95 61.01 0.7573

SVM 60.23 0.1051 60.27 60.39 0.7141
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5.5. Utilizing Q-Learning for Task Load Optimization and Maximization of HRT Performance

In this section, we aim to take actions that optimize the task load and enhance HRT
performance by adjusting the HRT task load to improve human engagement and maximize
their productivity. The primary adjustable parameter within our control is the robot’s
speed. Upon predicting HRT performance using ML on physiological data, it is determined
whether the human is disengaged or stressed, as depicted in Figure 2 in the Performance
Maximization part. Altering the robot’s speed has a direct influence on the temporal
demand aspect of the NASA TLX and indirectly impacts the other five indices. These
changes, both direct and indirect, affect the overall task load, subsequently influencing
human engagement and performance. We employ Q-Learning to ascertain the optimal
adjustments to the robot’s speed (i.e., the temporal demand) to enhance HRT performance,
taking into account the consequent effects on all indices of the NASA TLX. Figure 3
illustrates the comprehensive framework that integrates the prediction of HRT performance
based on ML analysis of physiological data with task load adjustments, thereby creating a
feedback loop aimed at optimizing HRT performance.

5.5.1. The Direct Impact of Altering Temporal Demand on Task Load

In order to maintain an uninterrupted workflow during the HRT experiment and
ensure full automation, it is essential to identify the physiological data that correspond to
the temporal demand index of the task load. Once the predicted performance is inaccurate
due to stress or disengagement, the temporal demand, i.e., the robot’s speed, needs to
be adjusted by a factor to keep the human in the optimum task load range. However,
accurately classifying physiological data for each of the 20 temporal demand values of
NASA TLX is not feasible, so we divided the temporal demand into four intervals. ML
is employed to achieve the classification of the four temporal demand sections using the
physiological data features explained in Section 5.3, and the results are presented in Table 4,
in which the best performance of 94.32% is achieved by the Decision Tree method. The
next step involves assigning a speed correction factor to each of the four temporal demand
classes to adjust the temporal demand and, consequently, the overall task load. In the
NASA TLX, a response of 1 is deemed very low, and a response of 20 is deemed very high.
The temporal classes and corresponding speed correction factors are illustrated in Figure 10,
where to address the nonoptimal engagement, the robot’s speed can be modified by these
factors. When the temporal demand is low, increasing the robot’s speed can raise both the
temporal demand and the overall task load, potentially improving task engagement and so
performance. Conversely, when temporal demand is high, reducing the robot’s speed may
lower the temporal demand and overall task load, thereby moving engagement closer to
the optimum range and thus improving performance.

Table 4. Predicting the temporal demand. The highest accuracy of 94.32% is achieved by the DT method.

Model Accuracy
(%) Kappa

Recall
(Weighted

Mean in %)

Precision
(Weighted

Mean in %)
AUC

Naive Bayes 89.77 0.6804 90.33 91.08 0.9642
KNN 85.23 0.5384 86.21 86.69 0.8836

DT 94.32 0.8224 94.17 94.89 0.9952
LD 90.91 0.7159 91.30 90.92 0.9373
NN 93.18 0.7869 93.46 93.28 0.9783

SVM 88.64 0.6449 88.70 90.09 0.9810
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Figure 10. The division of four temporal sections and corresponding speed correction factor to apply
to the robot’s speed to modify the human task load and thus modify the human’s engagement.

5.5.2. The Indirect Impact of Temporal Demand Alterations

When the temporal demand (i.e., the speed of the robot) is modified, it indirectly
impacts the other indices of the TLX. To determine the effects, we calculated the correlation
coefficient between the change in the temporal demand and the Mental Demand, Physical
Demand, Expected Performance, Effort, and Frustration indices of the TLX. To this end, a
vector of the temporal demands in the NASA TLX a vector of another NASA TLX index
(e.g., Mental Demand) was input to the corrcoef function in MATLAB R2023b. The obtained
correlation coefficients were 0.6684, 0.7929, 0.6749, 0.5722, and 0.7481, respectively. The
positive correlation observed between the temporal demand index of the NASA TLX and
the other indices implies that an increase in temporal demand (i.e., robot speed) leads to
higher levels of mental and physical demand, a greater sense of task failure, increased effort
required to accomplish the task, and more negative feelings such as stress. Thus, changing
the temporal demand (i.e., the robot’s speed) can affect the overall task load. For instance, if
the temporal demand (i.e., robot speed) needs to be adjusted by a factor of 1.75 to optimize
the overall task load, then the Mental Demand, Physical Demand, Expected Performance
of the participants, the Effort required to complete the task, and their stress levels are
expected to change by factors of 0.6684× 1.75, 0.7929× 1.75, 0.6749× 1.75, 0.5722× 1.75,
and 0.7481× 1.75, respectively.

5.5.3. Q-Learning for Task Load and Performance Adjustment in HRT

In this section, we developed a Q-Learning method to fine-tune the task load of the
participants who had low performance in the HRT QC task, leveraging participants’ NASA
TLX questionnaire responses as states, similar to the process described in Section 5.2. The
action space, similar to that in Section 5.2, consisted of weights assigned to task load
indices. However, the inclusion of robot speed correction factors (Figure 10) was also
applied to evaluate task load adjustments resulting from changes in robot speed. Rewards
were assigned a value of +1 when adjustments to the robot’s speed—impacting both the
temporal demand index directly and other TLX indices indirectly—brought the weighted
TLX average within the optimal range of 33 to 66 on a 100-percent scale. Conversely, a
reward of−1 was applied when the adjustment failed to achieve this range. The observation
space encompassed the new weighted averages following temporal demand adjustments.
Utilizing this reward system, we produced a graph of rewards per episode (Figure 11),
demonstrating that speed modifications successfully optimized the task load for 25 out of
29 participants previously showing inaccurate performance due to stress or disengagement,
thus enhancing their performance.

To avoid relying on performance records and the NASA TLX during HRT operations,
we trained ML algorithms to classify participants’ physiological data, particularly those
showing low performance, across four temporal demand intervals. This classification,
detailed in Table 4, achieved its highest accuracy at 94.32% using the DT ML model.
Therefore, in HRT scenarios, after identifying low-performance instances in QC tasks
through physiological data (as explained in Section 5.3), the algorithm predicts which
temporal demand interval the participant’s physiological data falls into. Subsequently,
corresponding robot speed correction factors for each interval (Figure 10) are applied to
adjust the task load, thereby enhancing participant engagement and performance in QC
tasks without disrupting the HRT workflow.
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Figure 11. Reward per episode across Q-Learning training sessions aimed at optimizing temporal
demand to enhance HRT performance. Peak rewards of 21, indicated by red circles, signify successful
task load adjustments for 25 out of 29 participants, previously underperforming due to stress or
disengagement, to an optimal range.

6. Discussion

In this paper, we presented a novel framework with Q-Learning designed to fine-tune
task loads in HRT during QC tasks, utilizing physiological data and task load indices to
predict and improve HRT performance. The rationale behind categorizing performance
inaccuracies according to their root causes—namely task load and engagement—is to pin-
point effective strategies for enhancing performance. One such strategy involves adjusting
the robot’s speed to better align human engagement with the task at hand, thereby opti-
mizing the HRT workflow. This approach enables our framework to adapt dynamically to
varying task loads and levels of human engagement, directly influencing and potentially
enhancing performance outcomes.

Our proposed framework is a significant step forward in the domain of adaptive
Human–Machine Interaction, as it provides the ability to dynamically adjust task param-
eters in response to human physiology could lead to more responsive and efficient HMI
environments, potentially reducing error rates and improving overall productivity. This
novel approach can have implications in different sectors.

In the automotive industry, this innovative approach enables the adjustment of auto-
mobile speeds and operational parameters, based on the driver’s engagement level and
workload as indicated by their physiological signals. Such a system could significantly
enhance driving safety and efficiency by automatically modulating vehicle dynamics to
align with the driver’s current state, ensuring optimal alertness and responsiveness. For
instance, if physiological data suggest that the driver is becoming fatigued or less atten-
tive, the vehicle could automatically adjust its speed or provide alerts to encourage a
break. This method goes beyond conventional safety features by creating a more intuitive
interaction between the vehicle and its operator, promising to reduce the likelihood of
accidents and improve the driving experience in scenarios ranging from daily commutes to
long-haul journeys.

The healthcare sector can benefit from our approach by enhancing the performance
of staff in high-stress environments, such as surgery or emergency care. By monitoring
physiological indicators of stress and engagement, our framework can adjust task loads
in real time, potentially decreasing burnout rates and improving patient care quality. For
example, in robotic-assisted surgeries, adjusting the operational parameters of robotic
systems in response to the surgeon’s stress levels could lead to more precise and safer
surgical outcomes.
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Given potential concerns that our study may appear overly concentrated on a specific
simulated QC task, we aim to underscore the expansive applicability of our framework
across various HRT environments. Although our current application predominantly adjusts
the speed of a robotic arm to modulate task load, the foundational principles of our ap-
proach are designed with the flexibility to adapt to a wide range of operational parameters
and distinct robotic systems. For instance, in surgical robotics, the modulation of robot
autonomy levels is pivotal. Adjusting the autonomy based on the surgeon’s real-time cogni-
tive load can significantly enhance both performance and safety. Similarly, within assembly
line operations, dynamically altering the duration of pauses between tasks can effectively
mitigate operator fatigue, thereby enhancing productivity and operational efficiency.

In logistics and warehousing, where timely and accurate processing of goods is critical,
our approach can optimize the performance of workers interacting with robotic systems
for inventory management and order fulfillment. By ensuring that human operators are
neither overburdened nor underengaged, our system can contribute to smoother operations,
reduce workplace accidents, and improve overall throughput.

Our feature importance analysis, identifying key physiological features such as ACC
Fast Fourier Transform, HR Fourier entropy, and EDA number of peaks, is pivotal for pre-
dicting HRT performance and offers valuable insights for further human behavior research.
It provides quantifiable data on how various activities, environments, or stimuli impact
human physiological responses, potentially unlocking new understanding in fields such
as psychology, cognitive science, and social sciences regarding human emotions, stress
responses, and engagement. Moreover, these critical features play a vital role in evolving
our framework towards real-time application. By pinpointing these markers as essential,
we significantly streamline the necessary feature set for precise performance prediction.
This streamlining is crucial for developing a real-time version of our framework, facilitat-
ing efficient data processing and faster decision making. Implementing such optimized,
adaptive systems in real-world settings can markedly improve interaction quality and
the efficacy of HRT systems, underscoring the practical benefits of our findings and their
contribution to enhancing real-time human–machine interaction technologies.

While our research introduces a promising approach for predicting and enhancing
HRT performance, it faces certain limitations. A key constraint is our inability to integrate
the collected data directly into our model for real-time application in HRT tasks, primarily
because the available wristbands used for data collection cannot transmit data in real time
but only after recording is complete. This limitation impacts the potential for immediate
data analysis and application. Moreover, utilizing real-time data poses challenges to the
accuracy of machine learning models due to the dynamic nature of live data streams.
Another challenge is our reliance on high-quality, real-time physiological data acquisition,
which might not be practical or achievable in various industrial settings. The ML models’
dependence on specific task load indices, task performance records for QC tasks, and
Q-Learning strategies also limits its broad applicability and scalability across different tasks
or diverse participant groups. Currently, the framework’s effectiveness is validated for
only 22 participants and a specific QC task. Future studies are essential to test, adapt, and
refine our model for broader contexts and diverse applications.

In addition, in our HRT framework, we have chosen to classify task loads into three
distinct categories— inaccurate performance due to disengagement, accurate performance
with optimum task engagement, and inaccurate performance due to being stressed—to bal-
ance simplicity and practicality in real-time applications, facilitating quick decision-making
and implementation of automated responses. While this categorical model has proven
effective, achieving a high accuracy of 95.45%, we recognize its limitations in capturing the
full spectrum of task load variations. Exploring a continuous model could offer finer gran-
ularity and more precise adjustments but would require a significantly larger dataset and
also advanced analytical capabilities for real-time integration and processing. Advancing
towards such a model is a promising direction for future research, necessitating expanded
data collection across diverse HRT scenarios and the development of sophisticated machine
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learning techniques to manage the complexities of a continuous variable approach. This
would enhance our understanding of human–robot dynamics and potentially improve the
effectiveness of HRT systems.

Although Q-learning was selected for our initial research, we also considered alter-
native methods such as SARSA and Deep Q-Networks (DQNs). SARSA, an on-policy
algorithm, and DQNs, which use deep Neural Networks to manage high-dimensional state
spaces, provide different policy-learning approaches. Q-Learning was preferred due to
its computational efficiency, simplicity in implementation, and suitability for scenarios
with a low sample size relative to the number of dimensions. Future studies will compare
these methods to evaluate their effectiveness in real-world HRT scenarios. Additionally, we
plan to explore policy-gradient methods, ideal for continuous action spaces, to potentially
enhance interaction quality and responsiveness in HRT systems.

Psychological factors also play a critical role in optimizing HRT, aligning with recent
studies that highlight the influence of dynamics from human–human interactions [46].
Factors such as the physical presence of robots, their motor actions, and shared task repre-
sentations can significantly impact collaborative performance. Inspired by the suggestion
to utilize real-time EEG data for evaluating and adapting HRT, our future work aims
to integrate biometric feedback mechanisms. This approach will not only enhance the
responsiveness of HRT systems but also deepen our understanding of underlying cogni-
tive processes. Implementing advanced techniques that address these psychological and
physiological aspects will refine interaction quality and underscore the importance of a
multidisciplinary approach in HRT research.

7. Conclusions

In today’s manufacturing sector, driven by the advancements of Industry 4.0 and 5.0,
there is a significant emphasis on customization, flexibility, and preserving the human-in-
the-loop within production workflows. However, managing task load and maintaining
engagement levels present challenges, as both excessive and insufficient task loads can
result in stress and disengagement, adversely affecting performance in HRT settings. It is
crucial to accurately consider, predict, and adjust the task load to optimize the HRT perfor-
mance without disturbing the workflow. Our study presents a comprehensive framework
that predicts HRT performance with a high accuracy rate of 95.45% using a Linear Discrim-
inant Analysis model and fine-tunes task load for higher efficacy. We demonstrate how
variations in the robot’s speed can influence key components of task load, including mental
and physical demands, performance expectations, effort, and frustration, according to the
NASA TLX. This research highlights the value of using physiological data combined with
machine learning techniques to improve HRT performance, offering insights into how phys-
iological responses impact human performance during tasks. Notably, our analysis points
to the significance of Accelerometer Fast Fourier Transform, Heart Rate Fourier entropy,
and Electrodermal Activity number of peaks as crucial predictors of HRT performance,
indicating the potential of these markers in enhancing human–robot collaboration.
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