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Abstract: Deep neural networks must address the dual challenge of delivering high-accuracy pre-
dictions and providing user-friendly explanations. While deep models are widely used in the field
of time series modeling, deciphering the core principles that govern the models’ outputs remains a
significant challenge. This is crucial for fostering the development of trusted models and facilitating
domain expert validation, thereby empowering users and domain experts to utilize them confidently
in high-risk decision-making contexts (e.g., decision-support systems in healthcare). In this work, we
put forward a deep prototype learning model that supports interpretable and manipulable modeling
and classification of medical time series (i.e., ECG signal). Specifically, we first optimize the represen-
tation of single heartbeat data by employing a bidirectional long short-term memory and attention
mechanism, and then construct prototypes during the training phase. The final classification out-
comes (i.e., normal sinus rhythm, atrial fibrillation, and other rhythm) are determined by comparing
the input with the obtained prototypes. Moreover, the proposed model presents a human–machine
collaboration mechanism, allowing domain experts to refine the prototypes by integrating their
expertise to further enhance the model’s performance (contrary to the human-in-the-loop paradigm,
where humans primarily act as supervisors or correctors, intervening when required, our approach
focuses on a human–machine collaboration, wherein both parties engage as partners, enabling more
fluid and integrated interactions). The experimental outcomes presented herein delineate that, within
the realm of binary classification tasks—specifically distinguishing between normal sinus rhythm
and atrial fibrillation—our proposed model, albeit registering marginally lower performance in
comparison to certain established baseline models such as Convolutional Neural Networks (CNNs)
and bidirectional long short-term memory with attention mechanisms (Bi-LSTMAttns), evidently
surpasses other contemporary state-of-the-art prototype baseline models. Moreover, it demonstrates
significantly enhanced performance relative to these prototype baseline models in the context of
triple classification tasks, which encompass normal sinus rhythm, atrial fibrillation, and other rhythm
classifications. The proposed model manifests a commendable prediction accuracy of 0.8414, coupled
with macro precision, recall, and F1-score metrics of 0.8449, 0.8224, and 0.8235, respectively, achieving
both high classification accuracy as well as good interpretability.

Keywords: time series classification; prototype learning; attention mechanisms; human–machine
collaboration; ECG

1. Introduction

Time series is a popular data type, including prices in the shares market [1], the climate
across different regions [2], electronic health records (EHRs) [3], etc. Along with the rapid
development of artificial intelligence technologies, there has been a clear trend toward
optimized decision making by modeling and analyzing such data during the past decade.
For example, by developing a conceptual model of EHRs from varied views, optimal
disease patterns can be identified, based on which the tendency of certain medical events
can be predicted accordingly [4,5].
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A great amount of studies have been conducted for time series analysis, and the
widely used methods include dynamic time warping (DTW) [6], shapelets [7], and artificial
neural networks [8]. Dynamic time warping first calculates the distance between two time
series, then searches for an optimal match for them with different lengths or rhythms and
supports their stretching and bending on the time axis [9]. Similarly, algorithms such
as support vector machine [10], decision tree [11], and KNN [12] have been used on the
same occasions. Meanwhile, there are also studies that adopt the ensemble approach by
combining DTW with KNN or other methods, achieving better performance than each
single approach [13]. Although these methods can locate important features within time
series, they fail to identify the correlation and capture the dynamic dependencies among
different variables.

In recent years, there has been a line of alternative research, and the shapelets ap-
proach [7] is one of the most promising approaches. Shapelets are discriminative phase-
independent sub-sequences that reflect different patterns of the time series, i.e., each class
corresponds to one or several shapelets. It has been shown that the shapelets-based ap-
proach outperforms the DTW-based approach, which classifies data samples based on their
distances to different shapelets [14]. Moreover, shapelets themselves are intuitive since
they can easily be retraced back to the original time series, providing high-value guidance
for the supported decision-making system in critical areas, such as medical and hygienical
fields. Although the shapelets-based approach had provided attractive performance, it
is necessary to convert time series to an extensive set of patterns or sub-sequences as
interested candidates by several parsing steps, and the larger matching space may lead to a
relatively low classification accuracy.

In addition to traditional data mining methods, deep neural networks have also
yielded promising results for the classification of time series. For instance, Lipton et al. used
the Long Short-Term Memory (LSTM) architecture to recognize informative patterns from
multivariate electronic health time series and classify the clinical records to 128 diagnostic
categories [15]. Chauhan et al. utilized LSTM units to build a predictive model for normal
or abnormal ECG signals [16]. By extracting informative patterns from all channels, Zheng
et al. proposed a Multi-Channels Deep Convolutional Neural Network (MC-DCNN)
model for time series classification [17]. Similarly, Liu et al. designed a novel multivariate
convolutional neural network (MVCNN) architecture to extract patterns from co-evolving
time series [18]. While deep learning approaches can achieve promising results and require
less domain knowledge than traditional approaches, they are usually regarded as black
boxes, which provide limited confidence and interpretability and thus are not suitable to
critical applications, e.g., computer-aided diagnosis.

To overcome the above drawback, much effort has been devoted to the issue of “in-
terpretability”. This line of methods can be divided into two categories [19], namely, post
hoc interpretability and inherent interpretability. Post hoc interpretability: This approach
endeavors to elucidate the decision-making mechanisms behind existing ’black-box’ mod-
els. The former category aims to unveil the decision-making process of existing black-box
models. For this category, the first approach is hidden analysis [20], which uses the back
propagation mechanism to propagate essential factors from the output layer to the input
layer so as to deduce the importance of sample feature vectors. The second approach is
model distillation [21], which constructs a smaller model to simulate the decision-making
process of the original complex model and retains the accuracy at the same time. By re-
ducing model complexity, it can help understand the trained model as a whole from the
perspective of decision logics. The third one is sensitivity analysis [22], which is used
to analyze the influence of each attribute of samples on the final classification results,
thus providing explanations for the decision-making outcomes. However, these methods
are designed to approximate the reasoning process rather than the real decision-making
process. Thus, there may exist unfaithfulness and an inconsistent understanding of the
inner-working mechanisms of sequence models [23]. The last approach is the attention
mechanism [24], which employs attention weights to directly reflect the interested sub-
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sequences during the decision-making process of models. By mimicking physician practice,
the attention mechanism is able to focus on a small portion of useful high-dimensional
sequence variables and achieve both high accuracy and good interpretability [25]. Never-
theless, even though user-friendly explanations can be obtained, the attention weights are
not always trustworthy [26]. In addition, attention-based methods are usually designed
for domain experts (e.g., clinicians), and maybe provide unintelligible results for novice
users [27]. Given such limitations, the attention mechanism is not so feasible for some
practical applications [28].

Compared to post hoc interpretability models [29], Inherent interpretability: embeds
explanation capabilities directly within the model’s architecture, offering more authentic
and understandable outputs [30]. Specifically, prototype learning is one of the methods
for developing such models [31]. Inspired by case-based reasoning, the prototype learning
method gives a predictable conclusion for the unknown input by comparing it with a
few representative cases (i.e., prototypes), e.g., exemplar patients from a cohort. The
process is analogous to how doctors perform diagnosis and prescribe medications for a new
patient by referring to their experiences with previous similar observations and deducing
rational treatment accordingly. From an interpretable perspective, prototypes provide a
more intuitive method based on visible phenotypes in time series; thus, even a novice can
comprehend how the model has reached a certain conclusion, as long as they are able to
understand the similarity between an input and a collection of prototypes. Such reasoning
logic is widely used in nearly all existing prototype-based models [32,33]. For instance,
the ProSeNet model [19] classifies each ECG event into a corresponding group based on
the fact that it shares similar cardiac morphology with other explainable phenotypes, and
deduces a decision by fusing the similarity. And unlike the above-mentioned shapelets
which focus on identifying key sub-sequences within the time series that are strongly
indicative of certain classes, providing a model based on the identification of these critical
features, prototype learning, conversely, relies on the comparison of entire instances to
a curated set of exemplars, offering a broader case-based understanding. However, to
improve the model’s performance, the majority of existing studies choose to generate a
large number of prototypes that is far greater than the number of classes, making it difficult
for nonprofessional users to comprehend the obtained decisions [31].

To address the shortcoming of existing studies, in this study, we explore prototype
learning and attention mechanisms to develop a deep sequence network with the fusion of
human–machine intelligence (PahNet). Specifically, PahNet combines Recurrent Neural
Networks (RNNs) with prototype learning in a novel framework which is designed for
time series data analysis. Here, RNNs are not merely used for feature extraction; they
are intricately optimized to enhance the detection of temporal patterns essential for the
dynamic refinement of prototypes, allowing for a more accurate classification of unknown
samples based on their temporal similarity to these enhanced prototypes. To ensure bet-
ter interpretability, we design a user-friendly human–machine collaboration mechanism
for fine tuning PahNet, allowing domain experts without any technical knowledge to
incorporate their intuition and experience into the model by manually refining the pro-
totypes. Moreover, we put forward a prototype quantity control method to reduce the
overall number of prototypes. In particular, the prototype quantity control method oper-
ates through two main phases: generation and pruning, both guided by expert feedback.
During the generation phase, a conservative approach is adopted to create a foundational
set of prototypes that capture key data characteristics. Experts then guide the introduction
of additional prototypes, ensuring they add value in terms of enhancing model accuracy
or interpretability. In the pruning phase, we evaluate the contribution of each prototype,
removing those deemed less informative. This not only streamlines the model, making it
more efficient, but also simplifies the decision-making process, enhancing interpretability
for nontechnical domain experts.

In this research, PahNet is employed to achieve the interpretable and adaptable
classification of medical time series data, such as ECG signals in the dataset of the Phys-
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ioNet/Computing in Cardiology (CinC) Challenge 2017 [34]. By initially refining single
heartbeat data representation through bidirectional long short-term memory and attention
mechanisms, we proceed to generate prototypes within the training phase. Classification
for conditions like normal sinus rhythm, atrial fibrillation, and other rhythms is achieved
by matching inputs against these prototypes. Experimental results show that while our
model slightly underperforms against certain benchmarks like CNN and Bi-LSTM with
attention in binary classification tasks, it significantly outperforms existing state-of-the-art
prototype models, especially in more complex triple classification scenarios, highlighting
its efficacy and potential in medical time series analysis.

In general, the contributions of our work are as follows:

• To achieve both high accuracy and good interpretability, we propose PahNet to model
time series by exploring prototype learning and attention mechanisms. In particular,
attentional LSTM is used to extract high-quality latent features (e.g., the absence or
irregularity of P waves, or the irregular rhythm that lacks a consistent pattern), based
on which a set of prototypes is obtained for accurate and interpretable classification.

• A human–machine collaboration mechanism is designed to refine PahNet. Specifically,
domain experts without any technical knowledge (e.g., physicians) are allowed to
modify the extracted prototypes, ensuring that the model is consistent with their
intellectual insights and professional considerations.

• Experimental results on a real-world dataset indicate that the proposed model signifi-
cantly outperforms state-of-the-art baselines.

The remainder of this paper is organized as follows. In Section 2, we review the related
work. Section 3 describes materials and the proposed PahNet in details, followed by the
evaluation results in Section 4. We conclude the paper and discuss our findings in Section 5.
In Section 6, we look forward to the prospects of the future research work.

2. Related Work
2.1. Traditional Approaches for Time Series Analysis

A variety of traditional methods have been applied to the analysis of time series,
which can be divided into three categories, including dynamic time warping [6], time
series shapelets [7], and bag of patterns [35]. DTW measures the distance between different
time series, especially for those that have different rhythms or lengths [9]. For example,
Wan et al. [36] introduced a clustering method based on DTW to calculate the similarity
among different data recordings, which is able to retain the nature of sequence information
during the clustering process. Similarly, Li et al. [37] proposed a novel clustering approach
by using DTW, which is used to generate a fuzzy membership matrix to calculate the
overall similarity of time series. However, DTW is more susceptible to noise [38] and may
generate perceptually nonsensible alignments [39].

To address the limitations of DTW-based methods, one line of studies propose to
extract short and representative patterns from time series. For instance, Ye et al. [38] intro-
duced new time series shapelets, which can capture discriminative patterns by comparing a
small subsection of time series and provide interpretable results. Similarly, Wang et al. [40]
learned shapelets from data records to detect abnormality surgery objects. To obtain short
patterns from time series, an alternative approach is based on the bag-of-patterns (BOP),
which employs a sliding window to divide time series into a bag of sub-sequences and
transforms them into symbolic patterns [35]. Liang et al. [41] introduced an approach
named Hybrid Bag-Of-Patterns (HBOP), which integrates with a discretization algorithm
to transform each sub-sequence into a symbolic string while maintaining the linear com-
plexity. Based on a bag-of-features representation, Baydogan et al. [42] proposed to extract
multiple sub-sequences from random locations with random lengths and provide efficient
representation for the classification of time series.

While DTW, shapelets, and BOP are established methods for time series analysis, they
necessitate significant domain expertise to segment time series into extensive sub-sequences
for feature analysis, and often fail to capture correlations across distinct series. Moreover,
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these approaches generally face challenges in generalizing to new categories, leading to
potential inaccuracies when analyzing unseen data types. Crucially, they do not incorporate
mechanisms for human–machine collaboration, thereby missing opportunities to enhance
adaptability and interpretability through interactive feedback and expert insights.

2.2. Machine Learning and Deep Learning Approaches for Time Series Analysis

Recent years have seen a paradigm shift in the application of machine learning method-
ologies to medical time series analysis. Research efforts, as delineated by Soni et al. [43] and
Dissanayake et al. [44], have traditionally explored a variety of algorithms—ranging from
decision trees and Naïve Bayes to K-nearest neighbors and neural networks—on datasets
such as the UCI Cleveland heart disease dataset. Jovic et al. [45] extended this exploration
by employing SVM, Ada Boosted C4.5, and random forest algorithms for the classification
of cardiac rhythms using time-domain features, while Tripathi et al. [46] introduced a
hybrid artificial intelligence framework combining random forest, decision tree, and linear
discriminant analysis for insomnia detection. These studies, while pivotal, predominantly
hinged on the analysis of static features, overlooking the potential encapsulated within
nonlinear latent feature constructions.

In response to this gap, the advent of deep learning techniques has heralded a new
era in the analysis of medical time series, particularly accentuating the utility of stacked
Recurrent Neural Network (RNN) layers and hybrid RNN configurations for unraveling
hidden hierarchical data representations. For instance, Goel et al. [47] and Yazdan et al. [48]
leveraged RNNs to enhance the modeling of long-term dependencies, facilitating a more
nuanced representation of complex autocorrelation structures. Xu et al. [49] pioneered the
design of a tensorized Long Short-Term Memory (LSTM) model to capture sequence-specific
historical trends, exemplifying the strides made towards understanding temporal dynamics.

Moreover, the role of deep learning in addressing contemporary health crises and en-
gineering challenges has been underscored by efforts such as those of Chimmula et al. [50],
who developed innovative LSTM cell connections for COVID-19 spread prediction, and
Siłka et al. [51], who engineered an RNN-LSTM model with hyperbolic tangent activations
for predicting high-speed train vibrations.

Additionally, convolutional operations have been adeptly integrated into LSTM ar-
chitectures to further bolster model efficacy as evidenced by Ullah et al. [52,53], who
proposed an end-to-end 2D CNN approach for chronic cardiovascular disease analysis.
This methodology, when combined with LSTM [54–56] for hybrid ECG signal classification,
demonstrates significant improvements in identifying cardiovascular abnormalities by
extracting salient features and capturing temporal dependencies.

The incorporation of attention mechanisms represents a substantial leap forward,
offering marked enhancements in model interpretability over traditional deep learning
paradigms. This advancement, facilitated by the integration of spatio-temporal attention
into convolutional recurrent neural networks [57–59], has notably improved the inter-
pretability of outcomes. Nonetheless, the automated nature of attention weight train-
ing presents challenges in aligning the attention mechanisms with domain-specific ex-
pert knowledge.

2.3. Prototype Learning Approaches for Time Series Analysis

The paradigm of prototype learning, rooted in case-based reasoning, has been instru-
mental in delineating representative prototypes to succinctly encapsulate similar instances
within observed data or those discerned during model training. Notably, Fu et al. [60]
introduced the PEARL methodology, amalgamating prototype with decision rule learning
within deep neural network frameworks to enhance both interpretability and the precision
of predictive outcomes. Concurrently, the PTAP algorithm [61] harnessed the capabilities of
a temporal Convolutional Neural Network (CNN) to distill highly activated periods from
activation maps, subsequently classifying these using a meticulously designed prototype
selection process. This method’s innovation lies in the formulation of a Gram kernel matrix
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(elements of a Gram matrix were computed using a kernel function, which effectively
measured the similarity or “closeness” between data points in the feature space) predicated
on feature values, aiming to rationalize the prototypes derived from time series data.

Further advancements in this field have been marked by Ghods et al. [31] and
Tan et al. [62], who employed network architectures that inherently integrate interpretabil-
ity by concurrently learning a set of prototypes alongside a mechanism to translate these pro-
totypes into visually interpretable representations. Such prototypes, epitomizing learned
classes, facilitate an enhanced interpretation of classification results through the lens of
similarity with new instances.

To augment the efficacy and resilience of prototype learning, the integration of at-
tention mechanisms [63,64] has emerged as a seminal advancement, enabling focused
analysis of pivotal instances and features. Gao et al. [65] notably refined relation classi-
fication models within prototypical networks by embedding instances in a support set
to compute relation prototypes, thereby facilitating targeted classification. In a similar
vein, Lv et al. [66] introduced dynamic prototype units employing attention mechanisms to
encode standard dynamics within an auto-encoder structure, where prototypes are aggre-
gated from local encoding vectors weighted by their relevance, culminating in a prototype
feature map imbued with task-specific insights through a self-attention-based network [67].
While foundational methodologies have been explored in previous works, some of the
research lies in the specialized application and optimization of these methodologies for
medical time series data, a domain where such integration has seen limited exploration
and application.

Nevertheless, one of the principal challenges in conventional prototype learning is the
proliferation of prototypes, which can overwhelm users and obscure the interpretability that
is central to the prototype learning approach. This issue often arises from a model’s attempt
to capture the diversity within the data, leading to an excessive number of prototypes that
dilute their individual significance and make it difficult for end-users, especially those
without deep technical expertise, to derive actionable insights. Furthermore, the absence of
effective human–machine collaboration restricts the infusion of human intelligence into the
modeling process, challenging the potential to harness the complementary capabilities of
human intuition and machine computation.

3. Materials and Methods

In this section, we first present an overview of the dataset and define the time series
classification problem, then describe the architecture and optimization objectives of PahNet
in details.

3.1. Dataset

The PhysioNet/Computing in Cardiology (CinC) Challenge 2017 dataset [34]: It is
designed to foster the development of sophisticated algorithms for the classification of
ECG recordings. These recordings, varying in length from 30 s to 60 s, are categorized
into four distinct classifications: normal sinus rhythm, atrial fibrillation (AF), alternative
rhythm, and recordings deemed too noisy for reliable classification. The dataset comprises
8528 single-lead ECG recordings, all sampled at a frequency of 300 Hz and subsequently
band-pass filtered using the AliveCor device. Among these, there are 5154 recordings
identified with normal rhythm, 771 with AF rhythm, 2557 classified under other rhythms,
and 46 recordings categorized as noisy. This extensive collection of ECG recordings pro-
vides a comprehensive resource for validating the efficacy and robustness of classification
algorithms in distinguishing among the specified cardiac rhythm categories, thereby con-
tributing significantly to advancements in cardiac health monitoring and diagnosis.
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3.2. Problem Definition

Given a certain time series AS = {⟨
(

as(t)1

)T

(t=1)
, y1⟩, ⟨

(
as(t)2

)T

(t=1)
, y2⟩, · · · , ⟨

(
as(t)N

)T

(t=1)
,

yN⟩}, where as(t)i ∈ Rn refers to the input time series at a given time step t(t = 1, 2, · · · , T),
T denotes the length of the sequence, y represents the output label of the input sequence, and
N stands for the amount of time series. For example, in a health-related application, y may
denote the classification result of a target disease, such as the atrial fibrillation. The objective
is to train a model to classify or predict the label for any time series asi = {as1

i , as2
i , · · · , asT

i }.
The used notations are summarized in Table 1.

Table 1. Notations.

Notation Description

AS, as(t)i physiological time series, i-th time series input in AS at given time step t
hi ∈ R(u×T), ht

i ∈ Ru i-th time series output of the Bi-LSTM layer, t-th time step in hi
P ∈ R(u×K), pk ∈ Ru a set of learnable prototypes, k-th prototype in P
α ∈ RT the weights of each time step in hi
ei ∈ Ru the sum of αhi
dk the distance metric of between ei and pk
s, sk the similar metric between ei and P, k-th similarity in s
z, yi the output of fully connected layer, output of i-th classification probability
L, P, F a sequence encoder, a prototype learning layer, a fully connected layer

3.3. The Architecture of PahNet

The architecture of the proposed model is illustrated in Figure 1, which mainly com-
prises three components, i.e., a sequence encoder denoted by L, a prototype learning layer
labeled P, and a fully connected layer indicated by F.

Figure 1. The architecture of PahNe.

Given an input sequence
(

as(t)i

)T

(t=1)
, the sequence encoder L maps the sequence

to a fixed-length embedding vector h = L
((

as(t)i

)T

(t=1)

)
, h ∈ Ru, which represents the

sequence as a compact and informative feature representation. Specifically, the encoder can
be any standard backbone sequence learning model, such as LSTM, Bidirectional LSTM
(Bi-LSTM), or Gated Recurrent Unit (GRU). Additionally, the proposed model includes a
long-term attention module that improves the quality of sequence embeddings, converting
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them to αhi
(
hi = {h1

i , h2
i , . . . , hT

i }, ht
i ∈ Ru, hi ∈ Ru×T) and facilitating the identification of

optimal time steps (this mechanism, by attributing variable importance to different portions
of the sequence, is instrumental in discerning the most significant time steps within the
sequence, a capability that directly enhances the fidelity of pattern recognition by ensuring
a focus on the most pertinent temporal features). The obtained αhi is then fed into the
prototype layer, where it is compared with a set of learnable prototypes P = {p1, p2, . . . , pk}
(pk ∈ Ru, k = {1, 2, . . . , K}), where K is the number of prototypes. In such a way, we can
perform pattern recognition on time series by comparing the distance between any query
time series and the prototypes of various classes. The underlying principle is that the query
instance is more similar to prototypes of the same class, compared with the prototypes of
other classes.

For the sequence encoder L, we employ LSTM to capture long-term dependence in the
input time series asi. The time series is encoded and mapped into the latent space, and the
corresponding process is defined as follows:

igt = σ(Wix · ast
i + Wih · ht−1 + bi), (1)

ogt = σ(Wox · ast
i + Woh · ht−1 + bo), (2)

f gt = σ(W f x · ast
i + W f h · ht−1 + b f ), (3)

ct = f gt ∗ ct−1 + igt ∗ tanh(σ(Wcx · ast
i + Wch · ht−1 + bc), (4)

ht = ogt ∗ tanh(ct), (5)

where the tensors W and b are the matrices and bias parameters to be learned during
training, ast

i is the current input, ct is the cell state vector, and ht is the hidden layer state:

α = so f tmax
(

VT
α (WT

α hi ⊙ bα)
)

(6)

ei = ∑ αhi (7)

where Wα ∈ Ru×Dα is the weighted matrix at the first layer, Vα ∈ RDα×1 is the weighted
vector at the second layer, ⊙ denotes an addition with broadcasting, bα ∈ RDα , and ei ∈ Ru.

The embedding ei is subsequently provided to the prototype layer, based on which a
collection of trainable prototypes is obtained. With a distance metric dk, the similarity sk
between the embedding and a particular prototype is calculated as:

dk(ei, pk) = ∥ei − pk∥2, (8)

sk = exp(−d(ei, pk)), (9)

where the function exp(·) converts the distance between the embedding vector ei and
the prototype vector pk to the corresponding value of similarity, which ranges from 0 to
1. Afterwards, the fully connected layer applies a linear transformation z = Ws, where
W ∈ RC×K, and C denotes the output size, which is equivalent to the number of classes.
More details of the proposed model are shown in Algorithm 1.
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Algorithm 1 Classifying time series based on prototype learning and attention
mechanisms with the fusion of human–machine intelligence.

Input:
Physiological signals AS

Output:
The classification result

1: as = getSeg(AS); // split AS into T equal length segments
2: H = biLSTM(as); // convert as into features
3: α = getAtt(H); // calculate the weight of each time step
4: ei = sum(αH); // output of the LSTM layer
5: P = getPro(p1, p2, . . . , pK); // refine prototypes based on human–machine intelligence
6: sk = getSim(ei, pk); // calculate the similarity metric between ei and pk
7: z = getFull(s); // obtain the classification result

Figure 2 depicts the procedural flow of the methodology proposed.

Figure 2. The workflow of the proposed method.

3.4. Optimization Objectives

PahNet’s training objectives comprise three distinct terms, aiming to achieve both
high prediction accuracy and good interpretability.

Diversity—In the quest to cultivate a diverse and distinctly nonoverlapping set of
prototypes within our model, we incorporate a specialized diversity loss term. This
term is designed to enforce a minimum mutual distance among the prototypes, thereby
enhancing the uniqueness and representativeness of each prototype. Formally, this concept
is encapsulated in the diversity loss function, R(P), defined as:

R(P) = σ
(

threshold− argmin
(
∥pi − pj∥2

2

))
, (10)

In this expression, σ(·) denotes the Sigmoid function, serving to scale the loss values
between 0 and 1, thus providing a probabilistic interpretation of prototype dispersion.
The term threshold signifies a predefined parameter that establishes the criterion for the
proximity threshold between any two prototypes. For this model, the threshold value is
empirically set to 1, a decision based on experimental evaluations aimed at optimizing the
trade-off between diversity and model complexity.

The operational mechanism of R(P) ensures that smaller pairwise distances between
prototypes pi and pj within the embedding space incur greater losses, compelling the
prototypes to maintain a specified minimum distance from each other. This approach not
only fosters diversity among the prototypes but also significantly contributes to the overall
performance of the model by ensuring that each prototype distinctly captures different
aspects of the data representation.

Prototypicality—In addressing the challenge of prototypicality, wherein the discrep-
ancy between the encoded instances and their corresponding prototypes may compromise
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the prototypes’ ability to faithfully represent time series data, our model incorporates a
distinct prototypicality loss. This loss function is meticulously designed to ensure that each
prototype effectively mirrors the characteristics of at least one instance within the dataset,
thereby enhancing the representativeness and accuracy of the prototype representation:

R1(P, X) = ∑K
i=1 min

j∈[1,N]
∥pi − ej∥2

2, (11)

where pi denotes the i-th prototype, ej represents the j-th encoded instance, and N signifies
the total number of instances. This term aims to minimize the distance between each
prototype and its nearest encoded instance, thereby ensuring that prototypes are positioned
within close proximity to at least one instance in the dataset.

Conversely, the regularization term R2(P, X) is articulated as:

R2(P, X) = ∑N
j=1 min

i∈[1,K]
∥ej − pi∥2

2, (12)

This term endeavors to cluster similar inputs around each prototype, minimizing the
distance between instances and their closest prototype. Collectively, these regularization
components not only promote a closer correspondence between prototypes and encoded
instances but also facilitate a structured clustering of instances around prototypes, thus
bolstering the model’s prototypicality and enhancing its ability to capture the intrinsic
patterns within time series data.

Accuracy—The accuracy loss component is engineered to refine the fidelity of pre-
dictions through the minimization of cross-entropy loss between the forecasted labels and
their true counterparts. This critical metric is quantitatively expressed as follows:

CE = ∑Ñ
i=1 yi log ŷi + (1− yi) log(1− ŷi), (13)

where Ñ denotes the number of instances within a given mini-batch. Here, yi and ŷi
respectively represent the actual and predicted labels for the i-th instance, encapsulating
the model’s ability to accurately predict the class of each instance.

Integrating this accuracy loss term with the previously outlined diversity and proto-
typicality loss components forms the comprehensive optimization objective of our model,
articulated as:

Loss = CE + λR(P) + λ1R1(P, X) + λ2R2(P, X), (14)

wherein the hyperparameters λ, λ1, and λ2 are leveraged to modulate the relative influence
of each loss term on the final optimization process. The calibration of these hyperparam-
eters is pivotal, as it necessitates a nuanced understanding of the time series’ inherent
characteristics to strike a harmonious balance that optimizes model performance.

3.5. Human–Machine Fusion for Responsible Editing

In practical applications, domain experts, such as physicians, need to validate the
correctness of machine learning models based on their knowledge. The provision of inter-
pretable models that employ anticipated patterns for predictions is of high importance. To
this end, we propose to further refine prototypes in case domain-specific human intelligence
is available.

Specifically, human participants, especially domain experts, play a crucial role, as
their knowledge and experience offer additional validation and feedback to the trained
model. The core concept underlying prototype-based models is the identification of im-
portant samples and the assurance of suitable human intervention. Figure 3 illustrates
the process of model refining based on human intelligence, aiming to enhance PahNet’s
interpretability and performance through the validation and modification of prototypes. By
incorporating human expertise, a more collaborative approach is provided, ensuring more
trustworthy results for important applications, such as electrocardiogram signal analysis
and classification.
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Figure 3. Human–machine collaboration for prototype refinement.

According to the knowledge and feedback of domain experts, there are three potential
operations that can be applied to the model, including the generation of new prototypes, the
validation of pre-existing prototypes, and the removal of current prototypes. Each of these
operations serves to improve the model’s overall performance and interpretability. Once a
certain operation is conducted, the model is fine-tuned subsequently on the training data to
adapt to the newly introduced changes. Such an iterative process fosters a more dynamic
and adaptable model, allowing it to better align with domain-specific expertise and real-
world applications, such as electrocardiogram signal analysis and classification. In this
manner, the proposed model emphasizes the importance of human–machine collaboration
by integrating domain expert knowledge for model refinement, which is crucial for its
acceptance and adoption by domain experts in fields, where accurate and reliable results
are of high importance.

3.6. Interpretation with Prototypes

In the proposed model, prototypes are vectors in the latent space, which cannot be
interpreted intuitively. To enhance the interpretability of prototypes, it is necessary to
transform the prototype vectors back into the original data space. Thereby, we introduce a
reverse mapping design during the training process that associates each prototype vector
pk with the nearest input sequence in the training set. Such an approach guarantees that
each prototype corresponds to an observable and representative time series, which helps
improve the model’s interpretability. This is especially important for domain experts, as it
enables them to gain a deeper understanding of the model’s decision-making processes,
and improve the model based on real-world contexts:

αhi ← arg min
pk∈P

∥ei − pk∥2, (15)

asi ← αhi, (16)

In summary, the proposed reverse mapping approach has a positive impact on the
performance and interpretability of the model, which facilitates the development of the
prototypical technology in practical applications.

4. Experimental Results and Discussion
4.1. Classification Problem

In this study, we aim to develop an ECG classification model for rhythm identification
by categorizing the rhythms as normal sinus rhythm (N), AF (A), or other rhythm (O). ECG
waveforms for these three classes in the CinC dataset are depicted in Figure 4. Specifically,
the American College of Cardiology (ACC) defines AF as a tachyarrhythmia characterized
by predominantly uncoordinated atrial activation resulting in a deterioration of atrial me-
chanical function [68]. AF is the most common sustained cardiac arrhythmia, which affects
1–2% of the general population [69] and associates with a significant risk of mortality and
morbidity, including stroke, hospitalization, heart failure, and coronary artery disease [70].
Despite the importance of AF, its detection remains a challenge due to its episodic nature.
Specifically, detecting AF based on a single short lead of ECG is a complex task, and the
wide range of rhythm variations makes it even more challenging.
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Figure 4. Instances of ECG waveforms.

4.2. Experimental Setup and Baselines

Training and Implementation Details. To obtain an optimal model, we investigated the
performance of bidirectional long short-term memory (Bi-LSTM) networks with varying
numbers of layers (ranging from 1 to 8) and hidden units (from 8 to 64), under various con-
figurations involving mini-batch sizes (16, 32 and 128) and optimizers (stochastic gradient
descent, adagrad, and Adam). Specifically, a three-layer Bi-LSTM with 16 hidden units
was employed, with initial weights/parameters randomly set and learnable parameters
updated using the Adam optimizer with a learning rate of 0.002. The fully connected
prediction layer employed a dropout rate of 0.1. We set λ = 0.01, λ1 = 0.05, λ2 = 0.05,
dmin = 2.0. The ECG time series were partitioned into annotated heartbeats according
to the protocol proposed in a previous study [71], resulting in 38,363 Atrial Fibrillation
samples, 39,480 Normal Sinus Rhythm samples, and 44,571 samples belonging to Other
Rhythms. We trained the model on a mini-batch size of 128 samples, where the samples
were randomly partitioned into three subsets: a training set (70%), a validation set (10%),
and a test set (20%). PyTorch 1.1.0 was used for the implementation of both the proposed
model as well as the baselines, and experiments were conducted on a machine with an
Intel Xeon E5-2640 processor, 256 GB RAM, 8 Nvidia Titan-X GPUs, and CUDA 8.0 (The
supplier is Changzhou Changtao Network Technology Co., Ltd, Changzhou, China). The
implementation and workflows of the proposed model are shown in Figure 5.

Figure 5. The implementation of PahNet.

Baselines. To evaluate the performance of the proposed PahNet model, several baseline
models are used for comparison in this study.
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(a) CNN—The CNN model is applied to the entire ECG segment, followed by a fully
connected layer and Softmax layer for classification.

(b) Bi-LSTMAttn—A fusion of the Long Short-Term Memory network and attention
mechanisms, which is able to offer interpretability at the level of input variables.

(c) ProSeNet [19]—A model that combines prototype learning with a variant of RNN,
which is capable of providing both enhanced interpretability and high accuracy for se-
quence modeling tasks.

(d) ProtoryNet [27]—A model that operates by identifying the most similar prototype
for each sub-sequence within an instance of time series and subsequently feeding a RNN
with the corresponding proximity.

4.3. Experimental Results

We first conducted a two-class classification task, aiming to differentiate between
atrial fibrillation ECG time series and normal ECG time series. To evaluate the models’
performance, various metrics were used, including accuracy (ACC), area under the receiver
operating characteristic curve (ROC-AUC), and the F1 score. The results are shown in
Table 2. Specifically, we found that the accuracy of nonprototype models outperforms
that of prototype models, which is an expected outcome [27]. However, the proposed
PahNet model narrows the performance gap in accuracy, which validates the effectiveness
of the design.

Furthermore, we present the obtained prototypes of PahNet in Figure 6, which includes
seven ‘AF prototypes’ and four ‘normal prototypes’. In general, the normal P-waves that
appear in normal prototypes are superseded by fibrillation waves of varying sizes and
shapes in AF prototypes. Moreover, compared with normal ones, AF prototypes display
considerable amplitude variations in ventricular waveforms, as well as widening and
deforming in the QRS complex. Such observations should be due to the irregular ventricular
filling stemming from the erratic atrial electrical activity during ventricular contraction,
which leads to amplitude fluctuations. Cardiac experts have validated these observations,
which validates the capability of PahNet in learning meaningful prototypes from ECG
time series.

Table 2. Performance of different models on the two-class classification task.

Models ACC ROC-AUC F1

CNN 0.9280 0.9222 0.9163
Bi-LSTMAttn 0.9324 0.9414 0.9339

ProSeNet 0.8919 0.9047 0.9002
ProtoryNet 0.8731 0.8840 0.8726

PahNet 0.9060 0.9131 0.9177

We further investigate the model’s performance in classifying three categories, i.e.,
atrial fibrillation ECG time series, normal ECG time series, and the other ECG time series.
The used metrics include accuracy, macro precision, macro recall, and macro F1-score.

The results are summarized in Table 3. Accordingly, we find that compared with the
performance in two-class classifications, the models’ performance in three-class classifi-
cation declines significantly. In particular, the performance of prototype models becomes
closer to that of nonprototype models, indicating that models based on prototype learning
(e.g., PahNet) can effectively capture subtle differences among AF ECG time series, normal
ECG time series, and other ECG time series.
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Figure 6. Exemplary prototypes of ECG time series. The blue waveform indicates normal ECG
signals, and the green waveform represents AF signals. Transparent lines demonstrate samples
within the validation set, which characterize their similarities to the closest prototypes.

Table 3. Performance of different models in the three-class classification task.

ACC Macro-P Macro-R Macro-F1

CNN 0.8110 0.8049 0.8224 0.8123
Bi-LSTMAttn 0.8229 0.8137 0.7907 0.8175

ProSeNet 0.8060 0.8209 0.7824 0.7819
ProtoryNet 0.7714 0.7621 0.7836 0.7363

PahNet 0.8101 0.8372 0.8094 0.8104

Moreover, we display a set of prototypes for other ECG time series in Figure 7. A
broad spectrum of other rhythms can be observed from these prototypes, and some of
them exhibit irregular variations. For instance, there are different variations in P-waves,
leading to changes in the P-wave morphology, such as widening, heightening, inverting, or
even disappearing. There are also abnormalities in the QRS complex, which are reflected
by the increased width, atypical shape, or the emergence of supplementary peaks. Such
irregularities may signify ventricular arrhythmias or conduction disturbances. Furthermore,
deviations in the ST segment are observed, wherein the ST segment may shift upward or
downward in relation to the baseline, suggesting potential myocardial ischemia, myocardial
injury, or other cardiac complications. Last but not least, there are T-wave abnormalities as
well, including asymmetrical height and increased width, or inversion, which may relate to
ventricular hypertrophy, electrolyte imbalances, or other cardiac issues.

Figure 7. Exemplary prototypes of other ECG time series.

A comprehensive comparison of the proposed model PahNet and other state-of-the-art
prototype-based classification models was conducted, and the results are summarized in
Tables 2 and 3. Accordingly, we can conclude that PahNet achieves the best performance,
and the reason should be that these models have distinct architectures.
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In the case of ProtoryNet, the input is initially encoded by a sequence encoder before
being compared to a set of trainable prototypes in the prototype layer to derive a similarity
matrix. Subsequently, the similarity matrix is transformed for classification with the RNN
and fully connected layers. As the prototype layer appears in a earlier stage, the need for
more refined prototypes arises due to the fact that transformations of the similarity matrix
could lead to the loss of valuable information. Experimental outcomes in the original
study [27] suggest that ProtoryNet is more suitable for handling relatively longer time
series, which explains the significant decline in its performance in comparison to PahNet.

In the case of ProSeNet, it does not incorporate an attention mechanism and solely
relies on the outcome of the final step for classification. In contrast, the proposed model in-
tegrates an attention mechanism and leverages the outcome of all the steps for classification,
which explains PahNet’s performance advantages over ProSeNet.

To sum up, experimental results prove that PahNet achieves accurate and interpretable
classification of the ECG time series.

4.4. Expert-Guided Prototype Generation

It is easy to understand that prototypes obtained with learning-based models (i.e., ma-
chine intelligence) might be incomplete. Therefore, in addressing the challenge of ensuring
completeness and accuracy in prototype generation within PahNet, our approach harnesses
the synergy of human–machine collaboration to refine prototypes derived through machine
learning algorithms. This process begins with the selection of ten volunteers from our
research laboratory, who undergo a training session focused on ECG-related knowledge to
ensure familiarity with the domain-specific context of the prototypes.

After this orientation, the individuals are divided into five pairs and proceed to a
crucial phase of prototype evaluation. An initial step in this phase is to apply a filtering
criterion based on the Euclidean distance between ECG signals and the extant prototypes,
with signals exhibiting a distance less than a predetermined threshold of two being method-
ically excluded from further consideration. This filtering ensures that the focus remains on
ECG signals that could potentially enhance the nascent prototype set.

These filtered signals are then distributed evenly among the five pairs for a compre-
hensive initial analysis. Each pair is responsible for identifying signals that are not only
emblematic of the broader dataset but also distinct from current prototype representations.
Following this identification, domain experts with deep knowledge and experience in the
field are called upon to evaluate and affirm the selection of the most representative and
distinct signals as new prototypes.

The integration of these expert-validated prototypes into the model involves a com-
parative analysis with pre-existing prototypes for necessary adjustments and calibration.
This is followed by a subsequent round of experimentation, utilizing the refined prototypes
now bolstered by expert feedback, to further enhance the prototype representations for
additional ECG signals within the model. Specifically, nine expert-selected prototypes are
shown in Figure 8.

Figure 8. Exemplary prototypes obtained based on human knowledge.
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Moreover, the experimental results of different prototype models that have been
refined based on human–machine collaboration are shown in Table 4. By comparing
Tables 3 and 4, we can see that the fusion of human–machine intelligence helps improve
the models’ performance.

Table 4. Performance of different prototype models on the three-class classification task after incorpo-
rating human–machine collaboration.

ACC Macro-P Macro-R Macro-F1

ProSeNet 0.8376 0.8250 0.8179 0.8163
ProtoryNet 0.8134 0.8013 0.8123 0.8064

PahNet 0.8414 0.8449 0.8224 0.8235

4.5. Results and Discussion

In this manuscript, we unveiled PahNet, a deep sequence model that amalgamates
prototype learning with attention mechanisms, targeting the enhancement of both accuracy
and interpretability in time series classification. Central to PahNet is a human–machine
collaboration mechanism. This design enables domain experts to directly influence and
refine the model’s learning outcomes, specifically the prototypes derived from the data.
This approach not only makes the model’s decisions more transparent but also more
relevant, especially in critical fields such as medical diagnosis, where the precision of data
interpretation is paramount.

The experimental results showcased in this paper reveal that our model achieves
notable success in binary classification tasks, such as differentiating between normal sinus
rhythm and atrial fibrillation. While it exhibits slightly lower performance metrics when
compared to certain conventional models, like CNN and Bi-LSTMAttn, it markedly out-
performs other leading-edge prototype baseline models. This distinction becomes even
more pronounced in triple classification scenarios—encompassing normal sinus rhythm,
atrial fibrillation, and other rhythm types—where our model significantly surpasses these
baselines, with a prediction accuracy of 0.8414, and macro precision, recall, and F1-score
metrics of 0.8449, 0.8224, and 0.8235, respectively.

The results of PahNet illustrates the potential of combining human expertise with
machine efficiency to solve complex problems, particularly in healthcare, where it can
contribute to more accurate diagnostics, continuous patient monitoring, and the creation
of personalized treatment plans. Moreover, the results prompt a broader discussion on
the integration of similar models into various application domains, exploring their scala-
bility, adaptability, and impact. The effectiveness of PahNet in engaging domain experts
and leveraging their insights for model refinement suggests a promising direction for
future research in developing models that are not only technologically advanced but also
closely aligned with user needs and practical applicability. As such, PahNet represents a
paradigmatic example of how deep learning can be made more accessible and beneficial
across disciplines, particularly in those where decision making is deeply intertwined with
human expertise.

5. Conclusions

This paper introduces PahNet, a deep sequence network that integrates prototype
learning with attention mechanisms to enhance the classification of medical time series
data, such as ECG signals. Our experiments, utilizing the PhysioNet/Computing in
Cardiology (CinC) Challenge 2017 dataset, demonstrate that PahNet successfully balances
high accuracy with improved interpretability, particularly excelling in complex triple
classification compared to established models.

The distinctive integration of Recurrent Neural Networks with prototype learning in
PahNet allows for the effective capturing and dynamic refinement of temporal patterns,
which enhances the accuracy of classifying unknown time series samples. The introduction
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of a human–machine collaboration mechanism further allows domain experts to directly
interact with and refine the model’s prototypes, ensuring clinical relevance and enhancing
the model’s practical utility.

Moreover, the implementation of a prototype quantity control method manages the
number of prototypes, preventing model overcomplexity and maintaining interpretability.
This approach addresses common challenges in prototype-based models, particularly the
excessive generation of prototypes that can hinder clear decision making.

In conclusion, PahNet represents an advancement in the field of medical time series
analysis, offering an interpretable model that holds great promise for real-world clinical ap-
plications. Meanwhile, the methodologies developed and validated in this study contribute
to the ongoing discussion on strategies for integrating automated systems with human
expert knowledge in healthcare settings.

6. Limitations and Future Work

The PahNet model still has certain limitations. First, it relies on a single heartbeat
rather than a series of heartbeats for ECG classification; therefore, some useful features
such as the predictability of the RR interval have not been fully explored. We recognize the
importance of RR interval predictability and other features accessible through the analysis
of series of heartbeats, both for the depth of analysis they offer and clinical relevance in
diagnosing atrial fibrillation or other cardiac conditions. Moving forward, we plan to
extend our model to incorporate sequential heartbeat analysis. This expansion will allow
us to explore these valuable features more fully and to evaluate their impact on the model’s
diagnostic accuracy and predictive capabilities.

Second, the proposed human–machine collaboration mechanism requires further opti-
mization to improve its scalability, especially for large-scale and complex datasets. We plan
to improve scalability, which involves a multi-faceted approach, focusing on optimizing
the current architecture of our mechanism to handle larger and more complex datasets
more efficiently. This will likely include the adoption of more sophisticated machine
learning techniques, such as distributed computing frameworks or parallel processing
strategies. Additionally, we will explore partnerships with institutions that can provide
access to larger and more complex datasets to validate the practical effectiveness of the
aforementioned technologies.

Third, in our study, we initially focused on optimizing the collaboration mechanism
itself, with a smaller number of experts involved. However, we recognize the significance
of this factor and agree that a more extensive exploration into how the quantity of experts
affect the model’s performance is essential. To address this, we plan to conduct further
experiments that systematically increase the number of experts involved in the process.
This will allow us to quantify the impact of the number of experts on the model’s accuracy,
reliability, and overall effectiveness.

Fourth, we understand the importance of robust outlier handling and noise mitigation
strategies to enhance the accuracy and reliability of models, especially in the complex
context of clinical data. While our initial study did not delve into these concerns, we
consider them essential components of our future research agenda. In forthcoming work,
we intend to dedicate a segment of our research to specifically address these challenges.
This will include the integration of advanced various filters to manage outliers effectively
such as Adaptive Notch Filter (ANF), the Finite Impulse Response (FIR) filter, and other
filter-based approaches.
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