
Citation: Liang, Y.-P.; Chang, C.-M.;

Chung, C.-C. Implementation of

Lightweight Convolutional Neural

Networks with an Early Exit

Mechanism Utilizing 40 nm CMOS

Process for Fire Detection in

Unmanned Aerial Vehicles. Sensors

2024, 24, 2265. https://doi.org/

10.3390/s24072265

Academic Editors: Jingjing Wang,

Cosimo Distante, Marios Antonakakis

and Michalis Zervakis

Received: 28 January 2024

Revised: 11 March 2024

Accepted: 1 April 2024

Published: 2 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Implementation of Lightweight Convolutional Neural Networks
with an Early Exit Mechanism Utilizing 40 nm CMOS Process for
Fire Detection in Unmanned Aerial Vehicles
Yu-Pei Liang, Chen-Ming Chang and Ching-Che Chung *

Department of Computer Science and Information Engineering, Advanced Institute of Manufacturing with
High-Tech Innovations, National Chung Cheng University, Chia-Yi 621301, Taiwan;
ypliang@cs.ccu.edu.tw (Y.-P.L.)
* Correspondence: wildwolf@cs.ccu.edu.tw

Abstract: The advancement of unmanned aerial vehicles (UAVs) enables early detection of numerous
disasters. Efforts have been made to automate the monitoring of data from UAVs, with machine
learning methods recently attracting significant interest. These solutions often face challenges with
high computational costs and energy usage. Conventionally, data from UAVs are processed using
cloud computing, where they are sent to the cloud for analysis. However, this method might not
meet the real-time needs of disaster relief scenarios. In contrast, edge computing provides real-time
processing at the site but still struggles with computational and energy efficiency issues. To overcome
these obstacles and enhance resource utilization, this paper presents a convolutional neural network
(CNN) model with an early exit mechanism designed for fire detection in UAVs. This model is
implemented using TSMC 40 nm CMOS technology, which aids in hardware acceleration. Notably,
the neural network has a modest parameter count of 11.2 k. In the hardware computation part, the
CNN circuit completes fire detection in approximately 230,000 cycles. Power-gating techniques are
also used to turn off inactive memory, contributing to reduced power consumption. The experimental
results show that this neural network reaches a maximum accuracy of 81.49% in the hardware
implementation stage. After automatic layout and routing, the CNN hardware accelerator can
operate at 300 MHz, consuming 117 mW of power.

Keywords: unmanned aerial vehicles (UAVs); fire detection; neural networks; quantization; fixed-
point arithmetic; real-time systems; early-exit mechanism; digital circuits

1. Introduction

In the past few years, the use of unmanned aerial vehicles (UAVs) has become in-
creasingly important in the realm of edge computing. These UAVs, noted for their small
size and light build, can effectively perform a wide range of tasks across different climates
and landscapes. This versatility has led to their widespread use in fields like agriculture
monitoring, traffic control, environmental observation, and search and rescue missions.
Traditionally, in cloud computing, collecting data involves sending them from edge devices
to the cloud, where they are then computed and processed. This method, however, faces
several challenges such as network delays, concerns over data security, and privacy issues.
UAVs offer a solution by facilitating computation and processing directly on the device
itself, which has spurred the development of many new technological applications.

Drones, also known as UAVs, have become increasingly prominent in environmental
monitoring, with wildfire detection emerging as a particularly noteworthy application due
to the critical need for early fire identification. An example is found in [1], which introduces
a method for the early detection of forest fires. Wildfires cause extensive ecological harm to
natural habitats like forests, farmlands, and various ecosystems, occurring with disturbing
regularity each year. The authors of [1] have developed an algorithm that detects and tracks

Sensors 2024, 24, 2265. https://doi.org/10.3390/s24072265 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072265
https://doi.org/10.3390/s24072265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1398-4320
https://doi.org/10.3390/s24072265
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072265?type=check_update&version=1

Sensors 2024, 24, 2265 2 of 18

forest fires by analyzing the color characteristics of flames, allowing for the identification
and monitoring of fire-affected areas. Contrastingly, ref. [2] introduces a different approach
utilizing environmental sensors. This technique involves monitoring elements such as
temperature, carbon monoxide (CO), and carbon dioxide (CO2) levels to detect early signs
of fire. In a similar vein, ref. [3] proposes a method that focuses on smoke detection as an
indicator of fire conditions.

In forest management, controlled burns are routinely conducted to clear debris like
twigs and leaves. Traditionally, this process of controlled burning demands extensive
monitoring over several days by staff to prevent the fire from becoming unmanageable.
Fortunately, with the technology of automated aerial surveillance systems of UAVs, real-
time images can be captured easily and further processed automatically to detect wildfires
in time. For example, Alireza [4] introduces a FLAME dataset specifically gathered from
UAVs during intense fire events. The authors utilize Google’s Xception model [5] for
categorizing fires, achieving accuracy rates of 96.79%, 94.31%, and 76.23% in the training,
validation, and testing phases, respectively. Moreover, the dataset they used has been
published in IEEE Data Port. Specifically, this dataset was collected in northern Arizona
and includes a comprehensive array of images and videos of fires. Figure 1 shows sample
images of pile burns from the dataset, captured from various perspectives with different
zoom levels and camera types. Such datasets focusing on intense fires are crucial for
analyzing the initial phases of fire incidents.

Sensors 2024, 24, x FOR PEER REVIEW 2 of 18

with disturbing regularity each year. The authors of [1] have developed an algorithm that
detects and tracks forest fires by analyzing the color characteristics of flames, allowing for
the identification and monitoring of fire-affected areas. Contrastingly, ref. [2] introduces
a different approach utilizing environmental sensors. This technique involves monitoring
elements such as temperature, carbon monoxide (CO), and carbon dioxide (CO2) levels to
detect early signs of fire. In a similar vein, ref. [3] proposes a method that focuses on smoke
detection as an indicator of fire conditions.

In forest management, controlled burns are routinely conducted to clear debris like
twigs and leaves. Traditionally, this process of controlled burning demands extensive
monitoring over several days by staff to prevent the fire from becoming unmanageable.
Fortunately, with the technology of automated aerial surveillance systems of UAVs, real-
time images can be captured easily and further processed automatically to detect wildfires
in time. For example, Alireza [4] introduces a FLAME dataset specifically gathered from
UAVs during intense fire events. The authors utilize Google’s Xception model [5] for cat-
egorizing fires, achieving accuracy rates of 96.79%, 94.31%, and 76.23% in the training,
validation, and testing phases, respectively. Moreover, the dataset they used has been
published in IEEE Data Port. Specifically, this dataset was collected in northern Arizona
and includes a comprehensive array of images and videos of fires. Figure 1 shows sample
images of pile burns from the dataset, captured from various perspectives with different
zoom levels and camera types. Such datasets focusing on intense fires are crucial for ana-
lyzing the initial phases of fire incidents.

Figure 1. Sample images of pile burn.

As mentioned above, the potential for automatically detecting wildfires using UAVs
has been explored. The process involves UAVs cruising in the air above forests, capturing
real-time images periodically. Subsequently, the onboard processors on the UAVs can
promptly process these images to detect wildfires and trigger alarms if any unusual situ-
ations are detected. This proactive approach to wildfire detection holds promise for en-
hancing early warning systems and mitigating the risk of forest fires.

Therefore, Rafik [6] introduces a novel classification framework tailored for the pre-
viously mentioned fire detection dataset. This framework integrates EfficientNet-B5 [7]
with DenseNet-201 [8], employing them for feature extraction in wildfire classification.
This combined architecture reports an accuracy of 85.12%. However, considering the pa-
rameters of EfficientNet-B5 and DenseNet, this model’s practicality for UAV deployment
warrants further consideration. In a related development, Lin [9] presents a transfer learn-
ing-based model, FT-ResNet50. This model adapts a ResNet network, originally trained
on the ImageNet dataset, to the context of forest fire detection. The authors refine ResNet
using the Adam optimization algorithm and the Mish activation function. Additionally,
they enhance its performance with the Focal loss function, achieving an accuracy of
79.48%. While the integration of transfer learning and fine-tuning improves image classi-
fication, an accuracy of 79.48% may not be sufficient for precise image categorization.

Figure 1. Sample images of pile burn.

As mentioned above, the potential for automatically detecting wildfires using UAVs
has been explored. The process involves UAVs cruising in the air above forests, captur-
ing real-time images periodically. Subsequently, the onboard processors on the UAVs
can promptly process these images to detect wildfires and trigger alarms if any unusual
situations are detected. This proactive approach to wildfire detection holds promise for
enhancing early warning systems and mitigating the risk of forest fires.

Therefore, Rafik [6] introduces a novel classification framework tailored for the previ-
ously mentioned fire detection dataset. This framework integrates EfficientNet-B5 [7] with
DenseNet-201 [8], employing them for feature extraction in wildfire classification. This
combined architecture reports an accuracy of 85.12%. However, considering the parameters
of EfficientNet-B5 and DenseNet, this model’s practicality for UAV deployment warrants
further consideration. In a related development, Lin [9] presents a transfer learning-based
model, FT-ResNet50. This model adapts a ResNet network, originally trained on the Ima-
geNet dataset, to the context of forest fire detection. The authors refine ResNet using the
Adam optimization algorithm and the Mish activation function. Additionally, they enhance
its performance with the Focal loss function, achieving an accuracy of 79.48%. While the
integration of transfer learning and fine-tuning improves image classification, an accuracy
of 79.48% may not be sufficient for precise image categorization.

Integrating AI technology into fire detection processes can streamline operations and
improve the efficiency of drones in executing their tasks in the aforementioned studies.
However, the computational requirements of deep neural networks often surpass the

Sensors 2024, 24, 2265 3 of 18

processing capabilities available on drone. On the other hand, recently, numerous so-
lutions have emerged for accelerating machine-learning-based computations, including
commercial-off-the-shelf products like Jetson Nano boards for convolutional neural net-
work (CNN), field-programmable gate array (FPGA) custom accelerators, coarse-grained
reconfigurable array (CGRA) approaches [10], and automatically generated AI hardware
accelerators [11]. However, these solutions often overlook the power consumption is-
sue. In summary, though there have been many excellent related works and technologies
in the past, there has not been an integrated solution that can simultaneously meet the
requirements of low energy consumption, high efficiency, and high accuracy.

Given our focus on wildfire detection technology using UAVs, power consumption
is a crucial consideration. In this paper, we propose an ASIC-based solution to mitigate
power consumption concerns in UAVs. Specifically, we developed a streamlined CNN
model tailored for wildfire detection, leveraging a dataset collected via drones. This model
incorporates several early exit points to alleviate computational burden and reduce energy
consumption. Furthermore, the inclusion of multiple early exit points enhances flexibility
by offering users various usage modes to choose from. Additionally, quantization methods
were applied to both the weights and activations to optimize storage demands. Moreover,
a specialized hardware circuit was implemented using TSMC 40 nm CMOS technology,
and its power consumption was assessed during circuit operations.

The contributions of this study can be summarized as follows:

1. Development of a lightweight CNN model for wildfire recognition, incorporating
multiple exit points;

2. The proposed model substantially reduces neural network computations while main-
taining an 83% accuracy rate in predictions;

3. Significant reduction in the memory requirements and energy consumption of the
hardware circuit, with only a slight decrease in CNN accuracy;

4. Implementation of the hardware circuit using TSMC 40 nm CMOS technology, en-
hanced with power gating techniques to further reduce power consumption;

5. The implemented ASIC offers multiple usage modes for users to select according to
various usage scenarios.

The structure of the remaining paper is organized as follows: Section 2 delves into
various model compression techniques, focusing on adapting machine learning models for
edge computing. Sections 3 and 4 introduce the proposed method. Specifically, Section 3
outlines the software architecture of our proposed model, while Section 4 details the
hardware implementation. The experimental results are presented in Section 5. Finally,
Section 6 concludes this work.

2. Related Work

Deploying deep neural networks on edge devices is challenging due to their substan-
tial size. As a result, a variety of model compression techniques have been developed.
Cheng [12] identifies key methods for reducing model size, including network pruning,
weight sharing, knowledge distillation, and early model termination. Network pruning [13]
is a strategy aimed at reducing the size of a neural network by removing superfluous neu-
rons and weights. This involves eliminating unnecessary parts of a pre-trained model and
retraining the remaining sections to ensure the model’s performance is largely maintained.

Weight sharing is a neural network model compression technique aimed at reducing
the number of weights and minimizing storage needs. Its core principle involves grouping
similar weight values within the neural network into clusters and representing each weight
by the centroid value of its cluster. This ensures that weights with close values share the
same representative value. Such a strategy reduces the model’s storage space require-
ments and can decrease computational load without significantly impacting performance.
Deep compression [14] is introduced as a three-step model compression process: pruning,
quantization, and Huffman coding. Pruning involves eliminating weights below a certain
threshold, followed by retraining the network with its newly sparse connections until it

Sensors 2024, 24, 2265 4 of 18

converges. K-means clustering is then used to allow weights in the same cluster to share a
common centroid, with fixed-point processing applied. Weight updates involve accumu-
lating gradients within each cluster, adjusting them with a learning rate, and subtracting
from the shared centroid to refine the centroids. Finally, Huffman coding is employed to
compress weights and indices further.

Knowledge distillation [15] is a technique for model compression that involves trans-
ferring insights from a larger, more complex model to a smaller, simpler one. This allows
the smaller model to leverage the advanced understanding of the larger model, potentially
improving its performance. On the other hand, early model termination [16] focuses on
embedding early exit points within the original model. These exits allow the model to halt
computations prematurely when it has high confidence in its prediction, thereby saving
computational resources and time. The most basic form of early exit relies on a confidence
threshold. If the classifier’s output confidence surpasses this threshold, the model ceases
operation and outputs the prediction. However, if the confidence is below the threshold,
the model continues to the final classifier for a conclusive prediction result.

Conversely, a binary neural network (BNN) [17] is a form of deep neural network
that utilizes binary values for both weights and activations. This method quantizes the
original network’s weights and activations to 1 bit, effectively converting 32-bit floating-
point numbers (FP32) into either +1 or −1. Although this significantly reduces the model’s
storage requirements and enhances inference speed, it comes with a notable trade-off of
considerable information loss, leading to a reduction in accuracy. In comparison, ternary
weight networks (TWN) [18] add an extra value of 0 to the binary scheme of +1 and −1 for
weight conversion. TWN occupies 2 bits per weight, enabling a 16-fold decrease in storage
needs compared to standard 32-bit floating-point formats. TWN typically achieves higher
accuracy than BNN. Research shows that TWN’s quantization method can effectively
compress several well-known models.

Furthermore, mixed precision training [19] employs a combination of 16-bit floating-
point numbers (FP16) and FP32 for storing weights, activations, and gradients during the
training of neural networks. This approach reduces both memory usage and computational
complexity, resulting in faster training speeds while maintaining accuracy. In addition,
DoReFaNet [20] utilizes an asymmetric quantization strategy, allowing for the quantization
of weights, activations, and gradients to any specified bit-width. This increases the flexibil-
ity of quantization. The quantization process, represented as quantize(k), is described in
Equation (1). This equation quantizes an input, x, into k bits. Equation (2) illustrates the
method for quantizing low-bit weights, where the quantized weights are confined to k-bit
fixed-point numbers ranging from −1 to 1.

quantizek(x) =
1

2k − 1
round

((
2k − 1

)
x
)

(1)

fk
w(r) = 2 × quantizek

(
tanh(r)

2max(|tanh (r)|) +
1
2

)
− 1 (2)

3. The Proposed Hardware Architecture
3.1. CNN Architecture Overview

To balance the accuracy and efficiency, this paper presents a CNN equipped with an
early exit mechanism specifically tailored for fire detection using UAVs. Note that the
FLAME dataset [4] is utilized in this paper, comprising 25,018 images featuring fire and
14,357 images without fire for training. Furthermore, 20% of the data are designated for
validation, while the test set includes 5137 images with fire and 3480 without. The proposed
model architecture with an example using a scenario is depicted in Figure 2. As shown
in Figure 2, the proposed model features two additional early exit points in addition to
the standard final exit point. This design is optimized for UAV fire detection and offers
the flexibility to switch between exit points based on various factors, such as application
scenarios, the complexity of the classification task, and power-saving requirements. More

Sensors 2024, 24, 2265 5 of 18

specifically, as depicted in Figure 2, among the multiple exit points, the inference speed is
maximized and power consumption minimized at the earliest exit. However, the accuracy
is comparatively lower than that of later exit points. Therefore, our proposed solution
offers various operational modes tailored to different circumstances. For instance, we may
initially designate exit 1 as the default mode to swiftly acquire results and conserve power.
Upon detecting unusual conditions, the controller transitions to a higher accuracy mode
(later exit points) to verify the situation. Alternatively, exit 3 can be employed as the default
mode for optimal accuracy. In instances of low battery, the mode can then be shifted to the
early exit points to conserve power.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 18

proposed model architecture with an example using a scenario is depicted in Figure 2. As

shown in Figure 2, the proposed model features two additional early exit points in addi-

tion to the standard final exit point. This design is optimized for UAV fire detection and

offers the flexibility to switch between exit points based on various factors, such as appli-

cation scenarios, the complexity of the classification task, and power-saving requirements.

More specifically, as depicted in Figure 2, among the multiple exit points, the inference

speed is maximized and power consumption minimized at the earliest exit. However, the

accuracy is comparatively lower than that of later exit points. Therefore, our proposed

solution offers various operational modes tailored to different circumstances. For instance,

we may initially designate exit 1 as the default mode to swiftly acquire results and con-

serve power. Upon detecting unusual conditions, the controller transitions to a higher ac-

curacy mode (later exit points) to verify the situation. Alternatively, exit 3 can be employed

as the default mode for optimal accuracy. In instances of low battery, the mode can then

be shifted to the early exit points to conserve power.

Figure 2. CNN model architecture with early exit mechanism.

The convolutional operations within the model, as illustrated in Figure 3, follow a

series of calculated steps to improve feature extraction. It begins with zero padding, which

helps to retain essential image information. The convolutional stride is set to 1, effectively

expanding the model’s receptive field and allowing it to cover a broader contextual area.

Following convolution, batch normalization (BN) is integrated, accelerating the model’s

optimization process and providing regularization advantages. At the end of the convo-

lutional sequence is a pooling layer. Here, a pooling stride of 4 is deliberately chosen to

decrease the dimensions of the resulting feature maps. This reduction is critical for the

model’s subsequent hardware implementation, as it considerably reduces the computa-

tional load.

Figure 3. The complete operation of each layer.

After the convolutional operations are complete, the classifier’s computations begin,

as illustrated in Figure 4. The process starts with global average pooling applied to the

feature map, which not only reduces the number of model parameters but also enhances

the model’s ability to generalize. Following this step, the processed data are fed into fully

connected layers for image classification. Importantly, dropout layers are inserted be-

tween the three consecutive fully connected layers. Each of these layers has a dropout rate

of 50%, acting as a preventive measure against model overfitting.

Figure 2. CNN model architecture with early exit mechanism.

The convolutional operations within the model, as illustrated in Figure 3, follow
a series of calculated steps to improve feature extraction. It begins with zero padding,
which helps to retain essential image information. The convolutional stride is set to
1, effectively expanding the model’s receptive field and allowing it to cover a broader
contextual area. Following convolution, batch normalization (BN) is integrated, accelerating
the model’s optimization process and providing regularization advantages. At the end of
the convolutional sequence is a pooling layer. Here, a pooling stride of 4 is deliberately
chosen to decrease the dimensions of the resulting feature maps. This reduction is critical
for the model’s subsequent hardware implementation, as it considerably reduces the
computational load.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 18

proposed model architecture with an example using a scenario is depicted in Figure 2. As
shown in Figure 2, the proposed model features two additional early exit points in addi-
tion to the standard final exit point. This design is optimized for UAV fire detection and
offers the flexibility to switch between exit points based on various factors, such as appli-
cation scenarios, the complexity of the classification task, and power-saving requirements.
More specifically, as depicted in Figure 2, among the multiple exit points, the inference
speed is maximized and power consumption minimized at the earliest exit. However, the
accuracy is comparatively lower than that of later exit points. Therefore, our proposed
solution offers various operational modes tailored to different circumstances. For instance,
we may initially designate exit 1 as the default mode to swiftly acquire results and con-
serve power. Upon detecting unusual conditions, the controller transitions to a higher ac-
curacy mode (later exit points) to verify the situation. Alternatively, exit 3 can be employed
as the default mode for optimal accuracy. In instances of low battery, the mode can then
be shifted to the early exit points to conserve power.

Figure 2. CNN model architecture with early exit mechanism.

The convolutional operations within the model, as illustrated in Figure 3, follow a
series of calculated steps to improve feature extraction. It begins with zero padding, which
helps to retain essential image information. The convolutional stride is set to 1, effectively
expanding the model’s receptive field and allowing it to cover a broader contextual area.
Following convolution, batch normalization (BN) is integrated, accelerating the model’s
optimization process and providing regularization advantages. At the end of the convo-
lutional sequence is a pooling layer. Here, a pooling stride of 4 is deliberately chosen to
decrease the dimensions of the resulting feature maps. This reduction is critical for the
model’s subsequent hardware implementation, as it considerably reduces the computa-
tional load.

Figure 3. The complete operation of each layer.

After the convolutional operations are complete, the classifier’s computations begin,
as illustrated in Figure 4. The process starts with global average pooling applied to the
feature map, which not only reduces the number of model parameters but also enhances
the model’s ability to generalize. Following this step, the processed data are fed into fully
connected layers for image classification. Importantly, dropout layers are inserted be-
tween the three consecutive fully connected layers. Each of these layers has a dropout rate
of 50%, acting as a preventive measure against model overfitting.

Figure 3. The complete operation of each layer.

After the convolutional operations are complete, the classifier’s computations begin,
as illustrated in Figure 4. The process starts with global average pooling applied to the
feature map, which not only reduces the number of model parameters but also enhances
the model’s ability to generalize. Following this step, the processed data are fed into fully
connected layers for image classification. Importantly, dropout layers are inserted between
the three consecutive fully connected layers. Each of these layers has a dropout rate of 50%,
acting as a preventive measure against model overfitting.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 18

Figure 4. The complete operation of each classifier.

Table 1 displays the feature map sizes at each layer of the model. The initial input
images are 64 × 64 in dimension. After passing through the pooling layers, the feature
maps experience a considerable reduction in size, which is beneficial for the later stages
of hardware implementation.

Table 1. The input and output data size of each layer.

Operation
Input Data Size

(Width × Height ×
in_channel)

Output Data Size
(Width × Height × in_channel)

Stride

Convolution 1 64 × 64 × 3 64 × 64 × 8 1
Max-pooling 1 64 × 64 × 8 32 × 32 × 8 4
Convolution2 32 × 32 × 8 32 × 32 × 8 1
Max-pooling 2 32 × 32 × 8 16 × 16 × 8 4

Global average pooing 16 × 16 × 8 1 × 1 × 8 -
FC 1 1 × 1 × 8 1 × 1 ×30 -
FC 2 1 × 1 × 30 1 × 1 × 30 -
FC 3 1 × 1 × 30 1 × 1 × 1 -

Convolution 3 16 × 16 × 8 8 × 8 × 16 1
Max-pooling 3 8 × 8 × 16 4 × 4 × 16 4

Global average pooing 4 × 4 × 16 1 × 1 × 16 -
FC 4 1 × 1 × 16 1 × 1 × 30 -
FC 5 1 × 1 × 30 1 × 1 × 30 -
FC 6 1 × 1 × 30 1 × 1 × 1 -

Convolution 4 4 × 4 × 16 4 × 4 × 32 1
Max-pooling 4 4 × 4 × 32 2 × 2 × 32 4

Global average pooing 2 × 2 × 32 1 × 1 × 32 -
FC 7 1 × 1 × 32 1 × 1 × 30 -
FC 8 1 × 1 × 30 1 × 1 × 30 -
FC 9 1 × 1 × 30 1 × 1 × 1 -

Table 2 thoroughly details the parameterization of the entire neural network archi-
tecture. The parameters for both the convolutional layers and the batch normalization
processes are precisely calculated using the methodologies described in Equations (3) and
(4), respectively. Furthermore, the parameters for the fully connected layers are defined
according to Equation (5). It is important to note that a significant decrease in the number
of model parameters is achieved after implementing global average pooling. By summing
up all the individual parameters, the total parameter count of the proposed model is ob-
tained.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑖𝑖𝑖𝑖_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (3)

𝐵𝐵𝐵𝐵 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 4 × 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (4)

𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑜𝑜𝑜𝑜𝑜𝑜_𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (5)

Figure 4. The complete operation of each classifier.

Table 1 displays the feature map sizes at each layer of the model. The initial input
images are 64 × 64 in dimension. After passing through the pooling layers, the feature
maps experience a considerable reduction in size, which is beneficial for the later stages of
hardware implementation.

Sensors 2024, 24, 2265 6 of 18

Table 1. The input and output data size of each layer.

Operation
Input Data Size

(Width × Height ×
in_channel)

Output Data Size
(Width × Height ×

in_channel)
Stride

Convolution 1 64 × 64 × 3 64 × 64 × 8 1

Max-pooling 1 64 × 64 × 8 32 × 32 × 8 4

Convolution2 32 × 32 × 8 32 × 32 × 8 1

Max-pooling 2 32 × 32 × 8 16 × 16 × 8 4

Global average pooing 16 × 16 × 8 1 × 1 × 8 -

FC 1 1 × 1 × 8 1 × 1 ×30 -

FC 2 1 × 1 × 30 1 × 1 × 30 -

FC 3 1 × 1 × 30 1 × 1 × 1 -

Convolution 3 16 × 16 × 8 8 × 8 × 16 1

Max-pooling 3 8 × 8 × 16 4 × 4 × 16 4

Global average pooing 4 × 4 × 16 1 × 1 × 16 -

FC 4 1 × 1 × 16 1 × 1 × 30 -

FC 5 1 × 1 × 30 1 × 1 × 30 -

FC 6 1 × 1 × 30 1 × 1 × 1 -

Convolution 4 4 × 4 × 16 4 × 4 × 32 1

Max-pooling 4 4 × 4 × 32 2 × 2 × 32 4

Global average pooing 2 × 2 × 32 1 × 1 × 32 -

FC 7 1 × 1 × 32 1 × 1 × 30 -

FC 8 1 × 1 × 30 1 × 1 × 30 -

FC 9 1 × 1 × 30 1 × 1 × 1 -

Table 2 thoroughly details the parameterization of the entire neural network architec-
ture. The parameters for both the convolutional layers and the batch normalization pro-
cesses are precisely calculated using the methodologies described in Equations (3) and (4),
respectively. Furthermore, the parameters for the fully connected layers are defined ac-
cording to Equation (5). It is important to note that a significant decrease in the number of
model parameters is achieved after implementing global average pooling. By summing up
all the individual parameters, the total parameter count of the proposed model is obtained.

Conv parameters = in_channel × kernel size × out_channel (3)

BN parameters = 4 × kernel size × out_channel (4)

FC parameters = f eature map size × out_channel (5)

Moreover, at the specific stages of Exit1, Exit2, and Exit3, the cumulative parameter
counts are approximately 2 K, 4.6 K, and 11.2 K, respectively. This detailed breakdown
of parameters effectively highlights the complexity and capacity of the model across its
various architectural segments.

The process of architectural construction, depicted in Figure 5, begins with applying
suitable preprocessing to the input images. The careful choice of preprocessing techniques
significantly influences the subsequent steps. In the field of deep learning, image resizing
is commonly achieved through various interpolation methods. These include nearest-
neighbor interpolation, bilinear interpolation, and bicubic interpolation, which are among
the most frequently used techniques.

Sensors 2024, 24, 2265 7 of 18

Table 2. The number of parameters of each operation.

Operation Number of Parameters Sum of Parameters

Convolution 1 3 × 3 × 3 × 8 216

Batch normalization 1 4 × 8 32

Convolution 2 8 ×3 × 3 × 8 576

Batch normalization 2 4 × 8 32

FC 1 8 × 30 240

FC 2 30 × 30 900

FC 3 30 × 1 30

Convolution 3 8 × 3 × 3 × 16 1152

Batch normalization 3 4 × 16 64

FC 4 16 × 30 480

FC 5 30 × 30 900

FC 6 30 × 1 30

Convolution 4 16 × 3 × 3 × 32 4608

Batch normalization 4 4 × 32 128

FC 7 32 × 30 960

FC 8 30 × 30 900

FC 9 30 × 1 30

Total parameters 11,278

Sensors 2024, 24, x FOR PEER REVIEW 8 of 18

Figure 5. Flow chart for creating a lightweight model with early exit.

Table 3. Comparing the accuracy of various interpolation methods.

Image Size
Nearest Neighbor

Interpolation Test Accuracy
Bilinear Interpola-
tion Test Accuracy

Bicubic Interpolation
Test Accuracy

128 × 128 74.53% 84.70% 84.64%
64 × 64 65.32% 83.29% 83.11%
32 × 32 54.62% 75.66% 72.42%

After completing the preprocessing of the dataset, the next step involves selecting a
suitable network architecture. Table 4 provides a comprehensive comparison of different
choices regarding the number of channels in the convolutional layers within the proposed
architecture. The channel count in the initial convolutional layer is of particular im-
portance for overall accuracy. Therefore, Table 4 primarily investigates how varying chan-
nel counts in the first convolutional layer influence the model’s total parameter count and
accuracy. Insights gleaned from Table 4 reveal that a channel count of four in the first layer
yields unsatisfactory accuracy. Conversely, increasing the channel count to eight leads to
a significant improvement in accuracy. Further increases to 16 and 32 channels result in
only marginal enhancements. Taking into account computational complexity, the archi-
tecture is ultimately designed with eight channels in the first convolutional layer.

After establishing the model’s depth, the proposed architecture incorporates an early
exit mechanism to reduce computational costs for edge device deployment. Table 5 offers
a comprehensive analysis of the inference accuracy at different exit points within the ar-
chitecture. The findings reveal that Exit1 exhibits relatively lower accuracy, whereas the
distinctions in accuracy between Exit2 and Exit3 are minimal. This thorough examination
not only underscores the critical significance of the channel count in the initial convolu-
tional layer for accuracy but also underscores the efficacy of the early exit strategy. Such
an approach proves especially advantageous for optimizing computational resource uti-
lization during inference, particularly in edge computing environments.

Table 4. The test accuracy with different channels of convolution layers.

Method
Conv. Layer (in_channel/out_channel) Sum of Conv.

Parameters
Test Accuracy

Layer1 Layer2 Layer3 Layer4
1 3/4 4/8 8/16 16/32 6156 73.29%
2 3/8 8/8 8/16 16/32 6552 83.11%

Figure 5. Flow chart for creating a lightweight model with early exit.

Table 3 provides a detailed analysis of how various interpolation techniques affect the
accuracy of the proposed architecture. The performance of the framework is assessed using
different compression sizes, employing the three interpolation methods mentioned earlier.
The results in Table 3 highlight the significant impact of nearest-neighbor interpolation on
accuracy, particularly noting a marked decrease in accuracy when images are reduced to
64 × 64 dimensions. In contrast, bilinear and bicubic interpolation techniques yield more
favorable outcomes. Considering computational complexity, the architecture ultimately
utilizes bilinear interpolation, reducing images to 64 × 64 dimensions.

Sensors 2024, 24, 2265 8 of 18

Table 3. Comparing the accuracy of various interpolation methods.

Image Size Nearest Neighbor
Interpolation Test Accuracy

Bilinear Interpolation
Test Accuracy

Bicubic Interpolation
Test Accuracy

128 × 128 74.53% 84.70% 84.64%

64 × 64 65.32% 83.29% 83.11%

32 × 32 54.62% 75.66% 72.42%

This thorough analysis not only highlights the complex interplay between interpola-
tion methods and model performance but also justifies the choice of bilinear interpolation
in the proposed architecture.

After completing the preprocessing of the dataset, the next step involves selecting a
suitable network architecture. Table 4 provides a comprehensive comparison of different
choices regarding the number of channels in the convolutional layers within the proposed
architecture. The channel count in the initial convolutional layer is of particular importance
for overall accuracy. Therefore, Table 4 primarily investigates how varying channel counts
in the first convolutional layer influence the model’s total parameter count and accuracy.
Insights gleaned from Table 4 reveal that a channel count of four in the first layer yields
unsatisfactory accuracy. Conversely, increasing the channel count to eight leads to a
significant improvement in accuracy. Further increases to 16 and 32 channels result in only
marginal enhancements. Taking into account computational complexity, the architecture is
ultimately designed with eight channels in the first convolutional layer.

Table 4. The test accuracy with different channels of convolution layers.

Method
Conv. Layer (in_channel/out_channel) Sum of Conv.

Parameters
Test Accuracy

Layer1 Layer2 Layer3 Layer4

1 3/4 4/8 8/16 16/32 6156 73.29%

2 3/8 8/8 8/16 16/32 6552 83.11%

3 3/16 16/8 8/16 16/32 7344 83.57%

4 3/32 32/16 16/16 16/32 12,384 83.64%

After establishing the model’s depth, the proposed architecture incorporates an early
exit mechanism to reduce computational costs for edge device deployment. Table 5 offers
a comprehensive analysis of the inference accuracy at different exit points within the
architecture. The findings reveal that Exit1 exhibits relatively lower accuracy, whereas the
distinctions in accuracy between Exit2 and Exit3 are minimal. This thorough examination
not only underscores the critical significance of the channel count in the initial convolutional
layer for accuracy but also underscores the efficacy of the early exit strategy. Such an
approach proves especially advantageous for optimizing computational resource utilization
during inference, particularly in edge computing environments.

Table 5. The accuracy of the images at different exit points.

Image Size Exit1 Accuracy Exit2 Accuracy Exit3 Accuracy

64 × 64 79.02% 83.04% 83.11%

After completing the model’s construction, the next essential step is its quantization.
Due to the limited computational resources available on edge devices, it is necessary to
reduce the model’s computational demands and minimize storage space usage. However,
it is crucial to acknowledge that quantization often leads to a decrease in model accuracy. If
this reduction in accuracy is significant, it could undermine the model’s practicality. There-

Sensors 2024, 24, 2265 9 of 18

fore, the primary challenge lies in achieving an optimal balance between maintaining model
accuracy and reducing computational requirements, a factor of paramount importance.

3.2. Weight Quantization Method

In the inference phase of neural networks, using floating-point numbers for weight
storage can lead to significant storage demands. Therefore, when performing inference
computations on edge devices, it becomes crucial to quantize these floating-point numbers
from their standard 32-bit format to a lower-bit precision. In the proposed architecture, the
quantization approach is based on DoReFaNet [20], as outlined in Section 2. DoReFaNet
introduces a quantization function that converts continuous weight values into a discrete
range between −1 and 1, as shown in Equation (2). This section focuses on determining
the appropriate quantization bit precision, aiming to strike a balance between maintaining
weight accuracy and reducing storage needs.

Table 6 clearly illustrates the impact of applying different quantization bit precisions
on the accuracy at each exit point within the same model. It is observed that when weights
are quantized to 7 bits, there is only a slight decrease in accuracy at all three exit points. In
contrast, quantizing the weights to 6 bits results in a more significant reduction in accuracy.
Consequently, the decision is made to quantize the weights at 7 bits. This choice effectively
balances the need to maintain accuracy with the goal of reducing storage requirements.

Table 6. Accuracy of weight quantization with different bits.

Bits Exit1 Accuracy Exit2 Accuracy Exit3 Accuracy

9 78.86% 82.71% 82.81%

8 78.62% 82.57% 82.79%

7 78.35% 82.21% 82.69%

6 77.21% 80.36% 80.39%

3.3. Software Results

After applying DoReFaNet’s quantization technique via the software platform, initial
results from the proposed network architecture have emerged. Table 7 displays the confu-
sion matrix for this architecture. Following detailed calculations, the performance metrics
obtained on the FLAME dataset are as follows: the model achieved an accuracy of 82.69%,
a precision of 83.38%, a recall of 87.04%, and an F1 score of 85.17%.

Table 7. Confusion matrix of the proposed architecture.

Predict
Accuracy

Fire No Fire

Actual
Fire 4283 854 83.38%

No Fire 638 2842 81.67%

4. Hardware Implementation
4.1. Fixed-Point of Activation Values and Parameters

Writing feature maps back to memory is crucial to implementing a convolutional
neural network. Therefore, reducing the bit-width for activations becomes important
during hardware computations. Experiments within the proposed architecture have shown
that using fixed-point quantization for activations does not markedly affect accuracy.

Table 8 shows the accuracy levels associated with different fractional bit-widths for
activations. It is apparent that maintaining a fractional bit-width of 5 results in only
minor accuracy changes. In contrast, reducing the bit-width to 4 leads to a significant
decrease in accuracy. Therefore, the ideal setting involves using a fractional bit-width of 5,
which requires only a quarter of the memory needed for storing activations in the original

Sensors 2024, 24, 2265 10 of 18

FP32 format. Furthermore, minimizing the bit-width of activations saves memory and
reduces the computational time for processing these values. Such optimization enables
convolutional neural networks to perform more efficient inference and faster execution,
making them more suitable for resource-limited settings and real-time applications.

Table 8. The test accuracy comparison for different bit-width of activation.

Integer Bits Decimal Bits Exit1
Accuracy

Exit2
Accuracy

Exit3
Accuracy

3 7 78.35% 82.16% 82.60%

3 6 78.31% 82.17% 82.57%

3 5 78.29% 81.85% 81.94%

3 4 75.37% 78.67% 78.97%

After the model training is finalized, the four parameters of the batch normalization
(BN) layer become fixed. These BN parameters undergo quantization to reduce memory
consumption for future hardware implementations. Prior to quantization, the four BN
parameters are condensed into two, as described in Equations (6) and (7). These two
parameters are µβ, which represents the mini-batch mean, and α2

β, representing the mini-
batch variance.

After simplifying the parameters, the total count of parameters in batch normalization
is reduced by half, from 128 to 64. This reduction simplifies the numerical calculations to
just one multiplication and one addition, as illustrated in Equation (8). Such simplification
is beneficial for the upcoming hardware implementation. Table 9 also explores the effects
of separately quantizing the variables γ′ and β′, with a particular focus on the resultant
error. Initially, the value of β′ is held constant while adjusting the bit-width for quantizing
γ′. Table 9 shows the accuracy outcomes following the quantization of γ′.

γ′ =
1√
α2

β

γ (6)

β′ = −
(
µβγ

′)+ β (7)

yi = γ′xi + β′ (8)

Table 9. The test accuracy comparison table for the bit-width of γ′.

γ’ Fixed Point Comparison Table

Integer Bits Decimal Bits Exit1 Accuracy Exit2 Accuracy Exit3 Accuracy

3 11 78.32% 81.77% 81.92%

3 10 78.35% 82.02% 81.89%

3 9 78.29% 81.83% 81.85%

3 8 78.26% 81.76% 81.88%

3 7 59.72% 60.40% 60.76%

Table 9 reveals that maintaining a fractional bit width of 8 or more results in relatively
stable accuracy at all three exit points. However, there is a noticeable decrease in accuracy
when the fractional bit width is reduced to 7. Therefore, for quantizing the variable γ′, a
fractional bit width of 8 is ultimately selected.

Table 10 illustrates the effects of quantizing β’ at various bit widths on model accuracy.
The data shows that when the fractional bit width is set above 4, the accuracy decrease is

Sensors 2024, 24, 2265 11 of 18

minimal. However, reducing the fractional bit width to 3 results in a substantial decline in
accuracy, particularly at Exit2 and Exit3.

Table 10. The test accuracy comparison table for the bit-width of β′.

β’ Fixed Point Comparison Table

Integer Bits Decimal Bits Exit1 Accuracy Exit2 Accuracy Exit3 Accuracy

3 7 78.26% 81.76% 81.92%

3 6 78.24% 81.85% 81.88%

3 5 78.18% 81.77% 81.84%

3 4 78.16% 81.73% 81.82%

3 3 77.47% 79.06% 79.04%

The batch normalization parameters will be implemented using lookup tables during
the hardware implementation phase. Additionally, as discussed in Section 2, the quantized
weights from DoReFaNet will also be stored in lookup tables. These weights will be treated
as fixed-point numbers. Since DoReFaNet limits the weight range to −1 and 1, only 2 bits
are required to store the integer part of the weights. The next crucial step is deciding the
suitable number of fractional bits for storing weights in the lookup table. Table 11 shows a
significant drop in overall accuracy occurs when the fractional bit-width is less than 8 bits.
Therefore, choosing 8 bits for the fractional part of the weight is optimal, ensuring accuracy
is maintained during the storage process in the lookup table.

Table 11. The test accuracy comparison table for different bit-width of weight.

Comparison for Bit-Width of Weight

Integer Bits Decimal Bits Exit1 Accuracy Exit2 Accuracy Exit3 Accuracy

2 9 78.08% 81.68% 81.76%

2 8 78.06% 81.63% 81.73%

2 7 76.12% 78.77% 79.25%

4.2. CNN Hardware Accelerator Architecture

Figure 6 illustrates the detailed hardware architecture, which includes the computa-
tional blocks and memory for storing weights and feature maps. The static random-access
memory (SRAM) and register files, created by the memory compiler in the TSMC 40 nm
process, are single-port memories. They store input images and the feature maps produced
after convolutional layer operations. The Psum1 to Psum4, developed using the logic
synthesis tool, are register files that hold the partial sums from each channel in the convolu-
tional layer. The read-only memory (ROM) stores the weights for both the convolutional
and fully connected layers. Notably, to reduce physical costs and energy consumption,
memory blocks are carefully reused during each inference cycle. This involves breaking
down the computation process of the proposed model. Specifically, computations for
convolutional layers begin in the convolution block and progress through batch normaliza-
tion, max pooling, and ReLU activation. The resulting feature maps are then saved to the
register file or SRAM, which are subsequently reused for each layer’s computations. After
completing two, three, or four convolutional layers, predictions are generated through
global average pooling and fully connected layers. This breakdown of the computation
process enables the design of a dataflow to reuse memory blocks.

Sensors 2024, 24, 2265 12 of 18

Sensors 2024, 24, x FOR PEER REVIEW 12 of 18

convolutional and fully connected layers. Notably, to reduce physical costs and energy
consumption, memory blocks are carefully reused during each inference cycle. This in-
volves breaking down the computation process of the proposed model. Specifically, com-
putations for convolutional layers begin in the convolution block and progress through
batch normalization, max pooling, and ReLU activation. The resulting feature maps are
then saved to the register file or SRAM, which are subsequently reused for each layer’s
computations. After completing two, three, or four convolutional layers, predictions are
generated through global average pooling and fully connected layers. This breakdown of
the computation process enables the design of a dataflow to reuse memory blocks.

Figure 6. The proposed CNN hardware architecture with early exits.

Table 12 provides the utilization of each memory block. The input image is 64 × 64
pixels in RGB format, resulting in three distinct channels. Considering that each word is
8 bits, two memory blocks (Sr1-1 and Sr1-2) are required to store the input, occupying a
total of 98.306 KB. The combined channels in the first layer are kept in four Psum registers,
amounting to 77.824 KB in size. Following max-pooling, the reduced feature maps are
stored in four register files, totaling 65.536 KB. Additional computations on these scaled-
down feature maps negate the need for extra storage, allowing these memory spaces to be
reused for subsequent calculations. The SRAM and register files are powered down when
not in use to save energy.

The storage capacity within Psum1 to Psum4 is divided into four distinct register
banks. After thorough testing, a 19-bit representation emerged as the best choice to bal-
ance accuracy with reduced storage requirements. Each of these banks has a capacity of
1024 × 19 bits. To enhance power efficiency, the design strategically utilizes all storage
blocks only during the initial convolutional layer. From the second convolutional layer
onwards, just one register bank is used for channel storage, while the other three are effi-
ciently managed using clock-gating techniques. This approach temporarily suspends their
operation, contributing to energy savings.

Figure 6. The proposed CNN hardware architecture with early exits.

Table 12 provides the utilization of each memory block. The input image is 64 × 64 pixels
in RGB format, resulting in three distinct channels. Considering that each word is 8 bits,
two memory blocks (Sr1-1 and Sr1-2) are required to store the input, occupying a total of
98.306 KB. The combined channels in the first layer are kept in four Psum registers, amounting
to 77.824 KB in size. Following max-pooling, the reduced feature maps are stored in four
register files, totaling 65.536 KB. Additional computations on these scaled-down feature maps
negate the need for extra storage, allowing these memory spaces to be reused for subsequent
calculations. The SRAM and register files are powered down when not in use to save energy.

Table 12. The memory usage of each layer.

Store Data Data Size
(Height × Width × Channel × Bit-Width) Total Size (bits) Data Management

Input data 64 × 64 × 3 × 8 98,306 Sr1-1, Sr1-2

Psum of layer 1 64 × 64 × 1 × 19 77,824 Psum1, Psum2, Psum3, Psum4

Feature map of layer 1 32 × 32 × 8 × 8 65,536 rf1-1, rf1-2, rf1-3, rf1-4

Psum of layer 2 32 × 32 × 1 × 19 19,456 Psum1

Feature map of layer 2 16 × 16 × 8 × 8 16,384 Sr1-2

Psum of layer 3 16 × 16 × 1 × 19 4864 Psum1

Feature map of layer 3 8 × 8 × 16 × 8 8192 rf1-1

Psum of layer 4 8 × 8 × 1 × 19 1216 Psum1

Feature map of layer 4 4 × 4 × 32 × 8 4096 rf1-2

The storage capacity within Psum1 to Psum4 is divided into four distinct register
banks. After thorough testing, a 19-bit representation emerged as the best choice to bal-
ance accuracy with reduced storage requirements. Each of these banks has a capacity of
1024 × 19 bits. To enhance power efficiency, the design strategically utilizes all storage
blocks only during the initial convolutional layer. From the second convolutional layer
onwards, just one register bank is used for channel storage, while the other three are
efficiently managed using clock-gating techniques. This approach temporarily suspends
their operation, contributing to energy savings.

Sensors 2024, 24, 2265 13 of 18

To mitigate power consumption, a critical concern in UAV applications, the proposed
architecture integrates power gating technology. This involves deactivating ROM, RAM,
and register components when not in use to conserve power. Therefore, in the hardware
design, memory space is segmented, with power supply to segments alternately activated
or deactivated based on operational requirements, reducing power usage during memory
inactivity. Figure 7 illustrates the power gating control strategy, with control signals pgen1
and pgen2 managing SRAM switches, and pgen3 to pgen6 controlling the register file
switches. Additionally, pgen7 to pgen12 regulate ROM switches.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18

Table 12. The memory usage of each layer.

Store Data
Data Size

(Height × Width × Channel × Bit-Width)
Total Size (bits) Data Management

Input data 64 × 64 × 3 × 8 98,306 Sr1-1, Sr1-2
Psum of layer 1 64 × 64 × 1 × 19 77,824 Psum1, Psum2, Psum3, Psum4

Feature map of layer 1 32 × 32 × 8 × 8 65,536 rf1-1, rf1-2, rf1-3, rf1-4
Psum of layer 2 32 × 32 × 1 × 19 19,456 Psum1

Feature map of layer 2 16 × 16 × 8 × 8 16,384 Sr1-2
Psum of layer 3 16 × 16 × 1 × 19 4864 Psum1

Feature map of layer 3 8 × 8 × 16 × 8 8192 rf1-1
Psum of layer 4 8 × 8 × 1 × 19 1216 Psum1

Feature map of layer 4 4 × 4 × 32 × 8 4096 rf1-2

To mitigate power consumption, a critical concern in UAV applications, the proposed
architecture integrates power gating technology. This involves deactivating ROM, RAM,
and register components when not in use to conserve power. Therefore, in the hardware
design, memory space is segmented, with power supply to segments alternately activated
or deactivated based on operational requirements, reducing power usage during memory
inactivity. Figure 7 illustrates the power gating control strategy, with control signals
pgen1 and pgen2 managing SRAM switches, and pgen3 to pgen6 controlling the register
file switches. Additionally, pgen7 to pgen12 regulate ROM switches.

In summary, Figure 8 provides the hardware operation flow for the complete CNN.
After processing through the second, third, and fourth convolutional layers, the feature
maps proceed to three fully connected layers to generate the output predictions. Addi-
tionally, Table 13 shows the significant reduction in memory usage attained through the
hardware implementation of the proposed architecture. While the original neural network
stored feature maps and weights using FP32, the implementation in this work, involving
weight quantization and fixed-point representation for activation values, results in a
memory usage reduction of approximately 72%. This substantial decrease is particularly
beneficial for edge AI applications, where low computational resource requirements are
paramount.

Figure 7. The proposed power gating control.
Figure 7. The proposed power gating control.

In summary, Figure 8 provides the hardware operation flow for the complete CNN. Af-
ter processing through the second, third, and fourth convolutional layers, the feature maps
proceed to three fully connected layers to generate the output predictions. Additionally,
Table 13 shows the significant reduction in memory usage attained through the hardware
implementation of the proposed architecture. While the original neural network stored
feature maps and weights using FP32, the implementation in this work, involving weight
quantization and fixed-point representation for activation values, results in a memory
usage reduction of approximately 72%. This substantial decrease is particularly beneficial
for edge AI applications, where low computational resource requirements are paramount.

Table 13. Memory reduction ratio information.

Memory Type Memory Total Bits before
the Fixed-Point

Total Bits after
the Fixed-Point Reduction Ratio

RAM Sr1-1, Sr1-2 393,224 98,306 75%

Register
Psum1~4 131,072 77,824 40.625%

rf1-1, rf1-2, rf1-3, rf1-4 262,144 65,536 75%

ROM

rom_c1c2, rom_c3,
rom_c4 209,920 45,920 78.125%

rom_exit1, rom_exit2,
rom_exit3 145,408 31,808 78.125%

The sum of all bits 1,141,768 319,394 72.03%

Sensors 2024, 24, 2265 14 of 18
Sensors 2024, 24, x FOR PEER REVIEW 14 of 18

Figure 8. The flow chart for the CNN hardware circuit.

Table 13. Memory reduction ratio information.

Memory Type Memory
Total Bits before
the Fixed-Point

Total Bits after
the Fixed-Point

Reduction Ratio

RAM Sr1-1, Sr1-2 393,224 98,306 75%

Register
Psum1~4 131,072 77,824 40.625%

rf1-1, rf1-2, rf1-3, rf1-4 262,144 65,536 75%

ROM
rom_c1c2, rom_c3, rom_c4 209,920 45,920 78.125%

rom_exit1, rom_exit2, rom_exit3 145,408 31,808 78.125%
The sum of all bits 1,141,768 319,394 72.03%

5. Experimental Results
The CNN hardware design proposed in this work was implemented using the TSMC

40 nm CMOS process. To evaluate the power consumption, we use an automatic place-
ment and routing tool to collect the experimental data. The design was routed using Ca-
dence Innovus, followed by post-layout simulation to generate the switching activities
file. Subsequently, we employed the Powermeter tool of the Cadence Voltus tool, incor-
porating simulated switching activities and cell library power models, to calculate the
power consumption of the design with annotated wire RC effects. During the post-layout
simulation phase, the design achieved an operational frequency of 300 MHz. Notably, the
proposed CNN hardware accelerator, which incorporates power gating techniques, ex-
hibited a power consumption of only 117 mW at this frequency. The development process
involved several critical steps, including quantization and adopting fixed-point represen-
tation, which transitioned the model from its design phase to actual hardware implemen-
tation. These transformations can potentially alter the model’s accuracy. In the register
transfer level (RTL) simulation, intermediate computations were also limited to fixed-
point representation, resulting in some errors. Table 14 details the accuracy levels of the
proposed architecture at various stages of its development, demonstrating that the archi-
tecture, even after undergoing software and hardware implementation phases, maintains
an accuracy of over 80% at Exit3.

Figure 8. The flow chart for the CNN hardware circuit.

5. Experimental Results

The CNN hardware design proposed in this work was implemented using the TSMC
40 nm CMOS process. To evaluate the power consumption, we use an automatic place-
ment and routing tool to collect the experimental data. The design was routed using
Cadence Innovus, followed by post-layout simulation to generate the switching activities
file. Subsequently, we employed the Powermeter tool of the Cadence Voltus tool, incor-
porating simulated switching activities and cell library power models, to calculate the
power consumption of the design with annotated wire RC effects. During the post-layout
simulation phase, the design achieved an operational frequency of 300 MHz. Notably,
the proposed CNN hardware accelerator, which incorporates power gating techniques,
exhibited a power consumption of only 117 mW at this frequency. The development
process involved several critical steps, including quantization and adopting fixed-point
representation, which transitioned the model from its design phase to actual hardware
implementation. These transformations can potentially alter the model’s accuracy. In the
register transfer level (RTL) simulation, intermediate computations were also limited to
fixed-point representation, resulting in some errors. Table 14 details the accuracy levels
of the proposed architecture at various stages of its development, demonstrating that
the architecture, even after undergoing software and hardware implementation phases,
maintains an accuracy of over 80% at Exit3.

Table 14. The test accuracy software to hardware in different stages.

Operation of Each Stage Exit1 Test Accuracy Exit2 Test Accuracy Exit3 Test Accuracy

Build CNN model 79.02% 83.04% 83.11%

Weight quantization to 7-bit by DoReFaNet 78.35% 82.21% 82.69%

Convert activation to 8-bit 78.29% 81.85% 81.94%

Convert γ′ in BN to 11 bits 78.26% 81.76% 81.88%

Convert β′ in BN to 7 bits 78.16% 81.73% 81.82%

Verilog register transfer 78.02% 81.47% 81.49%

Sensors 2024, 24, 2265 15 of 18

Figure 9 shows the number of cycles needed during the Verilog simulation phase
for the proposed architecture to assess the real-time performance. Opting for Exit1 as the
prediction point requires 232,500 cycles, while selecting Exit2 takes 274,000 cycles, and
Exit3 needs 317,000 cycles. It is evident that choosing Exit1 for the prediction results in a
speed approximately 1.4 times faster than using Exit3. This observation is consistent with
the anticipated performance of a lightweight model.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 18

Table 14. The test accuracy software to hardware in different stages.

Operation of Each Stage Exit1 Test Accuracy Exit2 Test Accuracy Exit3 Test Accuracy
Build CNN model 79.02% 83.04% 83.11%

Weight quantization to 7-bit by DoReFaNet 78.35% 82.21% 82.69%
Convert activation to 8-bit 78.29% 81.85% 81.94%

Convert γ′ in BN to 11 bits 78.26% 81.76% 81.88%
Convert β′ in BN to 7 bits 78.16% 81.73% 81.82%

Verilog register transfer 78.02% 81.47% 81.49%

Figure 9 shows the number of cycles needed during the Verilog simulation phase for
the proposed architecture to assess the real-time performance. Opting for Exit1 as the pre-
diction point requires 232,500 cycles, while selecting Exit2 takes 274,000 cycles, and Exit3
needs 317,000 cycles. It is evident that choosing Exit1 for the prediction results in a speed
approximately 1.4 times faster than using Exit3. This observation is consistent with the
anticipated performance of a lightweight model.

Figure 9. The different situations RTL-level cycles count.

Figure 10 shows the chip layout of the proposed CNN model, clearly marking the
locations of the SRAM, register file, ROM, and Psum components. The total area of the
chip is 1500 × 1500 μm2.

At a working frequency of 300 MHz, the time needed for Exit1 is determined by
232,500 cycles, with each cycle being 3.3 nanoseconds. This results in a total time of 767,250
nanoseconds or approximately 0.077 s. For Exit2, the process involves 274,000 cycles,
which total 904,200 nanoseconds or about 0.090 s. Finally, Exit3 necessitates 317,000 cycles,
amounting to 1,046,100 nanoseconds, or roughly 0.105 s. Based on these calculations, the
proposed architecture is capable of achieving image inference frames per second (FPS)
rates of 13.16 for Exit1, 11.11 for Exit2, and 9.615 for Exit3.

To emphasize the effectiveness and simplicity of the proposed CNN model, the ar-
chitecture was tested on a Raspberry Pi 3 Model B, featuring a 1.2 GHz 64-bit quad-core
ARM Cortex-A53 CPU and 1 GB of memory. In this experimental phase, the neural net-
work was refined through weight quantization, as well as fixed-point quantization of ac-
tivation values and batch normalization (BN) parameters. The inference execution time
for a single image was meticulously recorded over several repetitions, revealing an aver-
age time of approximately 3.809 s. Thus, it was observed that the Raspberry Pi 3 Model B
(Sony UK Technology Centre (UKTec), Pencoed, Wales, UK) has the capability to process
about 0.26 images per second in this test setup. However, this rate indicates that relying
solely on the Raspberry Pi 3 Model B to run the neural network falls short of meeting the
required speed for certain demands.

Figure 9. The different situations RTL-level cycles count.

Figure 10 shows the chip layout of the proposed CNN model, clearly marking the
locations of the SRAM, register file, ROM, and Psum components. The total area of the chip
is 1500 × 1500 µm2.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 18

Figure 10. The layout of the proposed CNN hardware circuit.

To highlight the differences between the proposed architecture and prior methods,
Table 15 shows a comparative analysis. In the proposed architecture, image resizing to 64
× 64 pixels is implemented as a strategy to minimize network parameters and overall size.
The architecture adopts the DoReFaNet quantization technique, which effectively reduces
the storage requirements for weights and computation time while still achieving an accu-
racy of 82.69%. In the hardware implementation phase, a fixed-point methodology is ap-
plied to decrease the storage needs for activation values and weights. This hardware is
realized using the TSMC 40 nm CMOS process and operates at a frequency of 300 MHz.
The results show an FPS range from 9.615 to 13.16, with a maximum power consumption
of 117 mW for Exit3. Consequently, the energy per inference for the proposed ASIC can
be computed as 317,000 (cycles) × 3.333 × 10−9 (s) × 117 × 10−3 (W), resulting in 1.23618 × 10−4
Joules. This indicates remarkably low energy consumption. On the other hand, in the pro-
posed CNN architecture, the power consumption decreases to 100.12 mW with the selec-
tion of Exit1 and 108.59 mW with Exit2. This design shows the architecture’s adaptability,
allowing for adjustments to align with specific application scenarios and power-saving
needs.

Table 15. Comparison with prior methods.

[6]

Computer Networks’21
[8]

Sensors’22
[13]

Forests’22 Proposed Work

Architecture Xception
DenseNet201+

EfficientB5
FT-ResNet50 2-D CNN

Hardware
information

NVIDIA Geforce RTX
2080ti

NVIDIA Geforce RTX
2080ti

NVIDIA Geforce RTX
2080ti

Raspberry pi3
Model B

40 nm ASIC

Inference time (s) N/A 0.018 0.055 3.809
0.077 (Exit1)
0.105 (Exit3)
@300 MHz

Dataset
The FLAME

dataset
The FLAME

dataset
The FLAME

dataset
The FLAME

dataset
Input size 254 × 254 254 × 254 254 × 254 64 × 64

Parameters 22.9 M 50.7 M 25.6 M 11.2 k
Quantization

method
No No No DoReFaNet+Fixed-point

Accuracy 76.23% 85.12% 79.48% 81.82% 81.49%
Power consumption 600 W 600 W 600 W ≈2.5 W 117 mW@300 MHz

Figure 10. The layout of the proposed CNN hardware circuit.

At a working frequency of 300 MHz, the time needed for Exit1 is determined by
232,500 cycles, with each cycle being 3.3 nanoseconds. This results in a total time of
767,250 nanoseconds or approximately 0.077 s. For Exit2, the process involves 274,000 cycles,
which total 904,200 nanoseconds or about 0.090 s. Finally, Exit3 necessitates 317,000 cycles,
amounting to 1,046,100 nanoseconds, or roughly 0.105 s. Based on these calculations, the
proposed architecture is capable of achieving image inference frames per second (FPS) rates
of 13.16 for Exit1, 11.11 for Exit2, and 9.615 for Exit3.

To emphasize the effectiveness and simplicity of the proposed CNN model, the archi-
tecture was tested on a Raspberry Pi 3 Model B, featuring a 1.2 GHz 64-bit quad-core ARM
Cortex-A53 CPU and 1 GB of memory. In this experimental phase, the neural network
was refined through weight quantization, as well as fixed-point quantization of activation
values and batch normalization (BN) parameters. The inference execution time for a sin-
gle image was meticulously recorded over several repetitions, revealing an average time
of approximately 3.809 s. Thus, it was observed that the Raspberry Pi 3 Model B (Sony
UK Technology Centre (UKTec), Pencoed, Wales, UK) has the capability to process about
0.26 images per second in this test setup. However, this rate indicates that relying solely on
the Raspberry Pi 3 Model B to run the neural network falls short of meeting the required
speed for certain demands.

To highlight the differences between the proposed architecture and prior methods,
Table 15 shows a comparative analysis. In the proposed architecture, image resizing to

Sensors 2024, 24, 2265 16 of 18

64 × 64 pixels is implemented as a strategy to minimize network parameters and overall
size. The architecture adopts the DoReFaNet quantization technique, which effectively
reduces the storage requirements for weights and computation time while still achieving
an accuracy of 82.69%. In the hardware implementation phase, a fixed-point methodology
is applied to decrease the storage needs for activation values and weights. This hardware
is realized using the TSMC 40 nm CMOS process and operates at a frequency of 300 MHz.
The results show an FPS range from 9.615 to 13.16, with a maximum power consumption
of 117 mW for Exit3. Consequently, the energy per inference for the proposed ASIC
can be computed as 317,000 (cycles) × 3.333 × 10−9 (s) × 117 × 10−3 (W), resulting in
1.23618 × 10−4 Joules. This indicates remarkably low energy consumption. On the other
hand, in the proposed CNN architecture, the power consumption decreases to 100.12 mW
with the selection of Exit1 and 108.59 mW with Exit2. This design shows the architecture’s
adaptability, allowing for adjustments to align with specific application scenarios and
power-saving needs.

Table 15. Comparison with prior methods.

[6]
Computer

Networks’21

[8]
Sensors’22

[13]
Forests’22 Proposed Work

Architecture Xception DenseNet201+
EfficientB5 FT-ResNet50 2-D CNN

Hardware
information

NVIDIA Geforce RTX
2080ti

NVIDIA Geforce
RTX 2080ti

NVIDIA Geforce
RTX 2080ti

Raspberry pi3
Model B 40 nm ASIC

Inference time (s) N/A 0.018 0.055 3.809
0.077 (Exit1)
0.105 (Exit3)
@300 MHz

Dataset The FLAME
dataset

The FLAME
dataset

The FLAME
dataset

The FLAME
dataset

Input size 254 × 254 254 × 254 254 × 254 64 × 64

Parameters 22.9 M 50.7 M 25.6 M 11.2 k

Quantization
method No No No DoReFaNet+Fixed-point

Accuracy 76.23% 85.12% 79.48% 81.82% 81.49%

Power
consumption 600 W 600 W 600 W ≈2.5 W 117 mW@300 MHz

The remaining works [6,8,13] employed computational resources from the NVIDIA
RTX GeForce 2080 Ti (NVIDIA Corporation, Santa Clara, CA, USA). However, attaining
a precise evaluation of energy consumption during inference necessitates measuring the
energy usage of each network using the original hardware and software, which includes
employing energy meters. Unfortunately, the energy requirements for inference are rarely
reported and the available documentation does not specifically address the power con-
sumption of these resources. According to the manufacturer’s official specifications, the
NVIDIA GeForce RTX 2080 Ti typically requires 600 W of power. In contrast, the power
consumption of the Raspberry Pi 3 Model B is significantly lower, estimated at around 2.5 W.
Therefore, this power information has been included in the table for rough comparison.

6. Conclusions

This paper proposes a CNN hardware accelerator featuring early termination options,
specifically for identifying wildfires in images taken by UAVs. The structure of this model
consists of four convolutional layers, enhanced with batch normalization and max pooling
techniques. Each early exit point in the model is equipped with a global average pooling

Sensors 2024, 24, 2265 17 of 18

layer, followed by three densely connected layers. During the development of this model,
it attained a peak accuracy of 83.11%. The model utilizes the DoReFaNet approach for
weight quantization, effectively compressing the weight bits to 7 bits. Remarkably, this
CNN model operates with just 11,278 parameters. In the RTL stage, the batch normalization
elements are streamlined from four components to two, and a fixed-point numeric format
is applied to the weights. At this juncture, the model reached a maximum accuracy of
81.49%. Additionally, the proposed CNN’s hardware framework integrates power gating
technology, contributing to reduced energy usage during its implementation phase. This
design works at a clock frequency 300 MHz and demonstrates a power consumption of
merely 117 mW.

Author Contributions: Conceptualization, C.-C.C. and C.-M.C.; methodology, C.-C.C. and C.-M.C.;
software, C.-M.C.; validation, C.-C.C., Y.-P.L. and C.-M.C.; formal analysis, C.-C.C. and Y.-P.L.; investi-
gation, C.-C.C., Y.-P.L. and C.-M.C.; resources, C.-C.C.; data curation, C.-M.C.; writing—original draft
preparation, C.-C.C. and Y.-P.L.; writing—review and editing, C.-C.C. and Y.-P.L.; visualization, C.-C.C.
and C.-M.C.; supervision, C.-C.C.; project administration, C.-C.C.; funding acquisition, C.-C.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the Ministry of Science and Technology of Taiwan under
Grant MOST-111-2221-E-194-049- and was financially/partially supported by the Advanced Institute
of Manufacturing with High-tech Innovations (AIM-HI) from The Featured Areas Research Center
Program within the framework of the Higher Education Sprout Project by the Ministry of Education
(MOE) in Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the EDA tools support of the Taiwan Semicon-
ductor Research Institute (TSRI).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yuan, C.; Liu, Z.; Zhang, Y. UAV-based forest fire detection and tracking using image processing techniques. In Proceedings of

the International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015; pp. 639–643.
2. Dampage, U.; Bandaranayake, L.; Bandaranayake, L.; Kottahachchi, K.; Jayasanka, B. Forest fire detection system using wireless

sensor networks and machine learning. Sci. Rep. 2022, 12, 46. [CrossRef] [PubMed]
3. Sathishkumar, V.E.; Cho, J.; Subramanian, M.; Naren, O.S. Forest fire and smoke detection using deep learning-based learning

without forgetting. Fire Ecol. 2023, 19, 9. [CrossRef]
4. Shamsoshoara, A.; Afghah, F.; Razi, A.; Zheng, L.; Ful, P.Z.; Blasch, E. Aerial imagery pile burn detection using deep learning:

The FLAME dataset. Comput. Netw. 2021, 193, 108001. [CrossRef]
5. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
6. Ghali, R.; Akhlouf, M.A.; Mseddi, W.S. Deep learning and transformer approaches for UAV-based wildfire detection and

segmentation. Sensors 2022, 22, 1977. [CrossRef] [PubMed]
7. Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.
8. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
9. Zhang, L.; Wang, M.; Fu, Y.; Ding, Y. A forest fire recognition method using UAV images based on transfer learning. Forests

2022, 13, 975. [CrossRef]
10. Zulberti, L.; Monopoli, M.; Nannipieri, P.; Fanucci, L.; Moranti, S. Highly parameterised CGRA architecture for design space

exploration of machine learning applications onboard satellites. In Proceedings of the 2023 European Data Handling & Data
Processing Conference (EDHPC), Juan Les Pins, France, 2–6 October 2023.

11. Pacini, T.; Rapuano, E.; Tuttobene, L.; Nannipieri, P.; Fanucci, L.; Moranti, S. Towards the extension of FPG-AI toolflow to RNN
deployment on FPGAs for onboard satellite applications. In Proceedings of the 2023 European Data Handling & Data Processing
Conference (EDHPC), Juan Les Pins, France, 2–6 October 2023.

https://doi.org/10.1038/s41598-021-03882-9
https://www.ncbi.nlm.nih.gov/pubmed/34996960
https://doi.org/10.1186/s42408-022-00165-0
https://doi.org/10.1016/j.comnet.2021.108001
https://doi.org/10.3390/s22051977
https://www.ncbi.nlm.nih.gov/pubmed/35271126
https://doi.org/10.3390/f13070975

Sensors 2024, 24, 2265 18 of 18

12. Cheng, Y.; Wang, D.; Zhou, P.; Zhang, T. A survey of model compression and acceleration for deep neural networks. arXiv 2020,
arXiv:1710.09282v9.

13. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the
Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, QC, Canada, 7–12 December 2015.

14. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
Huffman coding. arXiv 2016, arXiv:1510.00149v5.

15. Ba, J.; Caruana, R. Do deep nets really need to be deep? In Proceedings of the Advances in Neural Information Processing
Systems 27 (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014.

16. Teerapittayanon, S.; McDanel, B.; Kung, H.T. BranchyNet: Fast inference via early exiting from deep neural networks. In
Proceedings of the International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2464–2469.

17. Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or −1. arXiv 2016, arXiv:1602.02830v3.

18. Li, F.; Liu, B.; Wang, X.; Zhang, B.; Yan, J. Ternary weight networks. arXiv 2022, arXiv:1605.04711v3.
19. Micikevicius, P.; Narang, S.; Alben, J.; Diamos, G.; Elsen, E.; Ginsburg, B.; Houston, M.; Kuchaiev, O.; Venkatesh, G.; Wu, H.

Mixed precision training. arXiv 2018, arXiv:1710.03740v3.
20. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. DoReFa-Net: Training low bitwidth convolutional neural networks with low

bitwidth gradients. arXiv 2018, arXiv:1606.06160v3.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	The Proposed Hardware Architecture
	CNN Architecture Overview
	Weight Quantization Method
	Software Results

	Hardware Implementation
	Fixed-Point of Activation Values and Parameters
	CNN Hardware Accelerator Architecture

	Experimental Results
	Conclusions
	References

