
Citation: Korbmacher, R.; Tordeux, A.

Toward Better Pedestrian Trajectory

Predictions: The Role of Density and

Time-to-Collision in Hybrid

Deep-Learning Algorithms. Sensors

2024, 24, 2356. https://doi.org/

10.3390/s24072356

Academic Editor: Guillermo

Villanueva

Received: 26 February 2024

Revised: 27 March 2024

Accepted: 6 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Toward Better Pedestrian Trajectory Predictions:
The Role of Density and Time-to-Collision in Hybrid
Deep-Learning Algorithms
Raphael Korbmacher * and Antoine Tordeux

Department for Traffic Safety and Reliability, University of Wuppertal, 42119 Wuppertal, Germany;
tordeux@uni-wuppertal.de
* Correspondence: korbmacher@uni-wuppertal.de

Abstract: Predicting human trajectories poses a significant challenge due to the complex interplay
of pedestrian behavior, which is influenced by environmental layout and interpersonal dynamics.
This complexity is further compounded by variations in scene density. To address this, we intro-
duce a novel dataset from the Festival of Lights in Lyon 2022, characterized by a wide range of
densities (0.2–2.2 ped/m2). Our analysis demonstrates that density-based classification of data can
significantly enhance the accuracy of predictive algorithms. We propose an innovative two-stage
processing approach, surpassing current state-of-the-art methods in performance. Additionally, we
utilize a collision-based error metric to better account for collisions in trajectory predictions. Our
findings indicate that the effectiveness of this error metric is density-dependent, offering prediction
insights. This study not only advances our understanding of human trajectory prediction in dense
environments, but also presents a methodological framework for integrating density considerations
into predictive modeling, thereby improving algorithmic performance and collision avoidance.

Keywords: pedestrian trajectory prediction; deep learning; pedestrian trajectory dataset; density-based
classification; collision avoidance

1. Introduction

The challenge of predicting pedestrian trajectories has emerged as a pivotal challenge
in recent years. This surge in interest is largely attributed to the profound implications it
holds for autonomous vehicle navigation [1], service robot deployment [2], and the strategic
planning of infrastructure and mass gatherings [3]. In addressing these intricate challenges,
researchers have traditionally employed physics-based (PB) models to simulate and under-
stand pedestrian behavior. These models have been instrumental in dissecting collective
phenomena and enhancing our understanding of pedestrian dynamics, particularly in high-
density contexts relevant to crowd management and evacuation strategies [3]. However,
the landscape of pedestrian trajectory prediction has witnessed a paradigm shift over the
last decade with the advent and integration of deep learning (DL) algorithms [4]. Despite
the opaqueness of these models in terms of interpretability, their superiority in mirroring
observed trajectories has been markedly pronounced, especially when juxtaposed with
their PB counterparts [5]. Nonetheless, it is important to acknowledge that the domains
of applicability for PB and DL models do not entirely overlap. While PB models excel
in the realm of high-density simulations, providing insights into collective behavior, DL
algorithms predominantly thrive in low-density environments where individual pedestrian
movements are characterized by a greater degree of freedom and intricate long-range inter-
actions [4]. This paper introduces a novel, real-world pedestrian trajectory dataset, gathered
during the Festival of Lights in Lyon. Field pedestrian trajectory datasets are typically gath-
ered from low-density situations. In contrast, this dataset captures the nuanced dynamics
of pedestrian movements across a large spectrum of density levels. It ranges from sparse
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crowds observed during show moments to the densely packed throngs seen after the event.
Utilizing this dataset, we train DL algorithms, including Long Short-Term Memory (LSTM)
networks and Generative Adversarial Networks (GAN). Our methodology is underscored
by a novel approach: we harness situational classification predicated on crowd density to
refine our models’ learning process. This two-stage process, which initially classifies the
scene based on density and then predicts the trajectories, not only bolsters the efficiency
of our models but also substantially elevates the precision of trajectory predictions. This
improvement is demonstrated by comparative analyses with traditional DL algorithms
and PB models.

Another challenge of trajectory prediction that we face in this paper is overlapping
and colliding of predicted trajectories [6]. To tackle that problem, we integrate a time-
to-collision (TTC) [7] term into the loss function of the algorithms. A parameter, λ, is
utilized to modulate the TTC’s influence on the training. Our empirical research uncovers
a significant relationship between the optimal λ values and the density levels, highlighting
the intricacies of pedestrian behavior across different densities.

The remainder of this paper is organized as follows: first, we review related studies
in Section 2. Then, our novel dataset is presented in Section 3 and the methodology for
the empirical work is proposed in Section 4. The results are shown in Section 5. Finally,
Section 6 includes a discussion of the results and an outlook on future works.

2. Related Work

The domain of pedestrian trajectory prediction is multifaceted, drawing insights from
various disciplines and methodologies. The two main stream are the physics-based models
and data-based algorithms [4]. PB models have been the cornerstone of understanding
pedestrian dynamics, especially in high-density scenarios. The Social Force model (SF),
introduced by Helbing and Molnar [8], exemplifies this approach, simulating pedestrian
movement by balancing attractive and repulsive forces. Other famous PB models are the
Optimal Reciprocal Collision Avoidance (ORCA) from Van den Berg et al. [9] or the cellular
automata model from Burstedde et al. [10]. However, these models are not without their
challenges, particularly when it comes to encapsulating the full range of crowd behavior [4].
For more PB models, see reviews such as [11–13].

In pursuit of addressing these limitations, the research frontier has gradually shifted
towards data-driven methodologies. Notably, the past decade has witnessed a burgeoning
interest in DL approaches. Pioneering works such as the Social LSTM from Alahi et al. [5]
introduce the use of Recurrent Neural Networks (RNN), specifically LSTM networks, in
conjunction with a novel concept known as Social Pooling. This innovative approach
incorporates neighbouring information, thereby enriching the model’s contextual under-
standing. This social concept was further enhanced by Gupta et al. [14] through Social GAN,
where the generative adversarial framework allowed for the generation of multiple plau-
sible future paths, addressing the inherent uncertainty in human movement. Alternative
methods employed for social predictions include attention mechanisms [15], graph-based
approaches [16], and the utilization of relative coordinates [17]. Additionally, deep learning
architectures such as Convolutional Neural Networks [18,19] and Transformers [20] have
been applied in trajectory prediction tasks.

A pivotal aspect of this paper is the innovative classification of trajectory scenes based
on crowd density prior to prediction. To the best of our knowledge, this approach is a
novel paradigm, potentially owing to the scarcity of high-density, real-world pedestrian
trajectory datasets. Xue et al. [21] predicted pedestrian destinations using bidirectional
LSTM classification. This involves an additional classification stage to distinguish between
possible destinations of pedestrians. They classify the route manually into four distinct
categories. In another paper from the authors [22], the classification was based on a cluster-
ing algorithm. Kothari et al. [23] categorized pedestrian trajectories based on the nature of
interactions observed, identifying behaviors such as collision avoidance, leader–follower
dynamics, and grouping behavior. An alternative methodology involves classifying tra-
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jectories based on individual pedestrian characteristics. Papathanasopoulou et al. [24]
concentrated on attributes such as age, gender, height, and speed to inform their classi-
fication. A second cornerstone of this work is the seamless integration of a PB concept,
TTC, into the loss function of DL algorithms. This synthesis of PB principles and DL
models is not an isolated endeavor. Alahi et al. [5] and Khadka et al. [25] utilized simulated
data from PB models for training DL algorithms. Antonucci et al. [26] embedded a PB
model directly into the DL architecture. Furthermore, the works of Silvestri et al. [27] and
Kothari et al. [28] stand out for their use of PB principles within the loss function to
eliminate unrealistic predictions.

3. The Dataset

With a growing interest in data-based methods, the significance of pedestrian trajectory
data has been elevated in recent research. This area has seen a proliferation of datasets
published by researchers, which can be categorized into field data and experimental data
obtained in laboratory conditions. In the field studies, real-world settings are employed
where individuals, unaware of their participation in a study, navigate through various
scenarios. Famous field datasets are the ETH [29] and UCY [30] datasets, which are widely
used in the machine learning community. Originating from surveillance videos, these
datasets capture pedestrians scene of low density (0.1–0.5 ped/m2). The GLOW dataset
from Eindhoven [31], a dataset used for route choice analysis, contains trajectory scenes of
higher densities, but only for short length trajectories. Other field datasets are the Stanford
Drone Dataset [32], the Grand Central Station Dataset [33], and the Edinburgh Informatics
Forum Dataset [34]. None of these have densities above 0.2 ped/m2. In the following, we
will present a field dataset with pedestrian densities between 0.2 and 2.2 ped/m2.

The data were collected at Lyon’s Festival of Lights. The event runs for four days
from 7 p.m. to 11 p.m., and attracts millions (2 million in 2022) of visitors each year. Key
attractions are light shows at Place des Terreaux and Place Saint-Jean. We have installed
cameras at the Place des Terreaux to film the area, which is represented by the red rectangle
in Figure 1.

(a) View of the Place des Terreaux in Lyon. (b) View of the tracking area (red box).

Figure 1. Area for the trajectory tracking at Lyon’s Festival of Lights 2022.

In Figure 1a, the entirety of Place des Terreaux is depicted. The red box on the
right-hand side delineates our designated tracking region. Figure 1b offers an aerial
perspective of this same area. This designated zone measures 9 m in length and 6.5 m in
width. On average, we concurrently tracked 55 pedestrians, resulting in a mean density
of 0.95 ped/m2. The distribution of pedestrian density exhibited significant variability.
During the light show, the majority of pedestrians congregated in the central area of the
square, remaining largely stationary. Consequently, the pedestrian density within our
tracking zone was relatively low. However, when the show concluded—which consistently
lasts approximately 9 min—the crowd dynamics shifted dramatically, as most individuals
sought to exit towards another event. In this transition phase, the density within our
tracking corridor surged, often exceeding 120 pedestrians moving simultaneously. For
video calibration, we meticulously established nine calibration points, ensuring the precise
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tracking of pedestrian trajectories using the PeTrack software [35]. Throughout our study,
we recorded 5195 individual trajectories, which averaged a duration of 12.38 s and a mean
velocity of 0.62 m/s. The pedestrian flow changes between mostly unidirectional flow, after
the light show and bidirectional flow during the show. More informations about the data
can be found in the Appendix A. For the training and testing of the algorithms, we need
trajectories of a minimal length of 7 s (see Section 4.1). Because many trajectories are more
than 14 s long, they can be used more than once. In total, we obtained 7450 trajectories for
training and testing.

4. Methodology
4.1. Overview

For predicting pedestrian trajectories, we have ith pedestrian in a scene represented
by image coordinates (xi

t, yi
t) for each time instant t = k · dt, with k ∈ N and a time step

of dt = 1/3 s. The observed positions from t = T1 to t = Tobs is taken as input and the
aim is to predict future trajectories from t = Tobs + dt to t = Tpred. Every scene involves
a primary pedestrian and their neigbours over the timespan T1 to Tpred. A neigbours is a
pedestrian whose position at T1 is closer to the position of the primary pedestrian than
a radius r = 5 m. Our dataset has a framerate of three observation for each second. We
choose input trajectories of 9 observations (3 s) and want to predict 12 timesteps (4 s).

The predicted trajectory of all primary pedestrians are evaluated on two commonly
utilized Euclidean distance metric and a collision metric. In the first distance-based metrics,
called average displacement error (ADE) [29], the distance between the predicted trajectory
and the ground truth trajectory is measured at any time step t:

ADE =
1

NT

N

∑
i=1

T

∑
t=1

∥x̂i(t)− xi(t)∥. (1)

where xi(t) is the actual position of the ith pedestrian at time t and x̂i(t) is the predicted
position. The Euclidean distance is denoted as ∥ · ∥. The second distance-based metric,
called the final displacement error (FDE) [30], displays the distance between the final point
t = Tpred of the predicted trajectory and the ground truth trajectory:

FDE =
1
N

N

∑
i=1

∥x̂i(T)− xi(T)∥. (2)

These distance-based metrics are widely used in pedestrian trajectory predictions for
their effectiveness in quantifying the goodness-of-fit. However, repulsive forces, which
are pivotal in shaping interactions between pedestrians, are not taken into account [36].
Consequently, these metrics do not account for potential overlaps or collisions between
pedestrians. Therefore, the collision metric is used to enhance the evaluating process:

COL =
1
|S| ∑̂

X∈S

COL(X̂), (3)

with:

COL(X̂) = min
(

1,
T

∑
t=1

N

∑
i=1

N

∑
j>i

[
||x̂i(t)− x̂j(t)|| ≤ 2R

])
. (4)

where S includes all scenes in the test set, X̂ represents a scene prediction containing N
agents, and x̂i is the prediction of the position of the agent i over the prediction time of T,
while [·] is the Iverson bracket.

[
P
]
=

{
1 if P is true,
0 otherwise.

(5)
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This metric counts a prediction as a collision when a predicted pedestrian trajectory
intersects with neighboring trajectories, thus indicating the proportion of predictions where
collisions occur. A vital factor in this calculation is the chosen pedestrian size R. An increase
in R will likewise increase the number of collisions. For calculating the collision metrics,
we use a radius R = 0.2 m.

4.2. Prediction Approaches

In the subsequent trajectory predictions, various trajectory prediction approaches,
ranging from traditional PB models to modern DL algorithms, are chosen as benchmarks for
comparison with our two-stage approach. We present the results of the Constant Velocity
model (CV) and SF model [8] as well as the results of a Vanilla LSTM, the Social LSTM
(SLSTM) [5], and the Social GAN [14]. These approaches, characterized by their diverse
features, are commonly selected for comparison and serve as benchmarks that must be
surpassed. The position and velocity of the ith pedestrian are denoted as xi ∈ R2 and
vi ∈ R2, respectively. For a system of N pedestrians, the position and velocity vectors,
x = (x1, . . . , xN) and v = (v1, . . . , vN), have dimensions of 2N. All variables, including
x(t) and xi(t), are functions of time t.

4.2.1. Constant Velocity Model

The CV model assumes pedestrian velocities remain unchanged over time. It serves
as a baseline for more complex models. The future position of a pedestrian is predicted as:

xi(t + tp) = xi(t) + tpvi(t), ∀tp ∈ [0, Tp]. (6)

4.2.2. Social Force Model

Introduced by Helbing and Molnar [8], the SF model treats pedestrians as particles
influenced by forces. Within this framework, the model calculates acceleration based on
the cumulative effect of three distinct forces, as delineated in Equation (7):

mi
dvi
dt

= mi
v0

i − vi

τ
+ ∑

j ̸=i
∇U(xj − xi) + ∑

W
∇V(xW − xi) (7)

where mi, vi, and v0
i signify the mass, current velocity, and desired velocity of pedestrian i,

respectively. The term ∇U(xj − xi) represents the repulsive force from other pedestrians,
while ∇V(xW − xi) indicates the repulsive force from obstacles. The potential functions
U(d) and V(d) are given by:

U(d) = ABe−|d|/B, A, B > 0 and V(d) = A′B′e−|d|/B′
, A′, B′ > 0 (8)

where A, A′, B, B′ > 0 are interaction parameters of the social force model.
The first term of Equation (7) signifies the driving force experienced by the ith pedes-

trian. This force propels the individual towards their desired speed and direction within
a relaxation time τ > 0. The second term encapsulates the summation of social forces,
originating from the repulsive effects as pedestrians endeavour to maintain a comfortable
distance from one another. The third term accounts for the aggregate interaction forces
between pedestrian i and various obstacles. While the CV model has no parameter, the SF
model has three parameters, i.e., preferred velocity, interaction potential, and reaction time,
which can be optimized to get accurate predictions.

4.2.3. Vanilla LSTM

LSTM networks, a class of RNN designed to learn long-term dependencies, have
proven effective in handling sequential data, particularly for time series prediction tasks.
Introduced by Hochreiter and Schmidhuber [37], LSTMs address the vanishing and explod-
ing gradient problems common in traditional RNNs, making them suitable for complex



Sensors 2024, 24, 2356 6 of 17

sequence modeling tasks such as trajectory prediction. The vanilla LSTM model considers
historical trajectories to predict future positions.

xi(t + tp) = xi(t) + LSTM
(
tp,

(
xi(t − to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp]. (9)

where xi(t + tp) predicts the future trajectory of a pedestrian i at time t + tp, based on its
past positions xi(t − to), over an observation window to ∈ [0, To].

4.2.4. Social LSTM

LSTM networks have demonstrated effective performance in sequence learning tasks.
One such task, the prediction of pedestrian trajectories, presents the challenge that the
trajectory of a pedestrian can be significantly influenced by the trajectories of surrounding
pedestrians. The number of these neighboring influences can fluctuate widely, especially in
densely crowded environments [38].

Enhancing the LSTM framework, the SLSTM by Alahi et al. [5] incorporates a social
pooling layer, enabling the model to consider the influence of neighboring pedestrians
explicitly. This is a key distinction from the Vanilla LSTM, reflecting the model’s capacity
to capture social interactions:

xi(t + tp) = xi(t) + SLSTM
(
i, tp,

(
x(t − to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp]. (10)

where x is the vector of positions of the neighboring pedestrians. In this formulation,
the inclusion of the index i and the collective pedestrian state x emphasizes the model’s
attention to the surrounding pedestrians’ trajectories, making it adept at handling complex
social behaviors in dense scenarios.

4.2.5. Social GAN

Another approach we take into account is the Social GAN (SGAN) introduced by
Gupta et al. [14]. This model extends traditional approaches by incorporating GANs to
predict future trajectories. GANs, conceptualized by Goodfellow et al. [39], consist of two
competing networks: a Generator, which generates data samples, and a Discriminator,
which evaluates the authenticity of the samples against real data. SGAN leverages this
architecture to generate plausible future trajectories of pedestrians, addressing the complex
dynamics of pedestrian movement in crowded spaces. A key feature of the SGAN model is
its pooling mechanism, which processes the relative positions of pedestrians to each other.
This mechanism is crucial for understanding the social interactions and dependencies
among individuals in crowded environments

xi(t + tp) = xi(t) + SGAN
(
i, tp,

(
x(t − to), to ∈ [0, To]

))
, ∀tp ∈ [0, Tp]. (11)

4.3. Two-Stage Process

The foundation of our innovative classification framework lies in its capacity to predict
trajectories across varying density levels, marking a departure from traditional models that
typically utilize a single algorithm to process a wide array of scenarios within a dataset.
Our strategy entails segmenting the dataset according to the density of each scene, thereby
generating distinct subsets. At the inception of our methodology, we establish well-defined
criteria for classification. This process is underpinned by two distinct methodologies: a
statistical analysis and a review of existing literature. The results of this clustering process
are depicted in Figure 2. These figures visually represent each dataset item as a point
measurement each second, with the left side of Figure 2 illustrating points based on their
average density:

ρ(t) =
N(t)

A
, (12)

and average velocity:
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v̄(t) =
1

N(t) ∑
i∈S(t)

vi(t), (13)

for the K-Means clustering. On the right side, the clustering is carried out by using the
Agglomerative Hierarchical Clustering algorithm (AHC).

Figure 2. Results of the K-Means and the agglomerative hierarchical clustering. Trajectory scenes are
clustered as shown by the different colors of the points.

We can see clear vertical colour switch’s of the points at densities around 0.7, 1.1,
and 1.6 ped/m2 for both cluster algorithms. Remarkably, without presetting the number
of clusters or explicitly focusing on density levels, the K-Means and AHC algorithms
autonomously reveal density-dependent clustering. The delineation of clusters and their
boundary values align closely with those identified in the literature. Stefan Holl [40]
delineated critical density thresholds for various infrastructures, signifying points at which
pedestrian behavior undergoes significant changes. According to Holl, densities below
0.7 ped/m2 indicate a free flow state, densities below 1.3 ped/m2 represent a bound flow,
and values above 1.3 ped/m2 are indicative of congested flow. In our model, we refine
these categories by slightly narrowing the bound flow range and subdividing the congested
flow category into two distinct segments.

Figure 3 illustrates the procedural steps undertaken to evaluate our proposed method-
ology and within the sizes of the clusters, which are partly taken from the classification
Figure 2.

Figure 3. Schemata of our two-stage prediction approach.

New trajectory scenes are given to our framework, where the initial step involves cal-
culating the scene’s density using Equation (12) in individuals per square meter (ped/m2),
N represents the total number of pedestrians observed within the scene, and A is the scene’s
total area in square meters.

The density categorization is as follows: scenes with a density below 0.7 ped/m2

are labeled as lowD; densities ranging from 0.7 to 1.2 ped/m2 are classified as mediumD;



Sensors 2024, 24, 2356 8 of 17

densities between 1.2 and 1.6 ped/m2 are designated as highD; and densities exceeding
1.6 ped/m2 are identified as veryHD. Following classification, the scene is bifurcated into
two segments: the initial segment spans nine timesteps and serves as input for one of
the four specialized Sub-LSTMs, while the subsequent segment, encompassing twelve
timesteps, is utilized to appraise the LSTMs’ performance through the computation of error
metrics ADE, FDE, and COL. Figure 4a–d provide illustrative examples of each density
level encountered in our dataset.

(a) Example of a lowD scene. (b) Example of a mediumD scene.

(c) Example of a highD scene. (d) Example of a veryHD scene.

Figure 4. Examples for each of the four density levels.

In Figure 4a, the scene exhibits very low density, with pedestrian movement primarily
from two directions, leading to numerous interactions and avoidance behaviors. This is
characteristic of our lowD data. Conversely, Figure 4b showcases a moderately higher
density, yet still affords space for interactions, avoidance, and bidirectional pedestrian flow.
In Figure 4c, representing highD data, the dynamics of pedestrian movement markedly
differ from those observed in lowD and mediumD scenes, with movement predominantly
unidirectional from the top, indicating a tendency to follow the pedestrian ahead. This
pattern is even more pronounced in Figure 4d, where the flow from the top is so dense that
passage from the bottom becomes challenging, leading pedestrians to follow the leader
with limited freedom of movement and space. These observed behavioral differences
underpin our classification rationale.
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4.4. Collision Weight

Predictions of pedestrian trajectories presents the challenge to predict trajectory paths
that do not collide with neighbours. Accurately measuring these collisions is challenging
due to the shapes of pedestrians, which can vary from person to person. Traditionally,
collisions are defined by the overlap of the radii of two pedestrians, as delineated in
Equations (3)–(5). However, this method proves suboptimal for inclusion as a penalty
function within the loss function of DL algorithms. Analysis of pedestrian trajectory data
frequently reveals instances where collisions are not genuine but rather instances of group-
ing behavior, with individuals walking closely together, sometimes shoulder-to-shoulder.
It is not these interactions we aim to deter, but rather scenarios in which individuals move
directly towards one another without any attempt to avoid collision—behaviors that are
unrealistic and undesirable.

To address this, we adopt the TTC concept, a widely recognized principle in the
study of pedestrian dynamics [7]. Implementing this variable in the loss function of an DL
algorithm would reduce predicted situations, where pedestrians walk straight towards each
other without avoidance mechanism. Integrating TTC into a DL algorithm’s loss function
significantly mitigates predictions where pedestrians are on a direct collision course without
any avoidance mechanisms. The TTC term calculates the time until two pedestrians
would collide if they continue moving at their current velocities, a concept validated
by Karamouzas et al. [7]. The relative position and velocity between the pedestrian i
and j can be denoted by xij = xi − xj ∈ R2 and vij = vi − vj ∈ R2, respectively. A
collision between pedestrian i and pedestrian j occurs if a ray, originating from (xi, yi) and
extending in the direction of vij, intersects the circle centred at (xj, yj) with a radius of
Ri + Rj at some time τij in the future. This condition can be mathematically represented
as ||xij + vij.t||2 < (Ri + Rj)

2, where ||.|| denotes Euclidean norm. Solving this quadratic
inequality for t yields τij as the smallest positive root:

τij =
−xij · vij −

√
(xij · vij)2 − ||vij||2(||xij||2 − (Ri + Rj)2)

||vij||2
(14)

A collision is imminent when τij = 0, whereas a large positive value for τij indicates no
collision risk. To implement τij into the loss function, we have to use an sigmoid function f
that has high values, if τij is low and vice versa:

f (τ) =
1

1 + es(τ−δ)
, (15)

where s = 10 and δ = 0.4 are slope and threshold parameters, respectively. This function is
then integrated into the loss function, traditionally focused solely on minimizing the ADE.
The revised loss function combines ADE with TTC loss, optimized through minimization:

Li =
T

∑
t=1

∥xi(t)− x̂i(t)∥+ λ
T

∑
t=1

f (min
j ̸=i

{τij}), (16)

where λ > 0 modulates the influence of the TTC component in their loss function. The
calculation of τij considers all nearby pedestrians to the primary pedestrian, employing
the minimum τij to identify and mitigate the most critical potential collision scenario in
the model.

4.5. Implementation Details

The algorithms are implemented in the commonly accepted configurations of related
contributions [23]. All computations are performed using the PyTorch framework. The
learning rate is set to 0.001 and an ADAM optimizer is utilizied. The batch size is set to 8
and training is carried out for 15 epochs, if not the early stop mechanism interrupt. This



Sensors 2024, 24, 2356 10 of 17

is the case, when the validations error starts to rise for three epochs. For validation and
testing, a hold-out validation strategy is adopted by allocating 15% of the dataset for each
validation and testing, while the remaining data serves as the training set. For capturing
pedestrian interactions, we choose a circles with a radius of r = 5 m surrounding the
primary pedestrian.

5. Results

We will unveil the predictive outcomes of our dataset using two distinct yet synergistic
methods. Initially, we will showcase the performance of our two-stage prediction frame-
work, comparing it with contemporary state-of-the-art methodologies. Subsequently, we
will demonstrate the seamless integration of our two-stage process with the incorporation of
the TTC term into the loss function, illustrating its efficacy in mitigating collision instances.

5.1. Two-Stage Predictions

The results of our predictions will be presented in Table 1. As described in Section 4.3,
we evaluated the predictions on the different density levels lowD, mediumD, highD, and
veryHD. For every approach, we measure ADE, FDE, and COL metrics.

Table 1. Quantitative comparison of ADE, FDE and COL prediction metrics for classical algorithms
borrowed from the literature and our 2-stage approaches on the Festival of Lights dataset.

Model
LowD MediumD HighD VeryHD

ADE/FDE COL ADE/FDE COL ADE/FDE COL ADE/FDE COL

CV 0.71/0.97 54.76 0.85/0.98 45.73 0.53/0.8 62.35 0.44/0.67 81.74

Social Force [8] 0.78/1.33 24.4 0.55/0.89 31.16 0.5/0.82 36.43 0.36/0.63 54.78

Vanilla LSTM 0.5/0.99 31.55 0.33/0.63 37.69 0.29/0.52 36.43 0.24/0.41 63.8

Social LSTM [5] 0.53/1.02 57.74 0.37/0.73 59.3 0.41/0.78 64.26 0.35/0.66 75.37

Social GAN [14] 0.53/0.99 31.36 0.39/0.72 32.16 0.36/0.61 32.33 0.25/0.41 55.94

Our 2stg. SLSTM 0.48/0.93 30.95 0.3/0.63 36.18 0.26/0.4 42.02 0.24/0.41 52.23

Our 2stg. SGAN 0.44/0.83 32.74 0.27/0.52 40.2 0.28/0.5 35.33 0.26/0.43 58.6

Our 2stg. TTC-SLSTM 0.39/0.73 29.17 0.3/0.62 22.61 0.23/0.36 36.29 0.24/0.41 52.23

The initial insight gleaned from Table 1 reveals a clear trend: as density increases,
the COL metric rises while the ADE/FDE diminish. This pattern emerges because higher
densities naturally lead to reduced distances between individuals, consequently resulting
in increased overlaps among agents. Additionally, it is observed that velocities decrease as
density intensifies, leading to trajectories that are shorter in spatial extent. This reduction in
travel distance directly contributes to the observed decrease in both ADE and FDE metrics
at higher densities. Furthermore, it is clear that the DB algorithm outperform the traditional
models CV and SF in terms of ADE/FDE. In terms of the COL metric, SF performs very well.
In the last three rows of Table 1, we present the effectiveness of our two-stage approach
and its combination with the TTC term. The results clearly show a significant improvement
in the algorithm’s precision, attributed to the strategy of classification before prediction.
Our enhanced two-stage SLSTM model consistently outperforms the traditional SLSTM
across all evaluated datasets, demonstrating superior performance in terms of ADE, FDE,
and COL metrics. Similarly, our adapted SGAN model shows marked improvements over
the standard SGAN in three out of four datasets with respect to ADE. Integrating the TTC
term further enhances the SLSTM results, notably in reducing collisions. A more detailed
discussion on this enhancement is provided in the subsequent Section 5.2.

5.2. Collision Weight

In this study, we propose to integrate TTC in the loss function with the two-stage
approach outlined in Section 4.3. As described in Equation (16), the collision part in the
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loss function can be adjusted by a parameter λ [36]. If λ is high, the impact of the TTC term
is high compared to the impact of ADE and vice versa. In Figure 5, the impact of different
values of λ on the prediction accuracy of the SLSTM algorithm is displayed: Figure 5a
for lowD data, Figure 5b for mediumD data, Figure 5c for highD data, and Figure 5d for
veryHD data. The first observation in each Figure is for λ = 0, which means that it is
equivalent to the value of our two-stage SLSTM in Table 1.

(a) Low density (lowD) (b) Medium density (mediumD)

(c) High density (highD) (d) Very high density (veryHD)

Figure 5. ADE and COL metrics for the two-stage SLSTM algorithm according to the collision weight
λ for the four density levels.

Across all figures, a consistent pattern emerges: increasing the collision weight λ
generally results in fewer collisions. Optimal predictions occur at a specific λ value, where
ADE and FDE are equivalent to or lower than those at λ = 0. Each dataset exhibits a
maximum effective λ value, beyond which ADE sharply increases. In the lowD dataset
(Figure 5a), the ideal λ is 0.08, reducing ADE by 19% and collisions by 6%. Values slightly
higher than 0.08 are still beneficial, yielding fewer collisions and enhanced avoidance
behavior, but λ values exceeding 0.16 lead to a significant increase in ADE. In the mediumD
dataset (Figure 5b), the optimal λ is 0.04, reducing ADE and collisions by 3% and 40%,
respectively. Here, a λ value above 0.06 results in increased ADE, although a λ of 0.1 reduces
the collision metric by 75%. In the highD dataset, improvements in ADE are marginal too,
only notable at a λ of 0.02. However, the collision metric significantly decreases, by up
to 48%, at a λ of 0.08. Conversely, in the very high-density (veryHD) dataset, increasing
collision weight initially results in a rise in ADE, with no subsequent decrease. While
the collision metric decreases by 37% at λ = 0.08 values, there are no improvements for
ADE. These empirical observations lead to the insight, that pedestrian behavior at different
densities is very different and need different parameter configurations. At lower densities,
our TTC term can improve overall accuracy (ADE and COL), while at higher densities, we
can only reduce COL, by taking higher ADE into account.

6. Conclusions

Pedestrian behavior is inherently complex, exhibiting a wide variety of patterns
across different contexts. This paper introduced a novel pedestrian trajectory dataset,
characterized by its diversity in situational contexts, including varying densities and
motivations. Our analysis of the data reveals variations in pedestrian behaviors correlating
with the density of the scene. To address these variations, we propose a novel two-stage
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classification and prediction process. This approach first classifies scenes based on density
and then applies the suitable model for predicting behavior within that specific density
context. Implementing this framework enhanced the prediction accuracy of two famous
DL algorithms, Social LSTM and Social GAN.

Furthermore, we integrated a TTC-based term into the loss function of the SLSTM
to improve avoidance behaviors, consequently reducing potential collisions. Our empir-
ical studies indicate that the effectiveness of the TTC-based term varies with density; it
significantly benefits scenarios of low density by correlating higher TTC values with re-
duced collision incidents. However, the outcomes in high-density situations were more
ambiguous, suggesting a nuanced impact of density on the efficacy of this approach. This
observation could be attributed to the nuanced dynamics of pedestrian behavior across
different densities. Specifically, in environments with lower densities, pedestrians tend to
navigate more through avoidance and interactions, making TTC particularly relevant. Con-
versely, in higher density settings, pedestrian movement is more characterized by forced
leader–follower dynamics, diminishing the prominence of TTC in explaining behavior.
This study underscores the complexity of pedestrian behavior, which varies significantly
under different environmental conditions. It highlights the necessity of adopting a flexible
modeling approach to accurately predict pedestrian trajectories in diverse settings.

This research opens several avenues for future investigation in the field of pedes-
trian trajectory prediction, especially concerning heterogeneous datasets characterized by
variable densities. Current methodologies typically rely on a one-size-fits-all model for
behavior prediction across all conditions. We advocate for the development and application
of multiple specialized models, each tailored to different scene characteristics, with scene
density being a pivotal factor. While focusing on density has proven to be a successful
strategy, exploring additional factors and individual pedestrian behavior characteristics
could yield further improvements. For instance, our methodology utilized an estimate
of overall scene density. However, pedestrians do not take global densities for their deci-
sion making into account, but rather local densities. Wirth et al. [41] demonstrated that
pedestrian decisions are primarily influenced by their visual neighborhood. Future studies
should investigate the impact of assessing local density variations within a scene, which
could be particularly beneficial in environments exhibiting a wide range of density lev-
els. This direction could unlock new dimensions of accuracy and reliability in trajectory
prediction models.

Moreover, incorporating the TTC concept into the loss function has shown promise
in enhancing prediction accuracy at lower density levels. Future research should explore
alternative loss functions, particularly for high-density scenarios, where the traditional
ADE-based approaches may not suffice. Investigating other metrics that could more
effectively capture the complexities of high-density pedestrian behavior is crucial for
advancing the field.
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Abbreviations
The following abbreviations are used in this manuscript:

DL Deep learning
PB Physics-based
LSTM Long Short-Term Memory
SLSTM Social Long Short-Term Memory
GAN Generative Adversarial Network
SGAN Social Generative Adversarial Network
TTC Time-to-collision
SF Social Force model
CV Constant Velocity model
ORCA Optimal Reciprocal Collision Avoidance
RNN Recurrent Neural Network
ADE Average displacement error
FDE Final displacement error
COL Collision metric
lowD Low density
mediumD Medium density
highD High density
VeryHD Very high density

Appendix A

In this appendix we present some of the pedestrian trajectories from the Festival
of Lights in Lyon that we used to train and test the algorithms, showing unidirectional
dynamics including avoidance of standing pedestrians (Figures A1 and A2) and lane
formation for counterflows Figure A3. For illustration, we also show some predictions
obtained with our 2-stage TTC-SLSTM in Figure A4.

The legends for the trajectory plots: in Figures A1–A3 are the following:

• grey trajectories correspond to pedestrians moving from top to bottom;
• green trajectories for bottom to top;
• blue trajectories for right to left;
• red trajectories for left to right.

The pedestrian speeds are calculated as follows

vi(t) =
∥xi(t + δt)− xi(t)∥

δt
, (A1)

where ∥ · ∥ is the Euclidean distance and δt = 1 s is the time step, while the pedestrian’s
accelerations are given by

ai(t) =
vi(t + δt)− vi(t)

δt
. (A2)

The instantaneous mean speed reads

v̄(t) =
1

|P(t)| ∑
i∈P(t)

vi(t), (A3)

https://madras-data-app.streamlit.app/
https://madras-data-app.streamlit.app/
https://www.madras-crowds.eu/
https://www.madras-crowds.eu/
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where P(t) is the set of pedestrians in the scene at time t, while the density is given by

ρ(t) =
|P(t)|
|S| , (A4)

where |P(t)| is the number of pedestrians in the scene at time t and |S| is the area of
the scene.

Figure A1. Extract of the trajectory dataset (recording Topview_2B). On the (left), trajectories are
plotted in x–y coordinates. The (center) section details density, mean speed, individual speed, and
individual acceleration sequences. On the (right), speed histograms in the different directions of
motion are shown. The pedestrian dynamics are predominantly unidirectional with few obstacles.

Figure A2. Extract of the trajectory dataset (recording Topview_2c). On the (left), trajectories are
plotted in x–y coordinates. The (center) section details density, mean speed, individual speed, and
individual acceleration sequences. On the (right), speed histograms in the different direction of
motion are shown. The pedestrian dynamics are predominantly unidirectional, while the scene
includes standing pedestrians in the upper left corner, initiating avoidance behavior and queuing.
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Figure A3. Extract of the trajectory dataset (recording Topview_2D). On the (left), trajectories are
plotted in x–y coordinates. The (center) section details density, mean speed, individual speed and
individual acceleration sequences. On the (right), speed histograms in the different direction of
motion are shown. This recording shows counter-flow pedestrian dynamics with lane formation.

(a) Predictions with our 2stg. TTC-SLSTM (b) Predictions with SLSTM

(c) Predictions with our 2stg. TTC-SLSTM (d) Predictions with SLSTM

Figure A4. Example of two pedestrian trajectory prediction scenes. In each scene, the predicted
trajectories and the ground truth are displayed. On the left side, predictions are based on our 2stg.
TTC-SLSTM, and, on the right side, predictions are based on SLSTM.
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