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Abstract: This paper focuses on the emissions of the three most sold categories of light vehicles:
sedans, SUVs, and pickups. The research is carried out through an innovative methodology based on
GPS and machine learning in real driving conditions. For this purpose, driving data from the three
best-selling vehicles in Ecuador are acquired using a data logger with GPS included, and emissions
are measured using a PEMS in six RDE tests with two standardized routes for each vehicle. The data
obtained on Route 1 are used to estimate the gears used during driving using the K-means algorithm
and classification trees. Then, the relative importance of driving variables is estimated using random
forest techniques, followed by the training of ANNs to estimate CO2, CO, NOX, and HC. The data
generated on Route 2 are used to validate the obtained ANNs. These models are fed with a dataset
generated from 324, 300, and 316 km of random driving for each type of vehicle. The results of
the model were compared with the IVE model and an OBD-based model, showing similar results
without the need to mount the PEMS on the vehicles for long test drives. The generated model is
robust to different traffic conditions as a result of its training and validation using a large amount of
data obtained under completely random driving conditions.

Keywords: low-cost emission model; machine learning model; portable emissions measurement
system; emission parametric model; real driving emissions

1. Introduction

Vehicle emissions from internal combustion engines are the primary source of pol-
lution in urban areas, negatively impacting air quality in cities [1]. Consequently, these
pollutants need to be quantified [2]. Thus, vehicular emissions inventories serve as impor-
tant tools for implementing and evaluating policies aimed at reducing the environmental
impact of vehicular activity on the quality of life of the population [3]. The quality of
emissions inventory results directly depends on the inputs and methodologies applied in
their determination; therefore, various methods exist for estimating pollutants according
to the realities of each population. Among the most commonly used alternatives are the
International Vehicle Emissions (IVE) model developed in the United States by the Mas-
sachusetts Institute of Technology in collaboration with the International Council on Clean
Transportation and the Computer Program to Calculate Emissions from Road Transport
(COPERT) developed in the European Union by the Joint Research Center. These models
estimate vehicular pollution emissions based on parameters such as emission factors, ve-
hicular activity, and characteristics of the vehicle fleet. However, these parameters may
not be equivalent to those in regions like Latin America, as variations in geographical and
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environmental conditions, vehicle technology, driving styles, and fuel quality can signifi-
cantly impact vehicle emissions, as determined by [4], and may not be fully reflected in the
IVE and COPERT calculations [5]. Therefore, different authors have developed methods to
improve pollutant estimation by considering the specific conditions of each region or city.
Costagliola et al. [6,7] found that pollutant emissions estimated using laboratory chassis
dynamometer tests and adjusted driving cycles are lower than those determined in real
driving cycles. Kurtyka et al. [8] and Mera et al. [9] reach similar conclusions, emphasiz-
ing that the differences in results between dynamometer tests and real driving emissions
(RDEs) are due to traffic conditions and driving styles. Hence, they recommend evaluating
pollutant emissions in real driving cycles.

Fontaras et al. [10] and Samaras et al. [11] determined that trips in private vehicles
constitute the main cause of fuel waste and unnecessary emissions of pollutants, influenced
by driver behavior, route selection, and traffic management, highlighting the importance
of vehicle monitoring for large-scale pollutant estimation. Prakash and Bodisco [12] and
Boulter et al. [13] determined that fuel consumption and pollutant emissions depend on
vehicle-specific factors such as model, engine displacement, weight, fuel type, technolog-
ical level, and mileage, as well as operational factors such as speed, acceleration, road
gradient, ambient temperature, and especially the gear shifting strategy employed by the
driver [14–16]. Rivera-Campoverde et al. [17] proposed a model based on machine learning
and OBDs (on board diagnostics) for estimating emission factors of a single vehicle through
real short-duration driving tests in Cuenca-Ecuador, thus avoiding long measurement
campaigns and prolonged use of PEMSs (portable emissions measurement systems). Other
authors, such as [18,19], proposed GPS-based models that consider real traffic conditions,
obtaining good results with low implementation costs.

This article presents a novel method for estimating pollutant emissions from three
different types of vehicles, using driving variables such as speed and gradient obtained
through GPS, as well as characteristic parameters of each vehicle such as mass, engine
displacement, and aerodynamic coefficients through the application of machine learning
techniques. To achieve this, RDE tests were conducted on three routes, from which emis-
sions, GPS, and OBD data were collected. With these data, the input variables of the model
and their respective levels of importance were estimated, followed by the training of an
artificial neural network (ANN) validated with data obtained from three different RDE
tests not used for training, confirming the validity of the emissions estimator. Finally, this
estimator was applied to a dataset of 324, 300, and 316 km of real driving data for each
vehicle. The results were compared with those obtained from the IVE and OBD test models,
showing similar outcomes.

2. Materials and Methods
2.1. Methodology for the Estimation of Emission Gases under Real Driving Conditions

Pollutant emissions must be measured under real driving conditions [20]. Within these
results, various factors are considered, such as driving style, fuel type, geographic location,
and environmental conditions in which vehicles are operated [11], which are currently not
considered in the models used by the Mobility Company of the city of Cuenca (EMOV-EP).

To estimate pollutant emissions using a parametric model that considers the weight,
engine displacement, and aerodynamic coefficients of the vehicle under real driving condi-
tions, the following steps are proposed, as illustrated in Figure 1:

1. Acquisition of real driving and emission data on two routes based on [20] for
each vehicle.

2. Estimation of the relative importance of each obtained variable.
3. Training and validation of the neural network with the most significant variables from

route 1.
4. Validation of the trained ANNs using data from Route 2.
5. Application of the random driving dataset to the validated ANNs.
6. Processing and presentation of results.
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Figure 1. Methodology and proposed procedure.

For data collection, the vehicles used are the best-selling ones in Ecuador in the Sedan,
SUV, and pickup categories. According to [21], the vehicles, whose characteristics are
shown in Table 1, undergo all maintenance operations recommended by the manufacturer.
Additionally, the aerodynamic characteristics of the vehicle are displayed, such as the drag
coefficient (CX) and the frontal area of the vehicle (Af).

Table 1. Characteristics of the test vehicles.

Vehicle Type Displacement ([cc)] Odometer (km) Weight (kg) Cx Af (m2)

A Sedan 1400 28,678 1580 0.32 1.83
B SUV 2000 18,720 1719 0.33 3.015
C Pickup 2400 43,657 2745 0.39 3.201

The portable emissions measurement system (PEMS) used is the Brain Bee AGS-688
gas analyzer, powered by a battery independent from the test vehicles, as established
in [20]. Fuel consumption is measured using the AIC Fuel Flow Master 5004. The GPS
used is incorporated within the Freematics ONE+ data logger, which stores latitude (Lat),
longitude (Lon), altitude (Alt), and vehicle speed (VGPS) data on an SD card in CSV format.
In addition to GPS data, the device stores driving data from OBD such as vehicle speed
(VOBD). The obtained data are shown in Table 2.

Table 2. Driving data obtained.

Parameter Symbol Source Unit

Latitude Lat GPS (◦)
Longitude Lon GPS (◦)
Altitude Alt GPS (m.a.s.l.)
Vehicle Speed VGPS GPS (km/h)
Vehicle Speed VOBD OBD (km/h)
Engine Speed RPM OBD (RPM)
Acceleration aX Calculated (m/s2)
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Table 2. Cont.

Parameter Symbol Source Unit

Fuel Flow
.

mf AIC 5004 (L/h)
Carbon dioxide CO2 AGS-688 (%)
Carbon monoxide CO AGS-688 (%)
Nitrous oxides NOX AGS-688 (ppm)
Hydrocarbons HC AGS-688 (ppm)

2.2. Test Routes

To analyze the behavior of the test vehicles during the application of the RDE tests [20],
two different routes were proposed: Route 1 and Route 2. The datasets of each vehicle
obtained on Route 1 were divided into 70% for training, 15% for validation, and the
remaining 15% for testing the ANNs. The datasets of each vehicle obtained on Route 2
were used for a double cross-validation of the trained ANNs. The data collection routes
used in the various RDE tests are located in the city of Cuenca, Ecuador. Urban segments
are located in the city center, rural segments on the North Pan-American Highway, and
highway segments on the Cuenca–Azogues highway, as shown in Figure 2.
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Figure 2. Test routes.

The tests were conducted without the presence of rain or strong winds, with the win-
dows closed and without air-conditioning activated. The test vehicles carried two passen-
gers and a full tank of fuel. According to the manufacturer’s recommendations, 92-octane
fuel was used. The characteristics of the routes in real driving conditions are shown in
Table 3 and are validated according to the guidelines in [20].

Table 3. Characteristics of the RDE tests.

RDE Trip Characteristics SUV Sedan Pickup RDE Trip
Requirements Unit

Sample number 85,697 55,915 60,325 - -
Total distance 62.49 58.39 47.75 - (km)
Total duration 96.99 81.88 87.21 90–120 (min)
Urban distance 21.63 15.89 16.32 >16 (km)
Rural distance 21.24 24.51 15.37 >16 (km)
Motorway distance 19.61 17.98 16.06 >16 (km)
Urban distance share 34.61 27.22 34.26 29–44 (%)



Sensors 2024, 24, 2304 5 of 17

Table 3. Cont.

RDE Trip Characteristics SUV Sedan Pickup RDE Trip
Requirements Unit

Rural distance share 34.01 41.98 31.76 23–43 (%)
Motorway distance share 31.38 30.78 36.06 23–43 (%)
Urban average speed 22.49 22.10 16.02 - (km/h)
Rural average speed 50.14 64.02 53.02 - (km/h)
Motorway average speed 85.19 68.43 102.46 - (km/h)
Urban center time 11.61 8.41 29.46 10–30 (%)
Altitude difference −4.4 21.3 25.8 <100 (m)

2.3. Estimation of Pollutants

Based on the volumetric concentrations of pollutants in the exhaust gases measured
by the PEMS, the mass flow rates of each pollutant were estimated using the procedure
described in [20]. The exhaust mass flow rate

.
mex [g/s] was estimated from the mass flow

rate of air
.

min, which was estimated from parameters obtained from OBD, and the fuel
flow

.
m f , measured by the flow meter located in the fuel line.

.
mex =

.
min +

.
m f (1)

The emissions of pollutant j measured on a dry basis Cdry,j were corrected to a wet
basis Cwet, j using the correction factor kw, which depends on the molar ratio of hydrogen α
and the concentrations of CO2 and CO on a dry basis, CCO2 + CCO, respectively.

Cwet, j = kw,j Cdry,j (2)

kw =
1.008

1 + 0.005α(C CO2
+ CCO

) (3)

The instantaneous mass emissions of each pollutant
.

mj, i [g/s] are obtained from the in-
stantaneous concentration of each gas cj, and the ratio between the density of each component
and the overall density of the exhaust µj . According to [20] the values of µj are as follows:
µCO2 = 0.001518, µCO = 0.000966, µHC = 0.000499, µNOX = 0.001587. The instantaneous
emissions of pollutants obtained during real driving tests are shown in Figure 3.

.
mj, i = cj, iµj, i

.
mex,i 10−3 (4)
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The emissions of each pollutant mj (g) in the driving cycle are equal to the sum of n
elements of their instantaneous emissions over time for a sampling time ∆t equal to 0.1 s.

mj =
n

∑
i=1

.
mj,i ∆t (5)

The emission factors EFj,k of each pollutant ([g/km]) are determined by the follow-
ing equation:

EFj,k =
mj,k

sk
(6)

where mj,k is the mass of pollutant j and s is the distance traveled in section k of the RDE test,
where k takes the values of u, r, m for the urban, rural, and highway sections, respectively.
The emission factors of each vehicle per section are shown in Figure 4.
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Applying the total emissions generated for each pollutant and the total distance
traveled during the RDE test to Equation (6) yields the average emission factors for each
vehicle, which are shown in Table 4.

Table 4. Average emission factors in RDE.

F Sedan ([g/km)] SUV ([g/km)] Pickup ([g/km)]

CO2 54.72 70.23 102.13
CO 5.28 5.33 9.74
HC 0.0374 0.0485 0.0656

NOX 0.3527 0.7199 0.616

2.4. Predictor Estimation

Among the most influential variables in pollutant emissions, characteristics inherent to
individual vehicles stand out, such as engine displacement. This is because larger engines
burn more fuel per cycle, resulting in a greater generation of CO2, CO, HC, and NOX [22].
It is important to consider that the specific influence of engine displacement on emissions
may vary depending on the engine design, technology, and implemented emissions control.

Another variable analyzed in pollutant emissions is the vehicle’s weight [23], as it
influences the rolling resistance force Fr, which is shown in Equation (7), and depends on
the coefficients of static adherence f = 0.015 and dynamic adherence f 0 = 0.01, as well as
affecting the gravitational resistance force Fg shown in Equation (8).
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Fr = mg
(

f + f0VGPS i
2.5

)
(7)

Fg = mgsin
(

Alt i+1 − Alt i
Si+1 − Si

)
(8)

The aerodynamic resistance Fa is one of the major contributors to the fuel consumption
and pollutant emissions of a vehicle, especially when traveling at high speeds [24]. It is
calculated using Equation (9) [25], where the value of air density ρ is equal to 0.89 kg/m³.

Fa =
1
2

ρCX A f VGPS i
2 (9)

The longitudinal acceleration of the vehicle is determined by Equation (10), while the
forces occurring during driving are applied as shown in Figure 5 and are related using
Equation (11), where FT represents the tractive force and FF represents the braking force,
and they are mutually exclusive.

ax i =
VGPS i+1 − VGPS i

ti+1 − ti
(10)

FT − FF = max + Fr + Fg + Fa (11)
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Figure 5. Active forces during circulation.

For the training of machine learning architectures, parameters P1, P2, and P3 are
considered, which refer to the engine displacement, vehicle weight, and its aerodynamic
characteristics (CX, Af), respectively.

2.5. Estimation of the Selected Gear

The test vehicles are equipped with manual transmission, and like 69% of the vehicles
sold in Ecuador [21], they do not have sensors to determine the gear selected by the driver;
therefore, it is necessary to determine this information from the OBD data using machine
learning according to the process shown in [17]. The K-means algorithm is applied to the
data acquired in the RDE test to cluster the vector r, which is calculated using Equation (12).

ri =
VSSi
RPMi

(12)

where VSS is the vehicle speed and RPM is the engine speed obtained from the OBD.
The algorithm generates a label for each of the 7, 7, and 6 groups obtained from their
centroids [26]. The generated groups correspond to each of the 6, 6, and 5 gears plus the
neutral position of the sedan, SUV, and pickup vehicles, respectively. With the obtained
label, a classification tree (CT) is trained that is applicable to all sampled driving cycles, as
shown in Figure 6.



Sensors 2024, 24, 2304 8 of 17

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18 
 

 

Figure 5. Active forces during circulation. 

For the training of machine learning architectures, parameters P1, P2, and P3 are con-
sidered, which refer to the engine displacement, vehicle weight, and its aerodynamic char-
acteristics (CX, Af), respectively. 

2.5. Estimation of the Selected Gear 
The test vehicles are equipped with manual transmission, and like 69% of the vehicles 

sold in Ecuador [21], they do not have sensors to determine the gear selected by the driver; 
therefore, it is necessary to determine this information from the OBD data using machine 
learning according to the process shown in [17]. The K-means algorithm is applied to the 
data acquired in the RDE test to cluster the vector r, which is calculated using Equation 
(12). 𝑟 = 𝑉𝑆𝑆𝑅𝑃𝑀  (12)

where VSS is the vehicle speed and RPM is the engine speed obtained from the OBD. The 
algorithm generates a label for each of the 7, 7, and 6 groups obtained from their centroids 
[26]. The generated groups correspond to each of the 6, 6, and 5 gears plus the neutral 
position of the sedan, SUV, and pickup vehicles, respectively. With the obtained label, a 
classification tree (CT) is trained that is applicable to all sampled driving cycles, as shown 
in Figure 6. 

 
Figure 6. Obtaining labels through K-means and CT training. 

The values of VOBD and RPM are directly obtained through the OBD, so they cannot 
be used to train the GPS-based model. The gear used by the driver cannot be directly de-
termined by VGPS since the gears selected do not depend exclusively on the driving speed. 
Given that gear usage during driving is random [27], supervised learning is employed, 
where the forces acting on the vehicle’s movement are used as predictors for classification 
trees, and the gear used by the driver is the output, whose labels were obtained from OBD 
data, making the training vector I = [VGPS, aX, Fr, Fg, Fa], [19]. From the training performed, 
three classification trees are obtained with 7, 7, and 6 splits to determine the gear of the 
sedan, SUV, and pickup vehicles, respectively; their training results are shown in the con-
fusion matrices in Figure 7. These hyperparameters were determined based on the 
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The values of VOBD and RPM are directly obtained through the OBD, so they cannot
be used to train the GPS-based model. The gear used by the driver cannot be directly
determined by VGPS since the gears selected do not depend exclusively on the driving speed.
Given that gear usage during driving is random [27], supervised learning is employed,
where the forces acting on the vehicle’s movement are used as predictors for classification
trees, and the gear used by the driver is the output, whose labels were obtained from
OBD data, making the training vector I = [VGPS, aX, Fr, Fg, Fa], [19]. From the training
performed, three classification trees are obtained with 7, 7, and 6 splits to determine the
gear of the sedan, SUV, and pickup vehicles, respectively; their training results are shown
in the confusion matrices in Figure 7. These hyperparameters were determined based on
the appropriate configuration of the maximum tree, which is quite simple, making pruning
unnecessary. Cross-validation of the obtained trees is performed by randomly splitting the
training data into several mutually exclusive folds. In each fold, a portion of the data is
used for training and another portion for testing [28]. The data are divided into 5 folds,
with each fold divided into 70% of the data for training and 30% for testing, resulting in an
average test accuracy rate of 99.5%. The highest accuracy rates occur in neutral, 5th, and
6th gears, while in 3rd and 4th gears, the model’s efficiency decreases because the vehicle’s
performance under these conditions is very similar.
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2.6. Estimation of the Relative Importance of Each Predictor

Predictive models based on machine learning methods such as random forest (RF) suf-
fer from bias and variance issues. Simple models have low variance and high bias, whereas
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complex models reduce bias but increased variance due to overfitting [29]. Therefore, the
training process of ANNs is optimized by prioritizing the use of the most important pre-
dictors determined by the RF technique [30], which coincides with the selection according
to the Gini criterion. RF relies on multiple classification and regression trees (CART) to
mitigate dimensionality problems in predicting variables, thereby enhancing the accuracy
and stability of the model obtained by averaging the results of individual CART models [31].
This approach is applied to datasets where not all variables are considered, as they are
randomly chosen in each CART [32].

For variable selection with RF, the data obtained from the RDE of Route 1 for each
test vehicle were considered. The inputs included all vehicle operating parameters ob-
tained through GPS, while the outputs consisted of the resulting pollutant emissions. To
reduce the variance contributed by the predictors to the model, a very effective technique
called “bagging” was employed. This involves combining results from different CARTs
obtained using different subsets of predictors from the same population [31]. For this
purpose, continuous variables must be transformed into categorical variables through level
discrimination [17]. The number of levels was set to 7, 110, 144, 144, 144, 144, 3, 3, and 3
for the variables G, VGPS, ax, Fg, Fr, Fa, P1, P2, and P3, respectively. The outcome of the
most influential predictors is illustrated in Figure 8. The R2 factor estimates the quality
of the fit that RF has achieved to determine the importance of the variables in each of the
outputs [33]. It is determined by Equation (13), where Yi is the vector of n predictions, Ŷi is
the vector of true values, and Yi is their mean value.

R2 =
∑n

i=1
(
Yi − Ŷi

)2

∑n
i=1

(
Yi − Yi
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2.7. Training of the Neural Network with the Most Significant Variables

The data obtained on Route 1 of the RDE test for each vehicle were used to train 1
ANN for each pollutant, with their respective input vectors being as follows:

ICO2 = [Fg, aX, G, VGPS] (14)

ICO = [Fg, aX, G, VGPS, P] (15)

INOX = [VGPS, aX, Fg, G] (16)

IHC = [Fg, VGPS, aX, P] (17)

The networks were configured with 4 neurons in the input layer, 10 in the hidden
layer, and 1 in the output layer, as determined in [34]. The dataset from Route 1 was
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divided into 70% for training, 15% for validation, and the remaining 15% for testing. The
Levenberg–Marquardt backpropagation algorithm was used for network training, employ-
ing backpropagation to increase the learning speed [35,36]. The training characteristics of
the ANNs obtained for estimating CO2, CO, NOX, and HC are shown in Table 5, where
it can be observed that generalization is achieved rapidly, avoiding network overfitting.
This can be verified by comparing the cost values (mean squared error, MSE) in training,
validation, and testing, where the indicator’s value in the test dataset is lower than in
training. The MSE is calculated using Equation (18), where Yi is the vector of n predictions
and Ŷi is the vector of true values [33].

MSE =
1
n

n

∑
i=1

(Y i − Ŷi
)2 (18)

Table 5. Training characteristics.

CO2 CO HC NOX

R MSE R MSE R MSE R MSE

Training 0.7344 0.2158 0.8566 0.0033 0.8924 8.155 × 10−8 0.7983 1.658 × 10−5

Validation 0.7353 0.2165 0.8536 0.0034 0.8944 7.821 × 10−8 0.7963 1.652 × 10−5

Test 0.7358 0.2183 0.8616 0.0032 0.8920 7.974 × 10−8 0.7992 1.647 × 10−5

The networks for estimating CO2, CO, NOX, and HC were trained achieved in 221,
344, 101, and 17 epochs, respectively, due to early stopping, ensuring good performance
of the networks in the training, validation, and testing stages. The number of epochs is
relatively low for estimating HC, as generalization is quickly reached, avoiding network
overfitting. This can be verified by comparing the MSE values.

2.8. Validation of the Neural Networks

The obtained networks were applied using the data collected on Route 2 of the RDE
test for the three vehicles as inputs to compare the results with the data measured by the
PEMS. It was observed that the fit is very satisfactory according to the scatter plots and
error distribution diagrams shown in Figure 9. The model errors exhibit a nearly normal
symmetric behavior around 0, with no offsets in the estimation of each contaminant [37].
Moreover, they behave completely randomly, thus ruling out the inference of other variables
not considered in the ANNs’ training.
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3. Results

To assess the performance of the parametric model based on GPS for emission esti-
mation, its results are compared to those obtained by applying the IVE model and the
OBD-based estimation model [17].

3.1. CO2 Emissions

The emission of CO2 depends on the average driving speed. In Figure 10, the results
obtained for the three analyzed vehicles are shown; in all three cases, the CO2 emissions
are inversely proportional to the average driving speed, and the results of the IVE model
are higher than those obtained by the other models, in accordance with what was shown
in Section 1 [5]. The highest emissions are 249.91, 324.55, and 670.61 g/km, achieved at
9.95, 8.65, and 12.95 km/h using the first gear, while the lowest emissions are 35.1, 45.58,
and 80.98 g/km, achieved at 78.15, 77.48, and 64.15 km/h using the highest gear in the
sedan, SUV, and pickup vehicles, respectively. If a comparison is made among the three
test vehicles, it can be observed that the highest emission values are found in the pickup,
followed by the SUV and sedan; these values are proportional according to their weight
and aerodynamics, among other factors. It is worth noting the close similarity between the
results generated by the proposed model and the OBD-based model, as both are based on a
large amount of data collected under real driving conditions.
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Figure 10. CO2 emissions.

3.2. CO Emissions

The emissions of CO shown in Figure 11 are inversely proportional to the average
driving speed. The maximum emissions values are 18.04, 17.65, and 27.65 g/km, achieved
when driving at the minimum average speed using first gear. As the driving speed increases,
the minimum CO emissions are achieved, with values of 2.70, 2.95, and 5.95 g/km when
using the fourth gear in the sedan, SUV, and pickup vehicles, respectively. When using
gears higher than fourth gear, the emissions slightly increase, highlighting the importance
of efficient driving and proper gear usage to reduce pollutant emissions. For the sedan
and SUV vehicles, the results of the proposed model and the OBD-based model are very
similar. However, there is a difference in the results for the pickup vehicle; this is because
these vehicles are used as light-duty vehicles [38], which increases the engine load and
consequently CO emissions due to incomplete fuel combustion [39].
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Figure 11. CO emissions.

3.3. HC Emissions

The HC emissions determined by the proposed model are very similar to those esti-
mated by the OBD model in the sedan and SUV vehicles, with differences observed in the
pickup category, as explained in Section 3.2. As shown in Figure 12, in all three vehicles, the
emission factor is high at low speed values and high driving speeds, reaching a minimum
emissions value of 0.0235, 0.0343, and 0.0573 g/km at 58.98, 51.28, and 51.98 km/h for the
sedan, SUV, and pickup vehicles, respectively. Beyond this speed, HC emissions increase
again. This occurs because at low speeds, the loading and RPM conditions are not optimal
for generating efficient and complete combustion, while at high speeds, the loading and
temperature conditions also affect combustion efficiency [39]. However, the behaviors are
similar in all three test vehicles, indicating that the model is effective.
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3.4. NOX Emissions

The emissions of NOx represented in Figure 13 show that the proposed model and the
IVE model maintain the same behavior in the sedan vehicle, with the maximum emissions
being 0.6907 g/km in first gear at a speed of 9.95 km/h. After this point, the NOx emissions
decrease as the average driving speed increases because, at lower speeds, the engine tends
to experience a higher load, which is a crucial factor for NOx emissions. In the SUV and
pickup vehicles, the maximum emissions of 1.094 and 0.958 g/km occur in second gear at an
average speed of 18.94 and 23.79 km/h, respectively; this is because this gear is used to gain
speed after starting, resulting in an increase in temperature and pressure in the combustion
chamber in light-duty vehicles [23,40]. This demonstrates that the proposed model is
capable of replicating results from a reference model, thus supporting its effectiveness
and validity.
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4. Discussion

To evaluate the performance of the proposed model, its results are compared with
those obtained using the RDE test. The average emission factors for each model, determined
from the total pollutant emissions and total distance traveled, are shown in Table 6. It
is noteworthy that there is a close resemblance between the results of the RDE and GPS
models; small differences arise because the relationship between the urban, rural, and
highway segments in the RDE driving cycle differs from what occurs during random
driving, which provided the data used for the GPS model estimation, whereas the values
estimated by the IVE model are higher than the other models analyzed, as indicated in
Section 1 [5]. The main difference lies in the CO2 emissions factor, which, as already
discussed, is strongly influenced by low driving speeds in urban areas. The emissions
estimated by the proposed model show minimal deviations from the RDE results, with
−3.97% in CO emission for the sedan vehicle and −15.56% in HC emissions and −3.57%
in NOX emissions for the SUV vehicle. The largest deviations occur in the estimation of
emissions for the pickup vehicle due to the specific use of these types of vehicles [38].
Table 6 shows the average emission factor values for the three models analyzed.

Table 6. Average emission factors.

F
Sedan ([g/km)] SUV ([g/km)] Pickup ([g/km)]

IVE RDE GPS IVE RDE GPS IVE RDE GPS

CO2 157.18 54.72 60.97 208.97 70.23 80.93 243.61 102.13 108.66
CO 9.46 5.28 5.07 11.83 5.33 6.95 14.19 9.74 12.68
HC 0.112 0.0374 0.0299 0.1477 0.0485 0.041 0.168 0.0656 0.0912

NOX 0.531 0.3527 0.403 0.661 0.7199 0.694 0.792 0.616 0.762

The emissions of CO2, CO, and NOX exhibit similar behavior concerning speed, and
this is attributed to the gear shifts of the vehicle according to the driving speed. At lower
speeds, lower gears (first, second, and third) are engaged, requiring the engine to operate at
higher speeds, thereby increasing air and fuel consumption and, consequently, emissions.
Conversely, at higher speeds, higher gears (fourth, fifth, and sixth) are utilized, reducing
the engine’s rotation speed and thus fuel consumption and emissions generated [17].

5. Conclusions

This article proposes a novel approach for estimating pollutant emissions from the
most representative light vehicles circulating in Ecuador based on GPS data and applying
machine learning to a large dataset. An approach was developed that initially employs a
highly effective classifier to assess the gears selected by the driver. This classifier was built
by obtaining labels through K-means clustering and subsequent training of classification
trees. Errors manifest in the brief intervals that occur during gear transitions. Pollutant



Sensors 2024, 24, 2304 14 of 17

emissions calculations were performed by determining the importance of predictors in the
data collected from two RDE test routes using RF. Subsequently, four ANNs were trained,
which demonstrated high determination coefficients R2 of 0.735, 0.861, 0.892, and 0.798
for the estimation of CO2, CO, HC, and NOX, respectively, and adequate error behavior,
validating the method used.

In urban environments, average driving speeds are reduced, leading to the predomi-
nant use of the first, second, and third gears, resulting in a consequent increase in pollutant
emission factors. In this context, the proposed model demonstrates greater robustness to
various traffic conditions and driving styles in urban areas. This is because the model is
based on the results of random driving data covering 324, 300, and 316 km compared to the
96.99, 81.88, and 87.21 km of the RDE test and the results of the IVE model for sedan, SUV,
and pickup vehicles, respectively. As the average driving speed increases, the results of the
proposed model and the RDE test become more similar due to the decreased influence of
traffic on vehicle performance and the smaller number of transient events in driving.

The obtained model is characterized by estimating emissions at a microscopic level
with high reliability and low cost, due to the current availability of GPS receivers in a
variety of portable devices. It presents advantages over existing models such as the IVE
model, as it considers traffic conditions, the physical states of roads, and all interactions
and dynamics between vehicles and their surroundings. Additionally, it considers special
environmental conditions such as mountainous terrain and altitude above sea level, as well
as the specific environmental conditions of each region, such as temperature, humidity,
atmospheric pressure, and solar radiation.

The obtained model offers economic and practical advantages in its application com-
pared to other models, given the ease of generating applications for installation on portable
devices. Furthermore, it shows highly satisfactory performance, as despite its limitations,
it provides excellent results in pollutant estimation without the need for connection to
expensive equipment for long periods of time. This work presents several limitations such
as vehicle longevity, driving styles, cold operation, and circulation on slopes, as under
these operating conditions, engine control systems tend to employ special strategies that
directly influence emission behavior, so they should be considered for future develop-
ments. It is essential to replicate the proposed methodology in models of vehicles with a
greater presence and activity in the automotive fleet, aiming to refine the results of vehicle
emissions inventories.
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Abbreviations

Abbreviation Variable
α Hydrogen molar ratio
Af Frontal area of the vehicle
Alt Altitude
ANN Artificial neural network
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ax Longitudinal acceleration
CART Classification and regression trees
Cdry Dry basis emissions
CO Carbon monoxide
CO2 Carbon dioxide
CSV Comma separated values
CT Classification tree
Cwet Wet basis emission
CX Drag coefficient
EF Emission factor
F Coefficients of static adherence
f 0 Coefficients of dynamic adherence
Fa Aerodynamic resistance
Fg Gravitational resistance
Fr Rolling resistance force
GPS Global position system
HC Hydrocarbons
IVE International vehicle emissions
ICO2 CO2 Input vector
ICO CO Input vector
IHC HC Input vector
INOX NOX Input vector
Kw correction factor
Lat Latitude
Lon Longitude
ṁ Instantaneous mass emissions
ṁe Exhaust mass flow
ṁf Fuel flow
ṁi Air mass flow
MSE Mean squared error
NOX Nitrous oxides
OBD On-board diagnostics
PEMS Portable emissions measurement system
RDE Real driving emissions
p Air density
RF Random forest
SUV Sports utility vehicle
VOBD Vehicle speed obtained from OBD
VGPS Vehicle speed obtained from GPS
µ Ratio between the density of each component and the exhaust
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