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Abstract: Photoacoustic imaging (PAI) is a rapidly developing emerging non-invasive biomedical
imaging technique that combines the strong contrast from optical absorption imaging and the high
resolution from acoustic imaging. Abnormal biological tissues (such as tumors and inflammation)
generate different levels of thermal expansion after absorbing optical energy, producing distinct
acoustic signals from normal tissues. This technique can detect small tissue lesions in biological
tissues and has demonstrated significant potential for applications in tumor research, melanoma
detection, and cardiovascular disease diagnosis. During the process of collecting photoacoustic
signals in a PAI system, various factors can influence the signals, such as absorption, scattering, and
attenuation in biological tissues. A single ultrasound transducer cannot provide sufficient informa-
tion to reconstruct high-precision photoacoustic images. To obtain more accurate and clear image
reconstruction results, PAI systems typically use a large number of ultrasound transducers to collect
multi-channel signals from different angles and positions, thereby acquiring more information about
the photoacoustic signals. Therefore, to reconstruct high-quality photoacoustic images, PAI systems
require a significant number of measurement signals, which can result in substantial hardware and
time costs. Compressed sensing is an algorithm that breaks through the Nyquist sampling theorem
and can reconstruct the original signal with a small number of measurement signals. PAI based on
compressed sensing has made breakthroughs over the past decade, enabling the reconstruction of low
artifacts and high-quality images with a small number of photoacoustic measurement signals, improv-
ing time efficiency, and reducing hardware costs. This article provides a detailed introduction to PAI
based on compressed sensing, such as the physical transmission model-based compressed sensing
method, two-stage reconstruction-based compressed sensing method, and single-pixel camera-based
compressed sensing method. Challenges and future perspectives of compressed sensing-based PAI
are also discussed.

Keywords: biomedical imaging; photoacoustic technique; compressed sensing

1. Introduction

Humans have entered the digital age, where signal processing has shifted from analog
to digital domain, and many commonly used technologies have also transitioned from
analog devices to digital devices [1–4]. This transformation is increasingly significant due to
the superior controllability, flexibility, low cost, and ease of popularization of digital signals.
The success of digital signals has driven the development of digital information in sampling
systems, with the Nyquist sampling theorem playing a crucial role in this process [5,6].
The theorem states: “In the process of converting analog signals to digital signals, when
the sampling frequency is greater than twice the highest frequency in the signal, the
sampled digital signal can completely retain the information from the original signal [7,8]”.
However, the Nyquist sampling theorem often leads to redundant sampling [9,10], resulting
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in substantial costs to meet the sampling rate requirements in certain applications. Despite
the ongoing advancements in various aspects of computers, there are still many challenges
in data acquisition and processing [11].

To address the storage and transmission challenges encountered when dealing with
multi-dimensional massive data, compression techniques are commonly employed. This
involves refining the original digital signal representation to reduce the demands on storage
space and transmission bandwidth. Subsequently, various compression technologies have
emerged, including lossless compression and lossy compression [12–14]. The emergence of
Compressed Sensing (CS) has provided a new direction for compression technology. CS is
capable of retaining essential data, discarding significant amounts of redundant data, and
reconstructing the original data with redundancy using a small amount of essential data
through known mapping relationships [15–18]. CS has been widely applied in the field of
signal processing since its introduction [19–24].

PAI, as a non-invasive medical imaging method, combines the advantages of high-
contrast optical imaging and deep penetration of ultrasound imaging [25–27]. In recent
years, the introduction of CS has injected new momentum into the development of PAI.
Typically, CS is applied in PAI to address the challenges of high-dimensional data acquisi-
tion and processing in signal processing. From a signal processing perspective, introducing
CS into PAI provides advantages in photoacoustic signal processing [28]. Firstly, PAI sys-
tems involve a significant amount of signal acquisition, whereas traditional PAI requires
collecting a large amount of complete signals for image reconstruction. This results in high
signal dimensions and quantities, posing challenges for signal processing and storage [29].
However, CS, utilizing the sparsity or structural information of signals, can capture key
information with fewer sampling points, effectively reducing signal dimensions and sam-
pling amounts [30]. Secondly, CS exhibits strong adaptability and robustness in signal
reconstruction [31]. Even in the presence of noise or incomplete sampling during the
acquisition process, CS can accurately reconstruct the original signal. In PAI, signals may
be subject to various interferences, and the collected signals may not be complete. CS
can leverage its advantages in the reconstruction stage to address this issue, improving
reconstruction quality and ensuring the quality of photoacoustic images. Additionally, CS
offers the advantages of rapid reconstruction [32]. Compared to the complex computational
processes of traditional methods, CS can quickly reconstruct signals through simple math-
ematical models and iterative algorithms, providing significant advantages in real-time
imaging and rapid diagnosis [33].

CS-based PAI fully utilizes the advantages of sparse representation, robust reconstruc-
tion, and fast processing provided by CS. It achieves efficient acquisition, processing, and
reconstruction of photoacoustic signals, bringing higher efficiency, more cost-effectiveness,
and real-time imaging capabilities to PAI systems [34]. It has promoted the application
and development of PAI in medical diagnosis and life science research. Notably, the in-
troduction of CS into PAI also solves the problem of limited viewing angles. This is a
common and important challenge in PAI, where sensors are unable to fully cover the
target area, resulting in missing information and degraded image quality during image
reconstruction [35,36]. It is necessary to combine the signal sparsity hypothesis, reasonable
design of the sampling mode, sparse representation, reconstruction algorithm, and prior
information so as to realize efficient acquisition and reconstruction of limited viewing
angle photoacoustic signals and improve imaging quality and accuracy. This method can
effectively deal with the challenge of limited perspective in the practical application of PAI,
expanding the application prospect of PAI in the field of medical imaging.

In the following, we will review recent CS-based PAI research.

2. Biomedical Photoacoustic Technique
2.1. Photoacoustic Effect

PAI is a newly emerging hybrid imaging technique based on photoacoustic effect [37],
integrating the advantages of both acoustic and optical imaging [38,39]. Since A.G. Bell



Sensors 2024, 24, 2670 3 of 35

discovered the photoacoustic effect in 1880, there was a long period of stagnation until
the breakthrough advancements in laser technology in the 1960s enabled the widespread
adoption of photoacoustic technology in industrial and scientific fields [40]. Currently,
PAI has made remarkable progress internationally, enabling imaging of partial tissues in
animals and humans (such as capillaries, melanin, and tumors) [41], as well as allowing
imaging of the brain and limbs of living mice [27,42,43].

From the above introduction, it can be seen that PAI possesses both optical and acoustic
characteristics. Optically, PAI utilizes the optical absorption parameters of biological
tissue as an imaging parameter, which is closely related to the composition of biological
tissue [44,45]. Therefore, PAI can acquire information about tissue composition, further
reflecting the functional information of tissues. The scattering of ultrasound waves in
tissues is two to three orders of magnitude weaker than optical scattering. Therefore, when
the propagation distance of light in tissues exceeds the average mean free path, PAI can
achieve higher acoustic resolution. Compared with traditional optical imaging techniques,
PAI can achieve high-resolution imaging of optical absorption in deep tissues. In addition,
in biological tissues, with nanosecond pulsed laser irradiation, approximately 800 Pa of
initial pressure increase is generated for every 1 mK temperature rise [46–50].

When a substance is irradiated by a laser, the irradiated area and its surrounding
environment absorb energy and convert it into heat, causing changes in stress or pressure,
thereby exciting and propagating acoustic waves [25,26,51,52]. The intensity and phase
of the photoacoustic signals are not only related to the light source but also to the spatial
distribution of the optical absorption coefficient of the irradiated substance and its optical,
thermal, and elastic properties. By detecting the photoacoustic signals generated by the
photoacoustic effect, PAI can invert the optical properties of materials within the imaging
area and reconstruct images inside the irradiated region [53,54].

Many valuable works have described the principles of PAI before [26,45,55–57]. In
PAI, the initial photoacoustic pressure can be expressed as

p0 = Γ0ηthµaF (1)

where Γ0 is the Gruneisen parameter of the tissue, ηth is the energy conversion efficiency
of light to heat, µa is the optical absorption coefficient, and F is the local optical influence.
It can be observed that the magnitude of the initial photoacoustic pressure excited by the
laser is directly proportional to the optical absorption coefficient, which in turn indicates
the distribution within biological tissues. Therefore, as long as the initial photoacoustic
pressure can be inverted through the received photoacoustic signals, the imaging objective
can be achieved.

Without considering the influence of viscoelastic factors, the propagation of photoa-
coustic signals in the medium of thermal expansion stage can be expressed by the following
photoacoustic equation:

(∇2 − 1
v2

s

∂2

∂t2 )p(r, t) = − β

κv2
s

∂2T(r, t)
∂t2 (2)

where p(r, t) is the photoacoustic pressure at position r and time t, T is the temperature
rise, κ is the isothermal compression coefficient, β is the thermal coefficient of volume
expansion, and vs is the speed of sound. In PAI, the short laser pulse duration should
meet two constraints: the thermal diffusion time and stress relaxation time. The duration
of the laser pulse should be much shorter than these two times, and its heat equation is
expressed as

pCV
∂T(r, t)

∂t
= H(r, t) (3)

If the laser pulse duration meets the above conditions. H represents the heating
function, Cv is the specific heat capacity of the equal body, and H(r, t) represents the
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heat energy converted per unit volume and per unit time. Substituting Equation (3) into
Equation (2) yields

(∇2 − 1
v2

s

∂2

∂t2 )p(r, t) = − β

Cp

∂H(r, t)
∂t

(4)

As can be seen from the above formula, since the source term is related to the first time
derivative of H, time-invariant heating will not produce pressure waves, and photoacoustic
signals will only be generated with time-varying heating. Cp is the isobaric-specific heat
capacity. This equation can be solved using the Green function [55]:

p(r, t) =
1

4πv2
s

∂

∂t

[
1

vst

∫
dr′p0(r′)δ(t −

|r − r′|
vs

)

]
(5)

In the above formula, p0(r′) is the initial pressure at position r′. Both sides of
Equation (5) can be Fourier-transformed at the same time to push the photoacoustic equa-
tion in the time domain to the frequency domain.

2.2. Biomedical Photoacoustic Imaging

PAI can be realized through several configurations, including photoacoustic tomog-
raphy (PAT), photoacoustic microscopy (PAM), and photoacoustic endoscopy imaging
(PAE) [58]; schematic diagrams of various photoacoustic imaging modalities are shown
in Figure 1.
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Figure 1. Schematic diagram of photoacoustic imaging mode. (a) Linear array PAT. (b) Circular array
PAT. (c) OR-PAM. (d) AR-PAM. (e) PAE.

PAT uses a non-focusing large-diameter pulsed laser beam to achieve full-field illumi-
nation of the tissue surface [44,59,60]. The absorption of incident light energy by biological
tissues leads to thermal expansion, which results in the rapid generation of broadband
ultrasound waves. The ultrasound waves propagate to the tissue surface, and the photoa-
coustic signals are acquired by a mechanically scanned unfocused ultrasound transducer
or transducer array. By solving the inverse problem of photoacoustic propagation, the
spatial distribution of the relative optical absorption coefficient of the imaged region is
reversely deduced from the detected photoacoustic signals, and the photoacoustic images
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of the imaging region are reconstructed accordingly. The image reconstruction of PAT relies
on specific image reconstruction algorithms; commonly used reconstruction algorithms
include the back-projection method [61], Radon transform [62], and Fourier transform
algorithm [63]. PAT is mainly divided into two imaging modes: linear array PAT (Figure 1a)
and circular array PAT (Figure 1b).

In the PAM mode, the laser is focused on the surface of the sample being imaged, while
a point-focused ultrasound transducer is used to detect the photoacoustic signals generated
at the laser focus. The optical focusing lens and the focused ultrasound transducer are usu-
ally confocal to maximize detection sensitivity. The arrival time of the photoacoustic signal
corresponds to the distance between the sound source and the ultrasound transducer [64].
PAM obtains images through point-by-point scanning. Based on the relative sizes of the
optical beam focus spot and the acoustic beam focus spot in the imaging system, PAM can
be divided into optical resolution photoacoustic microscopy (OR-PAM) (Figure 1c) and
acoustic resolution photoacoustic microscopy (AR-PAM) (Figure 1d). Currently, OR-PAM
has more applications than AR-PAM [65]. AR-PAM typically uses a single mechanically
translated or rotated focused sensor to receive the photoacoustic signals [66]. The optical
focusing of OR-PAM is tighter than the acoustic focusing, the optical focus is smaller than
the acoustic detection focus, and its lateral resolution depends on the size of the optical
focus, achieving sub-cellular or cellular scales ranging from nanometers to micrometers.
However, due to the strong scattering effect of biological tissues on lasers, the imaging
depth of in vivo OR-PAM is limited to 1–2 mm [67].

PAE is a special form of PAM that has been rapidly developed in recent years for
examining the internal organs of the human body (such as the esophagus and colon) [68,69].
Its basic imaging principle is the same as that of PAM, but the difference is that PAE
miniaturizes the imaging system and adopts a special scanning mechanism (Figure 1e) to
meet the needs of in-depth examination inside the human body. The main goal of PAM
and PAE is to achieve micron-scale resolution at millimeter-scale imaging depths.

In PAI, the most widely studied and applied modalities are PAT and PAM [47,70,71].
There are some differences between PAT and PAM. The imaging scales of the two modal-
ities are different; PAT is suitable for acquiring three-dimensional holographic imaging
of entire tissues or organs, while PAM is mainly used for microscopic-level imaging of
microstructures. The resolution of the two modalities is different; PAT has a relatively lower
spatial resolution, generally ranging from hundreds of micrometers to several millimeters,
while PAM has a higher spatial resolution, typically ranging from tens to hundreds of
micrometers. The scope of application of the two modalities is also different; PAT is widely
used in medical imaging of tumors, brain function research, etc., while PAM is mainly used
for imaging microstructures such as cells, capillaries, and neurons.

2.3. Biomedical Application of Photoacoustic Technique

PAI has rapidly developed in recent years and has successfully achieved high-resolution
image reconstruction of different tissues, thus being highly anticipated in clinical
medicine [25–27,58,71]. PAI achieves tissue imaging by avoiding ionizing radiation that
can harm the human body and the need for contrast agents, and it can provide real-time
display. PAI plays an important role in many clinical applications. For example, it involves
non-invasive imaging of human tissues, including the breast, sentinel lymph nodes, skin,
thyroid, eyes, prostate (via rectum), ovaries (via vagina) [72], minimally invasive endo-
scopic imaging of the gastrointestinal tract, bladder, circulating tumor cells (in vivo flow
cytometry), intraoperative tumor margin imaging, and lymph node metastasis imaging.
Overall, in preclinical research, PAI is mainly applied in areas such as brain injury, disease
prediction, tumor metastasis, and cancer diagnosis. Additionally, PAI technology has
shown promising results in studying diseases related to vascular structure and function,
such as stroke, epilepsy, and traumatic brain injury [73]. Significant progress has been made
in non-invasive studies of organs or tissue in small animals such as mice, rabbits, and dogs,
laying the foundation for future groundbreaking medical imaging technologies [27]. PAI
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has shown promising results in animal experiments, but what is even more encouraging
is its significant imaging effectiveness on human tissue and organs. Furthermore, these
techniques have undergone thorough application analysis and stage-wise validation. These
studies are of great significance for understanding the development of human diseases and
developing new drugs and treatment methods.

PAI has achieved success as an emerging biomedical imaging technology but also
faces various challenges [74]. Firstly, the high sampling rate of PAI systems may lead
to data redundancy and high hardware costs. Secondly, limited viewing angles and
sparse transducer arrays can decrease imaging quality. Finally, the computation speed
may be reduced when imaging algorithms involve large matrix operations. Additionally,
improving imaging accuracy and precision has always been a goal of PAI. Therefore, some
researchers have attempted to introduce compressed sensing to address the common issues
in PAI, which will be detailed in the fourth section of this paper.

3. Compressed Sensing

CS is a signal processing concept proposed by David Donoho and others [15,16,19,75],
which is a technique for finding sparse solutions to underdetermined linear systems. CS
is a signal-processing technique that can achieve signals with much lower sampling rates
than those required by traditional sampling theory. CS takes advantage of the sparsity of
signals, and through sparse representation and compression during the sampling process,
it can obtain sampled signals at much lower rates than the Nyquist sampling rate. This
means that a large number of traditional sampling points can be skipped in the signal
recovery process, thereby reducing sampling and storage costs.

In terms of signal storage and transmission, in order to reduce the cost of storage
and transmission, we often use compression methods that represent signals with fewer
bits, discarding a large amount of non-important data. This process of high-speed sam-
pling, followed by compression, wastes a significant amount of sampling resources. CS
addresses this issue by using alternative transform spaces to describe signals (such as
Fourier transform) and establishing a new theoretical framework for signal description
and processing [76]. By ensuring no loss of information, signals can be sampled at rates
far below those required by the Nyquist sampling theorem while still being able to fully
recover the signal. With this problem solved, CS greatly reduces the sampling frequency
and the cost of signal storage and transmission, significantly lowers the signal processing
time and computational costs, and will lead signal processing into a new revolutionary
era [77,78].

In terms of signal reconstruction, according to the Nyquist–Shannon sampling theorem,
in order to fully recover a signal, it is necessary to sample at least twice the bandwidth of
the signal. CS theory is different from traditional sampling theorems. As long as the signal
is compressible or sparse in some transform domain, it is possible to use an observation
matrix that is unrelated to the transformation basis to project the high-dimensional signal
obtained from the transformation onto a low-dimensional space. Then, by solving an
optimization problem, the original signals can be reconstructed with high probability from
these few projections. It can be proven that such projections contain sufficient information
for reconstructing the signal [18,22,79]. In this theoretical framework, the sampling rate is
not determined by the signal bandwidth but by the structure and content of information in
the signal.

However, in many practical applications, the effective information of a signal typically
only occupies a small portion of the entire signal space; such signals exhibit sparsity. The
basic principle of CS mainly consists of three parts: sparse representation, compressed
sensing, and signal reconstruction. The three parts have also been the focus of research by
CS researchers in recent years.
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3.1. Sparse Representation

All signals in nature can be divided into two types: sparse signals and non-sparse
signals [80]. If a signal itself is already sparse, there is no need to represent the signal
sparsely when applying CS. For non-sparse signals, in order to express these signals more
concisely, the signal can typically be transformed into a new basis or framework. When the
number of non-zero coefficients is much smaller than the number of terms in the original
signal, these few non-zero coefficients can be considered as the sparsity representation
of the original signal. In scenarios where storage space or transmission bandwidth is
limited, only storing or transmitting non-zero coefficients in some basis or framework,
rather than the entire original redundant signal, can be more efficient. Therefore, this
sparsity representation has significant practical implications [22,30,81]. In the theoretical
framework of CS, a sparse signal model can ensure high compression ratios. As long
as it is known in advance that the target signal has a sparse representation in a known
basis or framework, the original signal can be reconstructed without distortion. Popular
methods for sparse signal representation are mostly based on sparse transforms, such
as Fourier transform [79], wavelet transform [82], and discrete cosine transform [83], all
of which exhibit a certain degree of sparsity. The sparse decomposition in a redundant
dictionary is a hot research topic in sparse representation, and the construction of sparse
dictionaries focuses on overcomplete dictionaries. The basic criterion for designing or
learning a redundant dictionary is to match the inherent characteristics of the signal as
closely as possible during the dictionary construction process. Choosing an appropriate
sparse dictionary can ensure that the signal representation coefficients are sparse enough,
thereby reducing the number of compressed sensing measurements related to non-zero
coefficients and reconstructing the signal with high probability. Both sparse transform
bases and sparse dictionaries satisfy the mathematical model of sparse representation in
CS [16]:

X = ΨS (6)

where X is a one-dimensional non-sparse signal; Ψ is a sparse transform basis or a sparse
dictionary; S is a sparse coefficient; and there are only non-zero values in S, which are
much smaller than the number of dimensions of the X signal.

3.2. Compression Measurement

To ensure the accurate reconstruction of the original signal, constructing a measure-
ment matrix is crucial [10,15,84]. The role of the measurement matrix is to project the
high-dimensional signal onto a low-dimensional space, reducing the signal’s dimensions.
It is important to note that the constructed measurement matrix should be unrelated to the
sparse transform matrix, and the measurement matrix should satisfy the Restricted Isome-
try Property (RIP) [85]. Currently, popular and stable performance measurement matrices
include Gaussian random matrices, Hadamard matrices, Bernoulli matrices, sparse random
matrices, and Toeplitz matrices [86]. The compression measurement step is a critical part of
reducing computational complexity in CS, and it is also an important manifestation process
of the CS mathematical model, as shown in Figure 2.

Figure 2 depicts a simplified schematic diagram of the CS compression measurement
process involving two different mathematical models [15]:

Y = ΦX = ΦΨS = ΘS (7)

where Y is the M × 1 vector, which is the compression measurement value; Φ is the M × N
matrix, is the measurement matrix; Ψ is an N × N matrix, a sparse transformation matrix;
Θ is the M × N matrix, which is the sensing matrix; and S is the N × 1 vector and the
sparse coefficient derived from the sparse transformation matrix. The K value in Figure 2a
represents the number of non-zero values in the vector. Note: N > M ≫ K. In this way, a
high-dimensional signal is projected into a low-dimensional signal, and the sensing matrix
connects the information of the two, making reconstruction possible.
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3.3. Signal Reconstruction

The signal reconstruction in CS is the process of recovering the original high-dimensional
signal from the compressed low-dimensional signal through a sensing matrix and designed
optimization algorithms. The entire process is essentially solving an underdetermined
system of equations. There are three common types of reconstruction methods: convex op-
timization algorithms [87], greedy algorithms [88], and Bayesian algorithms [89]. By using
these optimization algorithms, the low-dimensional signal Y can be rapidly reconstructed
to the original signal X.

Convex optimization methods solve based on minimizing the L1 norm, which leads
to better reconstruction results compared to other algorithms. However, due to its high
computational complexity and time-consuming nature, it is not widely used in large-scale
signal processing. Nevertheless, in recent years, some convex optimization methods have
achieved faster reconstruction speeds in reconstructing sparse signals. For example, the
Alternating Direction Method of Multipliers treats convex optimization problems differently
from other algorithms by not only viewing them as general minimization problems but
also considering their separable structure. By solving each variable separately in solving
convex optimization problems, the algorithm’s speed is significantly improved [90,91].

Compared to convex optimization algorithms based on minimizing the L1 norm,
greedy pursuit algorithms have a fast computation speed. Although the accuracy is
slightly lower, it can still meet the general requirements of practical applications [88].
Therefore, greedy pursuit algorithms based on minimizing the L0 norm are very practical
and widely used. These algorithms solve the L0 norm minimization problem, and improved
versions of these algorithms allow for certain errors during the reconstruction process. In
addition, the Iterative Thresholding Algorithm has also been widely applied. This type
of algorithm is relatively easy to implement, with moderate computational complexity,
and finds applications in both greedy and convex optimization algorithms. However, the
Iterative Thresholding Algorithm is sensitive to the choice of initial values and thresholds
and cannot guarantee that the solution obtained is sparse. In greedy algorithms, the
most representative ones are Matching Pursuit (MP) and Orthogonal Matching Pursuit
(OMP). MP is the most primitive signal sparse reconstruction algorithm, which is an
iterative algorithm that seeks the sparse representation of a signal through step-by-step
approximation. It defines a normalized basic module representing the signal space as
the measurement matrix. These normalized vectors are called atoms. If the atoms of
the measurement matrix span the entire signal space, then the measurement matrix is
complete. If there is a linear dependence between atoms, the dictionary is redundant. In
most applications of MP, the measurement matrix is both complete and redundant [92]. The
OMP algorithm follows the same method as the MP algorithm in selecting atoms. It selects a
column vector from the measurement matrix that is closest to the original signal or residual.
The most significant difference from the MP algorithm is that when selecting the column
vector closest to the original signal, the OMP algorithm performs an orthogonalization
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operation on it. This is to ensure that the OMP algorithm does not repeatedly select a
column vector that has already been chosen from the measurement matrix [93–95].

The CS Bayesian algorithm is a signal-reconstruction method based on Bayesian statis-
tical theory, which combines the ideas of CS and Bayesian inference. This algorithm models
the signal using the Bayesian framework and achieves sparse reconstruction through max-
imum a posteriori probability estimation [89,96,97]. In the CS Bayesian algorithm, it is
assumed that the signal to be reconstructed is a random variable from a prior distribu-
tion. By updating the prior distribution of the signal with compressed measurements, the
posterior distribution of the signal is obtained. Ultimately, by maximizing the posterior
probability, the signal with the highest posterior probability is chosen as the reconstruction
result. The algorithm first establishes the prior distribution of the signal and models the
relationship between the prior distribution and the compressed measurements as a condi-
tional probability distribution. Then, according to Bayes’ theorem, the observation data are
used to update the posterior distribution of the signal. Finally, by maximizing the posterior
probability, a sparse representation or an approximate solution is reconstructed. The ad-
vantage of the CS Bayesian algorithm is that it can utilize prior information to model the
signal more accurately, thereby improving the accuracy and stability of the reconstruction.
Furthermore, this algorithm can better handle noise and incomplete observational data by
introducing sparsity constraints as priors. However, the CS Bayesian algorithm has high
computational complexity, requiring a significant amount of numerical calculations and
optimization processes.

4. Photoacoustic Imaging Based on Compressed Sensing

The following content is the core of this paper, mainly introducing the relevant ap-
plications of CS in PAI. As mentioned above, PAI has always faced issues such as high
sampling rates, limited imaging viewing angles in some cases, difficulty achieving fast
real-time imaging, and high hardware costs [25,26,98–100]. Fortunately, CS can overcome
these problems.

The limited viewing angle problem [101–103]: In practical applications, PAI often
cannot achieve 360-degree coverage and may have a limited viewing angle. This can result
in partial information being unavailable, affecting imaging quality and accuracy. CS can
utilize the sparsity or structural information of signals to partially sample and effectively
reconstruct signals, thereby compensating for the information loss caused by the limited
viewing angle and improving imaging quality. CS can address the decrease in image quality
in PAI systems due to the limited viewing angle [104,105].

The fast real-time imaging problem [106]: PAI systems need to acquire and process a
large amount of data in a short period. Traditional methods may be time-consuming and not
suitable for real-time imaging requirements. Introducing CS can accelerate signal processing
speed by designing efficient sampling schemes and real-time reconstruction algorithms,
thus achieving fast imaging to meet the demands of fast real-time imaging [107–109].

The hardware cost problem [58,110]: Introducing CS can save resources such as
acquisition equipment and storage space [111,112]. Since CS can acquire signal information
with fewer sampling points, the demand for hardware devices is reduced. At the same
time, reducing data volume also saves storage space, lowers the operating costs of PAI
systems, and enhances the scalability and cost-effectiveness of PAI systems.

The image quality and accuracy problem [113,114]: CS can utilize the characteristics
and prior information of signals in the reconstruction process to restore high-quality signals
through optimized algorithms. This can enhance the imaging quality and accuracy of PAI,
making the imaging results more reliable. Algorithms that incorporate the imaging model
matrix into CS equations have special robustness [115,116].

The application of CS in PAI can be categorized into four groups. The most common
method used by researchers is constructing the photoacoustic forward modeling matrix
and CS equations, referred to as the physical transmission model-based CS method. Recon-
struction methods using the physical transmission model have higher image reconstruction
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accuracy, but the computational time is relatively long. Another method involves the
joint application of CS and PAI reconstruction through the CS compression measurement
process, followed by conventional PAI reconstruction methods, resulting in fast imaging
effects but potentially inaccurate imaging quality, known as the two-stage reconstruction-
based compressed sensing method. Some researchers developed PAI algorithms from the
perspective of CS principles, designed experimental devices based on single-pixel camera
imaging, and conducted multiple measurements of photoacoustic signals, reducing the
hardware complexity of CS-based PAI systems, referred to as the single-pixel camera-based
compressed sensing method. These are the mainstream methods, but there are still valuable
research approaches not classified into these categories. Based on the brief description of
CS-based PAI applications provided above, we categorize all CS-based PAI methods into
four types: physical transmission model-based compressed sensing method, two-stage
reconstruction-based compressed sensing method, single-pixel camera-based compressed
sensing method, and other valuable methods. We will provide detailed descriptions from
methodological and innovative perspectives and analyze the advantages and disadvantages
of each method.

CS-PAI has made significant breakthroughs in the past 15 years. We have learned from
the Web of Science that an increasing number of research outcomes in CS-PAI are emerging,
and the quantity of articles in this field is rising year by year, as shown in Figure 3.
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4.1. Physical Transmission Model-Based Compressed Sensing Method

As PAI algorithms research continues to advance, many time-domain and frequency-
domain algorithms have emerged, such as Back Projection (BP) [35], Time Reversal (TR) [117],
and Phase Shift Migration (PSM) [51,52]. The PAI algorithm based on the photoacoustic
forward model is also a traditional algorithm in the photoacoustic field [118–123]. It is a
model-based inversion algorithm used for two-dimensional and three-dimensional PAI.
This algorithm provides an accurate and efficient forward model matrix, incorporating
the imaging process into the model matrix [124,125]. This forward model matrix, also
known as the physical transmission model, is used to invert and obtain images of the initial
distribution of optical absorption, P = MP0 (P is the original photoacoustic signal, M is
the physical transmission model matrix, and P0 is the initial distribution image of optical
absorption). Model-based reconstruction correctly captures the effects of light attenuation
through an object, suppressing artifacts (negative absorption values) that may appear in
the Filtered Back Projection (FBP) algorithm.

The emergence of the physical transmission model matrix provides the possibility
of integration with CS, as the physical transmission model matrix can become a part of
the CS sensing matrix. The CS algorithm can transform high-dimensional original signals
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into related low-dimensional signals and then recover the original signals from the low-
dimensional signals, and the main reason for this is that the mapping relationship of the
sensing matrix connects the two. CS-PAI algorithms based on the physical transmission
model mainly incorporate the forward propagation process of PAI into the sensing matrix,
forming the CS equation. In 2009, Provost first introduced the concept of CS into the field
of PAI [115] by directly sampling the sparsely represented initial distribution image of
optical absorption and then using reconstruction algorithms for recovery. This approach
reduced the number of measurements required for reconstruction. A frequency-domain
photoacoustic forward model K was proposed [115]:

K(m,n)(i,j) = −ickn
eikn|rm−rij |∣∣rm − rij

∣∣ gn (8)

where i and j are Cartesian coordinates, m is the number of transducers, n is the frequency, c
is the speed of sound, and rm is the position of the transducer. K is the operator for random
sampling of the Fourier domain. K is the physical transmission model. When ψ is the
sparse transform basis, Kψ forms the CS sensing matrix, enabling accurate recovery of the
initial distribution of optical absorption using only a small number of tomographic angles.
Provost utilized various sparse base functions for CS sparse representation, comparing the
performance of Fourier, numerical derivative, wavelet, and curvelet base functions in CS
reconstruction. It was demonstrated that wavelet and curvelet base functions offer better
reconstruction results compared to other base functions [115].

Subsequently, Wang also proposed a similar theory [116,126]. They represented the
photoacoustic forward problem as y = Kx, where the matrix K is the projection matrix
of PAI system, which is the physical transmission model. Similarly, the inverse problem
can be written as x = K−1y, where K−1 represents the inverse process, and x is the initial
acoustic source image. In the process of CS measurement, the measurement is incomplete.
Thus, the matrix K−1 is ill-conditioned, and K−1 is not an exact inversion of K. In the
case of insufficient measurements in PAT reconstruction, methods like back projection
typically result in streak artifacts. Here, CS reconstruction methods are used to solve
underdetermined systems of equations, reconstructing images with fewer measurements,
which can effectively speed up data acquisition, reduce system costs, diminish streak
artifacts, and enhance image accuracy. The CS-based PAT algorithm was implemented
using the nonlinear conjugate gradient descent algorithm.

Building upon the photoacoustic forward model in the frequency domain, Meng
proposed the photoacoustic forward model K in the time domain as the time-domain
measurement matrix in CS [127]. Here, i and j are Cartesian coordinates, m is the number
of transducers, c is the speed of sound, and rm is the position of the transducers. The
time-domain photoacoustic forward model K is proposed as follows [127]:

K(m,n)(i,j) =
1

2πc
δ(t −

∣∣rm − rij
∣∣

c
) (9)

Since then, there have been two types of physical transmission model matrices: the
time domain and the frequency domain. Both of these model matrices can reconstruct
high-quality images and reduce the sampling rate of PAI systems. The main purpose is to
reconstruct low-interference images with a small amount of signals. As shown in Figure 4,
using a small number of channels of photoacoustic signals, the agar phantom experimental
results are obtained through reconstruction using the time-domain physical transmission
model [128].

As shown in Figure 5, the simulated results were obtained through the physical
transmission model in the frequency domain for reconstruction. At each detection angle,
64 Fourier samples were randomly selected for reconstruction within the [0.2, 2.5] MHz
window. Compared with the FBP algorithm and the CS method based on the physical trans-
mission model, the results of the CS method are significantly better than the FBP method.
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Furthermore, using the compressed sensing method for photoacoustic reconstruction can
suppress the stripe artifacts caused by undersampling [109].
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Figure 5. Image reconstructions using the FBP method and CS algorithm. (a) Original phantom.
(b,c) Image reconstructions using the FBP method, with 200 and 80 transducers evenly covering the
circle. (d,e) Image reconstructions using the ADM method, with 80 and 40 transducers uniformly
covering the 90-degree view. (f) Center lines extracted from (a–e). Reprinted with permission from [109].

The CS sensing matrix is composed of the physical transmission model and the sparse
transform basis. The physical transmission model and the sparse transform basis are
incoherent, satisfying the RIP in CS. Both the time-domain model matrix and the frequency-



Sensors 2024, 24, 2670 13 of 35

domain model matrix are part of the CS sensing matrix, showing good performance in
PAI reconstruction. In particular, frequency-domain CS reconstruction can apply low-pass
filtering to PA signals, enhancing image quality and reconstruction speed, making it a
promising direction for improving the quality of PAI images.

In the research mentioned above, the proposed photoacoustic forward model (physical
transmission model) is an important part of the photoacoustic initial absorption distribution
map obtained by inverting the CS equations. Due to incomplete measurement of the
photoacoustic signals, the reconstruction process is transformed into solving a convex
optimization-constrained problem. In Equation (10), X = ψS is the initial distribution of
light absorption, K is the forward modeling matrix, ψ is the sparse transform basis, S is the
sparse coefficient, y is the measurement value of CS, and α is the parameter controlling the
reconstruction accuracy:

min
x

∥S∥1, s.t.∥y − KψS∥2 < α (10)

According to Equation (10), to address the problem of recovering y to S, an appropriate
reconstruction algorithm needs to be employed. In order to reconstruct high-accuracy
photoacoustic images, there are many representative methods in the CS-PAI reconstruction
process. For example, the fast-alternating direction algorithm is used to recover images
from sparse data and noisy observation values [109]. Compared with classical methods,
this method performs well in terms of computational efficiency and data fidelity, and it has
a faster calculation speed. The reconstruction of S can also take advantage of the L1 norm by
introducing sparsity constraints that minimize energy deposition in the L1 norm [129]. With
this constraint in place, using convex optimization-based nonlinear recovery algorithms can
significantly suppress the impact of grating lobes on imaging in the reconstruction process,
effectively reducing the grating lobes generated by using linear arrays. In addition, Francis
et al. exploited the signal correlation within and between signals exhibited by transducer
configurations to reconstruct photoacoustic images using a distributed compressive sensing
framework [130], which can achieve better image quality than model-based algorithms
and reduce the number of signal samples processed. In addition to the L1 norm, CS
reconstruction based on the physical transmission model can also use the L0 norm [131].
Moein et al. proposed a smoothed version of the L0 norm as a reconstruction method,
which can improve the peak signal-to-noise ratio of images. In the case of incomplete data,
recovering the initial pressure distribution of photoacoustic imaging is often an inaccurate
problem. By utilizing CS theory and sparse prior information of photoacoustic images with
L2 norm-optimization technology, combined with augmented Lagrangian weighting by
alternating direction multiplier method and total variation minimization [132], integrating
the sparse prior information of images into the reconstruction process effectively eliminates
artifacts. It is worth noting that adding regularization terms can improve the reconstruction
accuracy of solving convex optimization-constrained problems. In response to the problem
of traditional regularization methods being either too smooth or too sparse, Liu et al.
proposed the elastic net regularization method [128], which can improve the anti-noise
ability. In specific cases, such as encountering limitations in the field of view, the split
Bregman total variation algorithm can be used based on the distribution positions of all
sensors [104]. This algorithm demonstrates that among all sensor arrangements, the convex
sensor array performs the best, and the computation time required is also reduced. In
efforts to accelerate the computation speed of model-based algorithms, researchers have
used a small number of non-zero signal positions in sparse coding feature mappings
as partially known supports to reconstruct photoacoustic images. This approach can
maintain image fidelity in CS reconstruction while improving computational speed [133].
In the work of improving the edge resolution of photoacoustic images, researchers have
developed an advanced CS reconstruction framework based on a Gaussian scale mixture
model [105]. This method incorporates the structural dependencies of wavelet domain
signals into the imaging framework through a Gaussian-scale mixture model. It filters
the reconstructed artifacts using estimated operators, resulting in photoacoustic images
with a higher signal-to-noise ratio and edge resolution. This paragraph mainly focuses on
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the application research of Equation (10) in the reconstruction process, aiming to improve
the quality of photoacoustic images, accelerate computation speed, and reduce hardware
costs. Recently, some researchers have evaluated the advantages and disadvantages of
different CS-PAI reconstruction algorithms based on numerical indicators such as iteration
times, CPU computing time, and SNR [109]. Table 1 compares the numerical results of
the alternating direction method (ADM), L1 magic, and SPGL1 reconstruction methods,
indicating that the ADM algorithm not only has a faster computation speed than the
traditional L1 norm-reconstruction method but also maintains better SNR.

Table 1. Numerical results of L1 magic, SPGL1, and ADM methods on CS-PAI images with
16–80 transducers uniformly distributed over a 90-degree view. Reprinted with permission from [109].

Positions
Iterations Experimental

CPU Time (s) SNR (dB)

Magic SPG ADM Magic SPG ADM Magic SPG ADM

16 67 340 88 471.2 16.3 5.5 −3.8 −3.6 −3.5
24 75 422 73 692.1 28.7 3.4 0.7 0.9 3.9
32 77 345 68 831.5 29.5 7.9 3.3 3.4 3.6
40 78 350 58 877.5 37.5 6.6 11.1 12.l 13.4
48 80 337 53 1280.7 43.2 9.3 11.1 11.7 13.8
56 79 317 46 1294.2 45.3 4.1 20.3 24.6 28.6
64 79 429 43 1179.6 64.5 5.0 20.4 22.1 25.9
72 81 367 46 1711.9 66.4 6.0 21.2 22.9 28.7
80 84 366 42 1580.9 68.7 11.4 22.7 29.1 29.7

Average 1102.2 44.5 6.6

Although the CS-PAI method based on physical transmission models has many advan-
tages, it has an undeniable limitation. The issue lies in the fact that the physical transmission
model matrix K is too large. K is often a large matrix with tens of thousands of dimen-
sions. If matrix compression is not performed, the physical transmission model matrix
will consume a large amount of operating memory. In order to apply model-based CS-PAI
to clinical situations, matrix-compression methods can be considered to reduce memory
requirements. K is a sparse matrix, with over 99% of its entries being zeros [134]. By using
the compressed sparse row format, the required memory can be greatly reduced, where
nonzero entries are stored in contiguous memory locations, and the corresponding column
indices are stored in an integer array. Another integer array can be used to store the index
of the first nonzero entry in each row. The logic behind compressing the model matrix K is
as follows: it is typically assumed that the ultrasound transducer has uniform sensitivity to
detect pressure waves from 0 to 90 degrees (it typically refers to the angular sensitivity of
the transducer in detecting pressure waves within a range of angles from 0 to 90 degrees
with respect to the normal direction of the transducer surface). However, in reality, due
to the limited size of the transducer, its sensitivity is not uniform. This results in limited
detection angles, waveform distortion, and delay errors during reconstruction. To address
this issue, a threshold can be set based on the incident angle, and values exceeding the
threshold angle can be set to zero, thereby compressing the matrix size. By employing this
approach, storage space can be reduced, and image quality can be improved. In addition
to using compressed matrices to solve the problem of slow computation caused by the
large photoacoustic forward model matrix K, parallel computing can also be considered
to accelerate the computation speed. This method requires utilizing GPU for computa-
tion [107]. The parallel architecture process proposed in Figure 6 involves tasks assigned to
the CPU, including data acquisition, matrix K construction, and display of photoacoustic
images. During the reconstruction computation process, both matrix K and image data
are copied from the CPU to the global memory of the GPU. The five main calculations in
each iteration loop include matrix multiplication, matrix transposition, maximum value
calculation, matrix addition, and matrix–vector multiplication. Among these calculations,
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the data required for matrix addition are directly read from the GPU’s global memory, while
the data needed for the other four operations are stored in shared memory and shared
among all threads within a block. Once the iterations are complete, the reconstructed
photoacoustic image is transferred back from the GPU’s global memory to the CPU for
image display. This achieves an image reconstruction speed 24–31 times faster than that of
the CPU performance.
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In the CS-PAI work based on physical transmission models, there are also some valu-
able applications. For example, Lin et al. proposed a model-based CS reconstruction
algorithm for synthetic aperture PAI configuration [135], which enhances image resolution
by enlarging the detection range through synthetic aperture methods and addresses the
limited viewing angle issue. By using fewer channel signals, they can reconstruct pho-
toacoustic images faster and achieve image quality close to that of a full-view image. To
further leverage the advantages of CS reconstruction of sparse signals, Cao et al. considered
using a non-uniform arrangement of annular ultrasound transducers during the acqui-
sition of photoacoustic signals [136]. They densely distributed ultrasound transducers
in the region of interest (ROI) and sparsely distributed them in the non-ROI area. This
study may be helpful for clinical medical imaging applications, such as early breast cancer
detection, endoscopic imaging, and in vivo monitoring. The CS-PAI technique, employing
a physical transmission model, has displayed remarkable imaging outcomes for various
human tissues such as breasts, stomach, intestine, and hip bones. As shown in Figure 7,
the quality of the reconstructed image has significantly improved in the ROI region. The
contrast regions in the four groups of images are marked with yellow arrows. Generally, the
reconstructed images of traditional PAT are recognizable but have many artifacts within the
ROI. In particular, numerous stripe artifacts appear around the hip bone in Figure 7d. By
contrast, the image reconstructed using the method proposed in this study shows improved
image quality and visual effects compared to the control image, as artifacts disappear in
the same region.
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Figure 7. Simulation of image reconstruction with original PAT under uniform sensors (left image)
and improved PAT with CS under non-uniform sensors (right image). (a) Breast cancer, (b) stomach,
(c) intestine, (d) hip bone. Reprinted with permission from [136].

Table 2 compares the traditional PAT method with the proposed CS-PAT method
using three types of numerical indicators: Signal Difference to Noise Ratio (SDNR), Quality
Index (Q), and Mean Square Error (MSE). The numerical results indicate that almost all
indicators (highlighted in bold) show improvement when using the CS-PAT method based
on the physical transmission model compared to the traditional PAT method, with the
maximum percentage increase being 18.66% (the last row of Table 2). With the proposed
method, it is possible to construct images of the same quality using fewer transducers,
which provides the advantages of saving hardware costs and executing more efficient
photoacoustic imaging for medical applications.

Table 2. Comparative reconstruction results of four types of human tissues using traditional PAT
method and CS-PAT method based on physical transmission model. Reprinted with permission
from [136].

SDNR Q MSE

Breast cancer Traditional PAT 0.8792 0.3070 0.1140
Improved PAT + CS 0.9125 0.3443 0.1044
Improvement (%) 3.79 12.15 8.42

Stomach Traditional PAT 1.7540 0.4020 0.0815
Improved PAT + CS 1.8225 0.4395 0.0739
Improvement (%) 3.91 9.33 9.33

Intestine Traditional PAT 0.6494 0.3280 0.1093
Improved PAT + CS 0.6680 0.3785 0.1000
Improvement (%) 2.86 15.40 8.51

Hip bone Traditional PAT 0.3550 0.3511 0.0648
Improved PAT + CS 0.3517 0.4166 0.0564
Imp roveme nt (%) −0.93 18.66 12.96
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It is worth noting that PAI is similar to thermoacoustic imaging in principle. Al-
gorithms based on physical transmission models are also applicable to thermoacoustic
imaging. In model-based CS thermoacoustic imaging [137–141], a crucial step involves
generating an overcomplete dictionary of the original signals to decompose the original
signals into the overcomplete dictionary and the source image. Subsequently, sparse mea-
surements are conducted on the spatial domain signals. In this method, the overcomplete
dictionary serves as the physical transmission model, with the key difference being that in
the CS process, the overcomplete dictionary represents an exact solution, while the physical
transmission model is ill-conditioned. This approach provides new insights for CS-PAI
based on physical transmission models.

Based on the CS-PAI methods utilizing the physical transmission model, the most
significant advantage is the high quality and precision of the reconstructed photoacoustic
images, with minimal interference from artifacts. However, these methods also have notable
drawbacks, including difficulties in achieving fast real-time imaging. In the following
discussion, the two-stage reconstruction-based compressed sensing method has a faster
computational speed, showing the potential to achieve fast real-time imaging.

4.2. Two-Stage Reconstruction-Based Compressed Sensing Method

The physical transmission model-based compressed sensing method can reconstruct
the image from the measurement data directly, but it also takes more time and has to modify
the sampling strategy [142]. The CS methods combined with standard reconstruction
methods, also called two-stage reconstruction-based compressed sensing methods, have
higher speeds and lower complexity. In the first step the point-wise pressure has been
recovered from the CS measurements. In the second step, a standard reconstruction method,
such as BP or TR, has been used to obtain the photoacoustic source [143].

Two-stage reconstruction methods typically focused on the first step. Haltmeier
et al. used expander matrices as the measurement matrices to satisfy their random
nature [108,144,145]. Besides this, they also found a sparsifying temporal transform in
the case of circular geometry to ensure the sparsity of the signal. It can be described as [108]

T(p) := t3∂tt−1∂t p (11)

Considering that the transform T only acts in the temporal variable while the mea-
surement matrix A acts in the spatial variable, T and A can be exchanged:

T(y) = A(Tp) (12)

The proposed CS scheme’s effectiveness is validated through reconstruction results
from experimental data, as shown in Figure 8. These results demonstrate that the method
can indeed reduce the number of spatial measurements required without sacrificing spatial
resolution, thereby potentially increasing the imaging speed in PAI.

Similar to the study of Haltmeier et al., P. Burgholzer et al. also proposed a sparsifying
temporal transform [145]:

T′ = ∂rrHr∂r (13)

where Hr represents Hilbert transform. The transform T′ is applied to the spherical means
M. M[ f ] and the measurement photoacoustic signal p(t) are equivalent when used to
recover the initial pressure [146].

Further, they used a 64-channel detector array with fiber optic line detectors and
16 fiber-optical Mach–Zehnder interferometers. The measurement chamber contains 64 fiber
optic line detectors, with 16 channels read out in parallel using 4 × 1 switches, and the mea-
surement signals are random zero/one combinations of individual line detectors, as shown
in Figure 9. This setup allows for the acquisition of high-quality images while reducing
the acquisition time and system costs through compressed sensing techniques. Overall,
they presented a new perspective on photoacoustic imaging by incorporating compressed
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sensing principles and a sparsifying transform. This offers the advantages of potentially re-
ducing measurement requirements, improving recovery guarantees, and enhancing image
reconstruction quality, as supported by theoretical analysis and simulation results.
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Still focusing on the issue of signal sparsity, Zhou et al. utilized a transform matrix
obtained through the learning of a dictionary with the K-SVD method [147,148]. As shown
in Tables 3 and 4 [147], visual assessment and quantitative evaluations, including metrics
such as MSE and peak signal-to-noise ratio (PSNR), demonstrate the superiority of the
proposed method. They offered a novel and promising approach to address the challenges
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in PAI, leveraging compressed sensing principles and a learned dictionary to enhance
image reconstruction quality and overcome limitations imposed by hardware constraints.

Table 3. MSEs for different reconstruction methods. This table is adapted from [147].

Points Direct Reconstruction CS with DCT CS with K-SVD

150 0.003 0.002 0.002

100 0.008 0.004 0.003

50 0.017 0.012 0.001

Table 4. PSNRs for different reconstruction methods. This table is adapted from [147].

Points Direct Reconstruction CS with DCT CS with K-SVD

150 73.085 75.313 76.039

100 69.006 72.432 73.280

50 65.804 67.208 68.224

Endoscopic photoacoustic tomography is an interventional application of photoa-
coustic tomography designed to visualize anatomical features and functional components
within biological cavity structures, such as the nasal cavity, digestive tract, or coronary
arterial vessels. It also has the challenge that the acoustic measurements are incomplete due
to limited detectors or restricted acoustic detection views within the cavity. This limitation
often leads to degraded image quality when using conventional image reconstruction
methods. Also, through the learning of a dictionary, Sun et al. [149] applied the two-stage
method to PAE for reconstructing high-quality images that depict the initial pressure distri-
bution on a cross-section of the cavity from incomplete discrete acoustic measurements.
This method involves constructing and training a comprehensive dictionary for the sparse
representation of the acoustic measurements induced by photoacoustic signals. By opti-
mizing the sparse measurements and a sensing matrix, the sparse representation of the
complete acoustic signals is obtained, followed by the recovery of the complete signals
through inverse sparse transformation. The image of the initial pressure distribution is then
reconstructed using the time reversal algorithm based on the recovered complete signals.
Their numerical experiments demonstrate that high-quality images with reduced under-
sampling artifacts can be reconstructed from sparse measurements using the proposed
method. Comparative results indicate that the proposed approach outperforms standard
TR reconstruction by 40% in terms of the structural similarity of the reconstructed images.

It is worth mentioning that Marta et al. proposed a new two-stage method [150].
Instead of point-by-point recording, a single-pixel optical camera has been used so that the
entire active area of the entire active area of the optical ultrasound sensor is illuminated.
They recovered the photoacoustic data at each time step independently from patterned
measurements. This recovery process leverages the sparsity of the data when represented
on a Curvelet basis [151], which is particularly effective for capturing the inherent geometric
features of photoacoustic signals. Following the successful recovery of these sparse repre-
sentations, the next step involves reconstructing the PAI using standard PAT reconstruction
methods. This approach allowed for a more efficient handling of the data, potentially lead-
ing to enhanced image quality and reduced computational demands by initially focusing
on the sparsity-constrained recovery of the signal before proceeding with conventional PAT
image-reconstruction techniques.

Also inspired by the principle of single-pixel cameras, Arridge et al. explored two
general spatial sub-sampling strategies, donated by rSP-Msub and sHd-Msub, and their
implementation using the Fabry–Pérot (FP) interferometer [143]. The incident photoacous-
tic field on the detection plane, p(x = 0, y, z, t), caused by the jth pulse of the excitation
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laser, is first multiplied by a spatial window function ϕ(y, z) and then integrated over the
whole detection surface:

fi(t) =
∫

p(x = 0, y, z, t)ϕj(y, z)dydz (14)

The spatial sampling is followed by temporal sampling, e.g., by measuring fi(t) at
ti = itδt, it = 1, . . . , Mt.

Their work also involves improving compressed sensing reconstruction methods.
Through the utilization of compressed sensing methodologies and variational image recon-
struction algorithms like total variation regularization combined with Bregman iterations,
high-quality images can be reconstructed from significantly sub-sampled PAT data. These
approaches not only boost acquisition speeds for point-by-point sequential scanning config-
urations but also decrease the number of channels needed for parallelized schemes utilizing
detector arrays. The research findings demonstrate the promise of these innovative com-
pressed sensing PAT devices through outcomes obtained from simulated data, dynamic
experimental phantoms, and in vivo experiments. The results can be seen in Figure 10.
This work indicates that by employing appropriate sparsity constraints and advanced
reconstruction methodologies, it is viable to achieve high spatial resolution and contrast in
4D PAT, paving the way for advancements in PAI.
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sHd-128 (right column) and their corresponding PSNR in dB. Reprinted with permission from [143].
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Despite these advantages, the two-stage methods still need a lot of detector locations
to realize multiple measurements. In order to compensate for this shortcoming, single-pixel
cameras have been combined with CS methods, so that only one detector is needed among
the process of measurements. These will be introduced in detail in the next section.

4.3. Single-Pixel Camera-Based Compressed Sensing Method

Single-pixel cameras capture images using a single detector element. They mod-
ulate incident light with patterns and measure the resulting intensity. CS algorithms
then reconstruct the original image from these measurements, exploiting sparsity in nat-
ural scenes. This approach reduces sampling requirements and enables cost-effective
imaging [152–154]. The imaging principle of single-pixel cameras can be applied to PAI. As
shown in Figure 11 [155], an optic mask is placed above the laser source and the tissue to
carry out the laser-encoded emission. The tissue is irradiated by the encoded laser light
and absorbs the optic energy to generate the acoustic waves.
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Figure 11. The schematic of the CS method for PAI with one ultrasonic transducer. (a) Compressed
data acquisition. (b) PA signal reception.

Dong et al. [156] utilized spatially and temporally varying random optical illumina-
tion instead of uniform illumination typically used in conventional PAI methods. CS is
employed to reduce the number of random illuminations for faster data acquisition. They
obtained a new forward model that can be described as [156]

p̃(r0, k, m) = −ik
x

s′
dS′Gout

k (r′, r0)Im(r′)p0(r′) (15)

where Im(r′) is the random illumination on the object at location r′ from the mth mask.
The images can be reconstructed from acquisitions with as few as two transducer view
angles. The proposed acquisition and reconstruction scheme offers several key advantages,
including improved image quality, faster data acquisition, reduced hardware requirements,
cost-effectiveness, and innovation in the approach to illumination. These advantages
establish the scheme as a promising advancement in the field of limited-view PAI with the
potential for widespread impact on imaging quality and system efficiency.

Huynh et al. used a single-pixel camera for three-dimensional compressed-sensing
photoacoustic tomography. This is achieved by reflecting a large collimated laser beam
from a planar Fabry–Pérot ultrasound sensor onto a digital micromirror device, which
then patterns the light using a scrambled Hadamard basis before it is collected into a
single photodetector. The inner products of the Hadamard patterns and the distribution of
thickness changes of the ultrasound sensor induced by photoacoustic waves are recorded.
An accelerated proximal gradient-type algorithm with total variation regularization is used
to directly recover the initial distribution of acoustic pressure generating those waves from
the measured signals. This approach demonstrates the ability to obtain three-dimensional
PAT of imaging phantoms with compression rates as low as 10%, showcasing the potential
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of compressed sensing techniques to reduce data acquisition time and volume, which is
crucial for developing faster imaging systems with higher resolution and larger fields of
view [157].

Contrary to the work of Huynh et al., Wu et al. used edge-expander codes-based masks
rather than ordinary random masks to increase the number of the measurements of the
important elements and efficient total variation regularization-based model to improve the
capability of CS-PAT for reducing the number of measurements and fast data acquisition.
The proposed method is shown to have better reconstruction quality and significantly
lower computing times compared to other methods [158].

Despite the attainment of certain outcomes, hurdles persist in single-pixel PAI, particu-
larly when aiming for high spatial resolution approaching the deep-subwavelength regime
of acoustics. Guo et al. proposed a dual-compressed PAI technique [111]. In addition to
spatially patterned illumination, this approach uses a coded acoustic aperture to distinguish
temporally the time-of-flights (TOF) of spatial-dependent photoacoustic signals. According
to the Poisson–Kirchhoff principle [159], the detected photoacoustic signal u(t) is a linear
superposition of photoacoustic waves Cij(t) originating from different spatial positions
(i, j) in the tomographic image of a 3D object [160]. The aperture introduces a time delay
Tij, which yields the modulated signal C′

ij(t
′) and forms the recorded superposed signal

u′
ij(t

′). The new TOF t′ = t + Tij = gijt.
The amplification factor:

g =
〈

gij
〉
=

〈
1 + Tij/t

〉
≈ (gmax + 1)/2 (16)

The CS process can be described as

u = Ty + n = TSv + n = Hv + n (17)

where u represents the detected signal, and v is the image after basis sparse representation.
The matrices S and T are produced by optical sensing and acoustic sensing, and n is the
noise. As is shown in Figure 12 [111], when it comes to a smaller pixel size (much smaller
than the wavelength of the acoustic detection in water), this method can also produce
images of high quality and compression ratio. The dual-compressed photoacoustic imaging
with single-pixel detection offers advantages in terms of efficiency, spatial resolution, inno-
vative transformation of spatial differences, generalizability to other imaging modalities,
and empirical demonstration of its capabilities. These advantages position the approach as
a promising innovation in the field of PAI, with potential implications for a wide range of
imaging applications.

On the basis of traditional single-pixel camera PAI methods, Sun et al. further investi-
gated a new approach that combines the arc direction and random optical illumination [155].
In their work, they first employed random illumination patterns and then considered the
issue of the receiver angle in the detection process. To solve the problem of visible artifacts
and loss of details, four single-element transducers were adopted and placed at different
degrees (0, 90, 180, and 270 degrees), which is shown in Figure 13. For each detection unit,
only the ultrasound signals within the detection angle could be detected.

Unlike conventional approaches that rely on rectangle CS methods, this innovative
technique offers a more sophisticated way to compress PA data along the arc line, allowing
for the accurate reconstruction of PA images from observations at multiple angles. The
results can be seen in Figures 14 and 15. By incorporating the arc-direction mask and
CS reconstruction algorithm, this method aims to enhance the fidelity of reconstructed
images by preserving important structural details that might otherwise be lost or distorted.
Through comprehensive simulation studies, the effectiveness of this approach has been
validated, showcasing its potential for advancing high-resolution PAI applications.

The mentioned arc-direction mask and arc-direction CS reconstruction algorithm in
PAI provide advantages such as addressing data incompleteness artifacts, preserving image
details, enhancing spatial resolution, applicability across diverse scenarios, and facilitating
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artifact-free imaging [155]. These advantages position the method as a valuable contribution
to advancing the capabilities of PAI and improving the quality of PAI outcomes.
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Figure 12. (a,d,g) Time-lag distribution, (b,e,h) intensity distribution, and (c) the recovered image
acquired from imaging of Object #1 (pixel size ∆ = 200 µm > λac, and λac is the wavelength of the
acoustic detection in water) with a compression ratio of γ = 32.8. (f) Object #2 (∆ = 5 µm << λac),
with γ = 32.8 and γ = 1.6, (g–i) dual-compressed, single-pixel PAI. (i) Recovered image acquired from
imaging of Object #2, with γ = 32.8. Reprinted with permission from [111].
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Figure 14. Imaging results reconstructed by rectangle CS methods. (a–d) 0-degree, 90-degree,
180-degree, and 270-degree adoption using rectangle CS method, respectively; (e–h) 0-degree,
90-degree, 180-degree, and 270-degree adoption using arc-direction CS method, respectively.
Reprinted with permission from [155]; © Optical Society of America.
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Figure 15. Reconstruction errors based on rectangle and arc-direction CS methods in the case of
270-degree adoption. This figure is adapted from [155].

4.4. Other Valuable Methods (Virtual Detector, Multiscale Decomposition of Wave Equation,
Motion Estimation Framework, Undersampled Fourier Measurements, Laplacian Sparsity, and
Deep Learning)

In the previous sections, we have introduced three major categories of CS-PAI methods.
However, there are still some methods that cannot be classified into these categories. Nev-
ertheless, these unclassified methods also hold important application value and research
significance [161,162].

For example, traditional PAM suffers rapid degradation in image quality outside the
ultrasound focal region when using a focused ultrasound transducer for photoacoustic
detection. In order to improve the imaging quality of PAM in the defocused region, a
CS-based virtual detector photoacoustic microscope was developed. The focus of the
ultrasound transducer is regarded as a virtual detector [163], and mechanical scanning of
this virtual detector is performed, similar to the detection with a linear ultrasound array.
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This allows for the recovery of information in the defocused region, thereby enhancing the
imaging quality in the defocused area.

Zangerl et al. derived a multiscale decomposition of the wave equation and applied
it to CS-PAT [164]. They proposed a multiscale reconstruction method that reconstructs
images from a few CS measurements consisting of linear combinations of signals recorded
by a single detector. This method utilizes the principle of acoustic reciprocity to achieve
the desired output sound pressure through the application of operators acting on acoustic
data in the time domain for multiscale decomposition. By introducing sparsity of the
desired initial photoacoustic pressure distribution at high-frequency scales in this manner,
significant progress has been made.

CS can improve the problem of a long acquisition time in high-resolution 3D PAT
scanners. Lucka et al. developed a joint reconstruction and motion estimation framework
to further enhance the quality of dynamic PAT images [165]. They employed sparse
image reconstruction with sparsity-constrained motion estimation models and utilized the
temporal redundancy of data, resulting in images with good spatial resolution and contrast.

To prove the applicability of CS in PAT, known reconstruction formulas were applied
in models of wave propagation in free space and bounded domains, along with theoretical
frameworks of Riesz bases and non-uniform Fourier series. This simplified the inverse
problem into a CS problem of undersampled generalized Fourier measurements [166].
Although the research is still in its preliminary stage, these findings pave the way for future
studies. Two possible extensions were discussed, including generalizing the results to
broader domains and further theoretical exploration of CS problems with subsampling
patterns of specific structures. Additionally, numerical evidence regarding methods based
on Riesz sequences was provided, but rigorous stability proof of this method remains a
subject for future work.

One important role of CS is to reduce the sampling rate of PAI systems while main-
taining high spatial resolution. CS does not involve point-to-point measurements but
rather various combinations of pressure values from different sensor positions. Sparsity is
a key condition that allows for the recovery of the photoacoustic source from compressed
measurements. There are many ways to sparsify the original photoacoustic signal, and a
particular sparsification method can achieve edge detection of the imaged object [167]. This
method utilizes the second derivative of the measured acoustic pressure data, where the
second derivative corresponds to the application of the Laplace function on the original
photoacoustic source. Since conventional photoacoustic sources consist of smooth parts and
singular points along interfaces, the Laplace function of the source is sparse. As shown in
Figure 16, this process effectively sharpens the edges of the original photoacoustic source.

To effectively leverage sparsity, Haltmeier developed a reconstruction framework to
jointly recover the initial photoacoustic source and the modified sparse source, thereby
integrating edge information of the photoacoustic source with information inside the
edges [167]. As shown in Figure 17, the joint reconstruction algorithm significantly reduces
the interference of artifacts compared to the FBP algorithm under the same conditions.

With the continuous development of deep learning theory, there is great potential
for the integration of deep learning and CS. Possibilities include using deep learning
to construct sparse representations of signals, designing neural network models for CS
reconstruction, optimizing CS sampling strategies using reinforcement learning methods,
and utilizing deep learning for compressive sensing of multimodal data. Researchers have
already combined deep learning with CS-PAT, such as using NETT regularization to solve
CS-PAT problems [168]. These methods use forward operators at each iteration. However,
there are signal differences in this process, indicating that simulated training data differ
from actual measured real data. Developing more accurate forward models and improving
training data are important goals for the future. Gao et al. proposed a new method for
CS-PAT using untrained neural networks to suppress image artifacts or sidelobes caused
by a small number of measurement signal channels or limited viewing angles in the CS
process [169]. This method can reduce half of the measured channel numbers and recover
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sufficient details using neural networks for reconstruction. No additional learning based
on deep image prior information is required. The model only needs a small amount of
gradient descent detection to reconstruct images. As a non-learning strategy, this method
can be combined with other existing regularization methods to further improve image
quality. Validations have shown that under the same regularization conditions, as shown
in Figure 18, this untrained neural network method outperforms traditional compressive
sensing methods.
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Figure 18. The in vivo results with 50% sub-sampling rate, (a–d) the results of mice brain, in which the
yellow arrows indicate the vessels in sulcus, and (e–h) the results of cross-section of finger. (a,e) The
iterative total variation method; (b,f) the mentioned approach with TV prior; (c,g) the iterative
Tikhonov method; (d,h) the full-view results. FV: full-view. Reprinted with permission from [169].

5. Comparisons between Different Methods

The single-pixel camera-based compressed sensing technique is often used in conjunc-
tion with other methods, primarily for low-cost multiple sampling rather than to impact
image quality and efficiency. In the study of Bolin et al., two-stage methods and physical
transmission model-based CS methods were subjected to an identical set of conditions,
and their imaging results were compared in Table 5. This allowed for an analysis of the
advantages and disadvantages of each method [170]. The major benefit of any two-stage
approach is that it decouples the nonlinear iterative compressed sensing recovery and the
linear acoustic propagation problems; thus, the expensive acoustic forward and adjoint
operators are not iterated with. At the same time, the physical transmission model-based
CS method performs better in terms of image quality.

Table 5. Evaluation comparison among time reversal and two CS-PAI methods. The table is adapted
from [170].

Time Reversal Two Stage Method Physical Transmission Model Based CS Method

MSE 0.026 0.011 0.003

SSIM 0.553 0.621 0.791

PSNR 16.023 18.703 25.005

SNR 18.817 22.867 25.272

Otherwise, Sun et al. compared the two-stage method with the deep learning algo-
rithm [149]. In their work, structural similarity (SSIM) was used to evaluate the quality
of imaging. The result can be seen in Figure 19, and it demonstrates the potential of
the convolutional neural network (CNN) method over the CS method in reconstructing
structures even in non-detection areas. While the CS method can recover unmeasured
acoustic signals in the scanned area from sparse measurements instead of signals in the
non-detection area, it may lead to loss of structure information in the non-detection area.
In contrast, a well-trained CNN can recover partial or complete lost information based on
prior knowledge of imaging structures, showing significant potential in reconstruction.
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6. Discussion (Challenges and Future Perspectives)

CS has been applied in PAI for over a decade, yielding significant achievements. Nu-
merous results have demonstrated that CS plays a crucial role in reducing the sampling
scale of PAI systems, enhancing the acquisition speed of photoacoustic signals, lowering
hardware costs, improving the accuracy of images (especially in limited viewing angle
scenarios), and mitigating the impact of artifacts on images. The development of CS is
significant for expanding the clinical applications of PAI, especially in fields with high
demands for imaging speed, such as hemodynamics, oxygen metabolism, physiological
monitoring, and in vivo drug detection. Fast PAI systems are needed for real-time tracking
and collecting information reflecting the status of biological tissues. By utilizing CS technol-
ogy, it is possible to decrease the amount of signal sampling and acquisition time, thereby
achieving rapid imaging and providing more efficient and real-time imaging solutions
for related clinical research. Additionally, in clinical applications for disease diagnosis,
improving the data acquisition speed is also crucial. Reducing the time patients spend
using imaging devices can minimize exposure to microwave radiation, enabling timely
acquisition of disease information and targeted treatment. This significantly impacts the
accuracy and efficiency of clinical diagnosis and treatment.

However, CS-PAI also faces some challenges. Although the introduction of CS has
improved the speed of signal acquisition, it requires solving a nonlinear objective function.
The solution to the objective function is an iterative process that may require dozens
or even hundreds of iterations to achieve convergence of the image, especially when
using algorithms based on physical transport models. When the dimensionality of the
photoacoustic signal is large, the reconstruction speed becomes very slow. To address
this issue, one can consider using high-performance computers combined with GPU
acceleration to significantly improve the speed of the reconstruction process.

Furthermore, the compression measurement process is difficult to implement in hard-
ware. When designing an optimized algorithm for CS-PAI, the ultimate goal is to make
the algorithm hardware-based and turn it into a mass-produced product. However, the
information content in the sensing matrix generated during the CS compression mea-
surement process may occupy more memory than the original signal, making it difficult
to transmit the sensing matrix. To address this issue, one can consider compressing the
memory occupied by the sensing matrix. This has always been a key focus area in CS.

In terms of stability, CS-based PAI still suffers from limited instability and robustness
currently. When reconstructing signals with small dimensions using CS, random noise is
always generated. In PAI, if the imaging area is small, it is easy to generate aliasing artifacts
during reconstruction. There are even cases where aliasing artifacts appear at different
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positions in the image each time, even when the reconstruction parameters are the same.
This is because signals with small dimensions are not easy to converge to an exact solution.
As the signal dimension increases, the aliasing artifacts will disappear, but the time cost
will also increase. Optimizing more stable algorithms is crucial for improving the quality
of reconstructed images.

In the CS equation, the sparse representation basis is an important factor influencing
the reconstruction accuracy of CS. Constructing a sparse basis that can transform an
unknown acoustic source vector into a sparse vector is challenging and represents an
uncontrollable factor due to the lack of prior information about the acoustic source vector.
As mentioned above, commonly used sparse bases include Fourier bases, wavelet bases,
numerical derivatives, and discrete cosine bases. However, these sparse bases cannot
guarantee to make any unknown acoustic source vector sparse. Therefore, in future
work, it may be considered to design a sparse singular matrix using the pseudo-inverse
matrix of this sparse singular matrix as the sparse basis aims to make any acoustic source
vector sparse.

7. Conclusions

In the Introduction section of this article, the feasibility of CS in the field of PAI was
fully demonstrated. The combination of CS and PAI can solve multiple critical biomed-
ical issues and has achieved significant results. By utilizing sparse representation and
reconstruction algorithms, CS effectively reduces the sampling rate of PAI systems and
shortens the acquisition time of photoacoustic signals. The introduction of CS brings a
more efficient way of data acquisition to PAI systems and even allows for selecting specific
channel signals for photoacoustic reconstruction through CS sub-sampling. Concerning the
limited viewing angle problem, CS can compensate for the decrease in image quality caused
by a limited viewing angle by utilizing the sparsity or structural information of signals for
partial sampling and reconstruction, achieving imaging effects close to full-view imaging.
One of the most significant advantages of CS in PAI is meeting the demand for fast imaging.
By designing efficient sensing matrices and real-time reconstruction algorithms to accelerate
signal processing speed, CS meets the requirements for fast real-time imaging. In terms of
hardware resource costs, CS reduces the requirements on the sampling end, thus reducing
the need for hardware devices and storage space, enhancing the economy and scalability of
PAI systems. During the reconstruction process, CS utilizes signal characteristics and prior
information to restore high-quality signals through optimization algorithms, improving
the reliability and accuracy of imaging results, thereby bringing new possibilities and
advantages for the development and application of PAI systems. It is expected that more
valuable work based on CS-PAI will emerge in the future.
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