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Abstract: In Vehicular Edge Computing Network (VECN) scenarios, the mobility of vehicles causes
the uncertainty of channel state information, which makes it difficult to guarantee the Quality of
Service (QoS) in the process of computation offloading and the resource allocation of a Vehicular Edge
Computing Server (VECS). A multi-user computation offloading and resource allocation optimization
model and a computation offloading and resource allocation algorithm based on the Deep Determin-
istic Policy Gradient (DDPG) are proposed to address this problem. Firstly, the problem is modeled as
a Mixed Integer Nonlinear Programming (MINLP) problem according to the optimization objective
of minimizing the total system delay. Then, in response to the large state space and the coexistence of
discrete and continuous variables in the action space, a reinforcement learning algorithm based on
DDPG is proposed. Finally, the proposed method is used to solve the problem and compared with
the other three benchmark schemes. Compared with the baseline algorithms, the proposed scheme
can effectively select the task offloading mode and reasonably allocate VECS computing resources,
ensure the QoS of task execution, and have a certain stability and scalability. Simulation results show
that the total completion time of the proposed scheme can be reduced by 24–29% compared with the
existing state-of-the-art techniques.

Keywords: Vehicular Edge Computing Network (VECN); computation offloading; resource allocation;
deep reinforcement learning

1. Introduction

The emergence of various intelligent on-vehicle applications in the Internet of Vehicles
(IoV), such as autonomous driving, online games, augmented reality, intelligent guidance
of traffic behavior, and voice-based dynamic human-vehicle interaction, makes resource-
constrained vehicles face significant challenges in supporting these intelligent services [1–5].
Vehicular Edge Computing Networks (VECNs) extend computation capability to the edge
of the wireless network by providing additional computation resources close to mobile
vehicles, which can ease the burden on vehicles. Moreover, VECNs make it possible to take
full advantage of ubiquitous computation resources in the system. Computing offloading
is used to realize computation-intensive and delay-sensitive applications processed in the
ubiquitous computation resources, which frees Task Vehicles (TaVs) from complex tasks,
helps to reduce service delay, effectively alleviates the problem of limited computation
capability of TaVs, and provides better Quality of Service (QoS) for vehicle users [6,7].
However, the mobility of vehicles and the diversity of edge computing nodes and vehicle
offloading modes bring challenges to task offloading services [8].
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Computation tasks can be offloaded to Service Vehicles (SeVs) via vehicle-to-vehicle
(V2V) links to use computation resources in the system. It can also be offloaded to a
Vehicular Edge Computing Server (VECS) connected to a Road Side Unit (RSU) or a Base
Station (BS) via a vehicle-to-infrastructure (V2I) link. Thus, a vehicle offloading mode
mainly includes Local execution mode (Loc), Local + SeV execution mode (Loc + SeV),
Local + VECS execution mode (Loc + Edge), and Local + SeV + VECS execution mode
(Loc + Sev + Edge).

The remainder of this paper is organized as follows: In Section 2, related works
are discussed. The system model and problem formulation are formulated in Section 3.
The multi-user computing offloading and resource allocation method based on Deep
Deterministic Policy Gradient (DDPG) is given in Section 4. We conduct the simulation
results and analysis of the proposed algorithm in Section 5. The conclusion and future
work are given in Section 6.

2. Related Work

V2V links are used to offload tasks to SeVs [9,10]. Platooning vehicles are considered
in work [9], where platoon members can only communicate with the platoon leader and
use the resources via V2V communication links. More factors are considered in [10] when
SeVs are selected, such as the caching factor, energy factor, and location factor of vehicles
to offload non-real-time traffic to V2V networks.

V2I links are used to offload tasks to VECS in the way of partial offloading [11–16];
namely, parts of tasks are processed locally, and others are offloaded to VECS. The envi-
ronmental settings and optimization objectives distinguish these works. TaVs should pay
for the services provided by VECS in [14]. Analytical offloading schemes for some special
VECNs are proposed in [15], including the cases of one TaV with one VECS, one TaV with
two VECSs, and two TaVs with one VECS. The mobility of vehicles is not considered in
some works [11–15]. However, the mobility of TaVs while TaVs move in a random direction
at a specific rate is considered in [16].

Both V2V and V2I links are leveraged to offload tasks to SeVs and VECSs, which can
fully use the system’s ubiquitous computation resources [17–20]. VECSs deployed at RSUs
are regarded as fixed VECSs, while the mobile vehicles are regarded as mobile VECSs. The
two types of VECSs cooperate to provide additional computing resources for TaVs [17].
Except for mobile vehicles, parked vehicles also can be treated as SeVs [18,19]. Based on
this, the work in [18] proposes a dynamic pricing strategy to maximize the revenue of the
computing service provider. In contrast, the work in [19] organizes RSUs and roadside
parked vehicles into parking clusters to make up for the computation resource bottleneck
caused by insufficient infrastructure construction. Furthermore, considering the importance
of the matching between TaVs and corresponding processing terminals, the authors in [20]
propose a four-lane dual carriageway model to simulate the urban traffic environment and
use the Kuhn-Munkras algorithm to realize the matching of TaVs and service providers.

Some of the literature adopts traditional methods for computing offloading [21–25].
For instance, a queue-based improved multi-objective particle swarm optimization al-
gorithm to solve the problem of multi-dependent task offloading in multi-access edge
computing is proposed in [21]. The author in [22] divides and conquers the goal into two
phases: VECS selection and offloading decision. For the VECSs selection phases, TaVs
are grouped into one BS, considering their physical distance and workload. After VECS
selection, the original problem is divided into parallel multi-user-to-one-server offloading
decision subproblems and a distributed offloading strategy based on a binary-coded genetic
algorithm is used to obtain an adaptive offloading decision. Considering the heterogeneity
of communication modes and computing capabilities of network computing points in
ubiquitous networks, a distributed multi-hop computing task offloading framework based
on an improved genetic algorithm is proposed in [23] so that tasks could be recursively
offloaded among computing points in the ubiquitous network. Benders decomposition
technology is used to realize task offloading in [24]. The author in [25] considers the quasi-
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static channel model during task offloading, wherein the channel remains constant during
the offloading period but may change during different offloading periods; a two-stage
Stalberg game is then used to solve the optimization objective.

Computing offloading via V2V communication and V2I communication can make full
use of the ubiquitous computing resources of the system and improve the performance
of mobile edge computing [26]. However, due to the mobility of vehicles and dynamic
wireless channel conditions, the formulation of computing offloading strategies has high-
dimensional and time-varying characteristics. Most of the optimization-based computation
offloading schemes lack the ability to adapt to dynamic environments. Fortunately, deep re-
inforcement learning in artificial intelligence can solve such high-dimensional time-varying
feature problems with limited and inaccurate information [27,28]. Deep reinforcement learn-
ing algorithms for task offloading management are used in some of the literature [29–32].
Based on this, the computation tasks of TaVs are offloaded to edge vehicles and cloud net-
works to acquire more computation resources [29]. The problem of computation offloading
and resource allocation for tasks offloading to VECS through V2I links is addressed in [30].
Tasks are offloaded hierarchically in [31]. A vehicle may have multiple tasks, and the author
in [32] considers offloading these tasks to multiple vehicles, nearby pedestrians that use
mobile phones or tablets, other vehicles that can provide computing services, and VECSs.
The characteristics, pros, and cons revealed in the recent research are provided in Table 1.
For simplicity, M0, M1, M2, M3 are used to denote the four modes of task execution, where
the M0, M1, M2, and M3 modes represent Loc mode, Loc + Sev mode, Loc + Edge mode,
and Loc + Sev + Edge mode, respectively.

As seen in Table 1, this literature is based on the three execution modes, M1, M2, and
M3, which all involve the local execution mode M0. Most of the research in the M1 and
M2 modes adopts the partial offloading mode [9,10,14–16,25,29], and most of the research
in the M3 mode adopts the 0–1 offloading mode [19,20,23,31,32]. Furthermore, we have
studied the use of V2V and V2I links to extend the system’s computing resources [33,34].
However, the computing offloading and the resource allocation of VECSs in dynamic
environments have not been fully considered. Based on this, this paper comprehensively
considers TaV’s preference for the Loc mode, Loc + Sev mode, Loc + Edge mode, and
Loc + Sev + Edge mode in a dynamic environment and the impact of task offloading and
resource allocation on offloading delay. The computation offloading and resource allocation
problem is modeled as a Mixed Integer Nonlinear Programming (MINLP) problem. Then,
considering the advantage of DDPG for environmental dynamics, a method based on
DDPG is proposed; namely, the multi-user computation offloading and resource allocation
scheme (MCORA). The main contributions of this paper are summarized as follows:

1. To solve the problem of task execution time being difficult to acquire because of
the mobility of vehicles and the dynamic of channel state information, a computing
offloading and resource allocation optimization scheme is proposed for multiple TaV,
which adopts the best mode from four execution modes; namely, Loc mode, Loc + Sev
mode, Loc + Edge mode, and Loc + Sev + Edge mode. Leveraging these four modes,
we can analyze the complex task execution process more simply and acquire the task
execution time.

2. To minimize the total task execution time by choosing the adaptive mode and allocat-
ing the computation resources of a VECS, the optimization objective is established
according to the delay of task execution, and then the computing offloading mode cho-
sen with the resource allocation problem is transformed into a MINLP problem. This
can be described as a Markon Decision Processes (MDP), and the MCORA algorithm
is proposed to solve it.

3. To solve the non-convexity and the discontinuity of the offloading mode selection and
the resource allocation of this problem, DDPG is considered because it can deal with
continuous and discontinuous actions, so the MCORA scheme is based on DDPG.

4. To verify the effectiveness of our scheme, three baseline schemes are compared with
our scheme; namely, Offloading in Loc + Sev mode (OLSM) [10], Offloading in
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Loc + Edge mode (OLEM) [14], and Offloading in Random Mode (ORM). Simulation
results show that compared with the existing schemes, the proposed scheme can
significantly reduce the delay of computation offloading and resource allocation.

Table 1. Comparison with the latest related studies.

Ref. Year Mode Mobility Method Advantages Shortcomings

[9] 2023 M1 3 DDPG Both computation offloading and
power allocation are considered.

Only the resources of the
platoon leader are shared.

[10] 2022 M1 3 Q-learning Jointly consider the cache factor,
energy factor, and position factor.

Non-real-time traffic is offloaded
into the V2V network.

[14] 2022 M2 7
Deep

Q-network

Considering the limited capability
of calculating access points and
users’ budgets.

The mobility of vehicles is not
considered.

[15] 2022 M2 7

Analytical
offloading

scheme

Multiple computational access
points can help vehicular users
compute tasks.

Only several scenarios are
considered.

[16] 2023 M2 3 DDPG
The trade-off optimization of
delay and energy consumption is
considered.

Action encoding is used to
replace actions in continuous
action space.

[19] 2021 M3 3
Heuristics
algorithm

Parked vehicles and TaVs driving
trajectory prediction are
considered.

Each uploaded task is assumed
to be performed by only one
edge server (0–1 offloading).

[20] 2021 M3 3
Greedy

matching
Both the resources of the RSU and
nearby vehicles are considered. 0–1 offloading is adopted.

[23] 2023 M3 7
Genetic

algorithm

Dispersed computing is
considered, including each mobile
device, edge, and cloud server.

The solution space dimension is
significant, and 0–1 offloading is
considered.

[25] 2023 M2 7

Stackelberg
game-based

scheme

Reasonable prices are designed for
computing resources. Single-server is considered.

[29] 2023 M2 3
Primal-dual

DDPG

A multi-tier computation
offloading network structure is
considered.

The resources of nearby vehicles
are not used.

[30] 2023 M2 3 TD3 Considering real-time
decision-making and prediction. 0–1 offloading is considered.

[31] 2021 M3 3 DDPG-based

The prioritized experience replay
and the stochastic weight
averaging mechanisms are
considered.

0–1 offloading is considered.

[32] 2022 M3 3 SAC Both the priority and the size of
the tasks are considered.

One TaV and 0–1 offloading is
considered.

Proposed M3 3 DDPG Several execution modes are
considered

The energy consumption is not
considered.

3. System Model and Problem Formulation
3.1. System Model

Four communication modes can be adopted; namely, Loc mode, Loc + SeV mode,
Loc + Edge mode, and Loc + SeV + Edge mode. The architecture of the VECNs is shown in
Figure 1.

Four modes are depicted in Figure 1. It was Loc mode when TaV executed all tasks
locally, Loc + SeV mode when TaV executed some tasks locally and offloaded the others to
SeV, Loc + Edge mode when TaV executed some tasks locally and offloaded the others to
VECS, and Loc + SeV + Edge mode when tasks were executed in the three terminals.
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VECS

tasks

Communication links

TaVn

SeVn

TaV

SeV

Loc

Loc+SeV

Loc+SeV+Edge

Loc+Edge

TaV/SeV/Edge execute tasks

Figure 1. System model.

Set N = {V1, V2, · · · , Vn · · · , VN} represents N TaVs randomly distributed on an
urban traffic environment, and all TaVs are connected to a BS located in the center. A VECS
is deployed at the BS. TaVn has a task In = {Dn,Appn} to be processed, where Dn (in bits)
represents task sizes, and Appn (in CPU cycles/bit) represents the processing density of
TaVn. Based on this, Cn = Dn Appn represents the CPU resources required to complete this
task. These tasks are all arbitrarily divisible, and their maximum processing delay is tmax,
which is also the processing period of these tasks. We divide the time into T equal time
slots T = {1, 2, · · · , t, · · · , T}, and the time in each time slot is τ = tmax/T. At any time
slot, the task can be executed in any execution mode.

3.2. Communication Model

Based on the available literature [16], this paper further considers the relative position
and the task offloading between TaVs and SeVs. Then, the communication model is estab-
lished as follows: TaVn and SeVn are moving at a certain speed vtav

n and vsev
n , respectively,

assuming that the distance between them changes in a uniformly distributed range dsev
tav .

Moreover, V2I links and V2V links are all adopting orthogonal frequency division multi-
plexing technology [20]. Channel power gains of the V2V link from TaVn to SeVn and the
V2I link from TaVn to VECS are denoted as gv2v/v2i

n,t = αv2v/v2i
n,t · hv2v/v2i

n,t , where αv2v/v2i
n,t and

hv2v/v2i
n,t represent the large-scale fading and small-scale fading of the V2V links and V2I

links, respectively. The small-scale fading is exponentially distributed. αv2v/v2i
n,t includes

path loss and shadow fading. The path losses of the V2V links and V2I links are calculated
as follows [35]:

PLt
v2v(d

sev
tav) =



22.7log103 + 41 + 20log10(
f req

5
), dsev

tav ≤ 3

22.7log10(d
sev
tav) + 41 + 20log10(

f req
5

), dsev
tav ≤

4 f req(Hveh−1)
2

c

40log10(dsev
tav)+9.45− 17.3log10((Hveh−1)2) + 2.7log10(

f req
5

), else

, (1)

and

PLt
v2i(d

edg
n ) = 128.1 + 37.6log10(

dedg
n

1000
), (2)

where Hveh represents the antenna height of the vehicle, f req denotes the carrier frequency,
and dedg

n denotes the distance between TaVn and VECS. The updated formula of shadow
fading is as follows [35]:

Sv2v/v2i
t = Sv2v/v2i

t−1 · e−
(∆t

tav+∆t
sev)

10 + Sv2v/v2i ·
√

1− e−
2(∆t

tav+∆t
sev)

10 , (3)
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where ∆t
tav and ∆t

sev denote the distance traveled by TaV and SeV in the tth time slot. Then,
the data transmission rate of the V2V links and V2I links can be expressed as follows:

Rv2v/v2i
n,t = Blog2(1 + γv2v/v2i

n,t ), (4)

where γv2v/v2i
n,t = Pngv2v/v2i

n,t /δ2. Pn represents the transmission power of TaVn.

3.3. Mode Selection and Task Offloading Delay Computing in Edge Networks

At time slot t, if TaVn chooses to execute tasks locally, the number of bits that can be
processed can be expressed as follows:

Uloc
n,t =

τ · f loc
n

Appn
, (5)

where f loc
n denotes the processing capacity of TaVn. If TaVn chooses to execute tasks at

SeVn, the task needs to be offloaded to SeVn at first, and the task in time slot t includes not
only the time to transmit to SeVn but also the time to execute the task at SeVn. Let Usev

n,t
represent the number of bits that can be completed in time slot t. Then, according to the
transmission time sevtr=Usev

n,t /Rv2v
n , the computation time seve = Usev

n,t · Appn/ f sev
n , and

the equality sevtr + seve = τ, Usev
n,t can be obtained in time slot t as follows:

Usev
n,t =

τ · Rv2v
n · f sev

n
f sev
n + Appn · Rv2v

n
. (6)

Similarly, when tasks of a TaV are selected to be executed at VECS through the V2I link,
according to the transmission time edgtr = Uedg

n,t /Rv2I
n , the computing time edge = Uedg

n,t ·
Appn/(ρt

n · Fedg), and edgtr + edge = τ, the number of bits that can be processed in time
slot t is obtained as follows:

Uedg
n,t =

τ · Rv2I
n · ρt

n · Fedg

ρt
n · Fedg + Appn · Rv2I

n
. (7)

Mn ∈ {M0, M1, M2, M3} is used to denote the four modes of task execution. When
TaVn chooses M0 mode to execute tasks, the number of bits that can be processed in time
slot t is equal to the number of bits that can be executed locally:

Ut
total,n = Uloc

n,t =
τ · f loc

n
Appn

. (8)

When TaVn chooses mode M1 to execute tasks, the number of bits that can be com-
pleted in time slot t is equal to the sum of the number of bits that can be executed locally
and in SeVn:

Ut
total,n = Uloc

n,t + Usev
n,t =

τ · f loc
n

Appn
+

τ · Rv2v
n · f sev

n
f sev
n + Appn · Rv2v

n
. (9)

Similarly, in M2 mode, the number of bits that can be processed is the sum of the tasks
that can be processed locally and by VECS:

Utotal
n,t = Uloc

n,t + Uedg
n,t =

τ · f loc
n

Appn
+

τ · Rv2I
n · ρt

n · Fedg

ρt
n · Fedg + Appn · Rv2I

n
. (10)

In M3 mode, the number of bits that can be processed is the sum of the bits of the
three terminals:
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Utotal
n,t = Uloc

n,t + Usev
n,t + Uedg

n,t =
τ · f loc

n
Appn

+
τ · Rv2v

n · f sev
n

f sev
n + Appn · Rv2v

n
+

τ · Rv2I
n · ρt

n · Fedg

ρt
n · Fedg + Appn · Rv2I

n
. (11)

Since a TaV must choose an execution mode to execute its tasks as long as it is not
completed, the completion time ttotal

n of TaVn’s tasks can be expressed as the minimum
number of time slots spent for the cumulative maximum execution bits of its tasks:

ttotal
n = t · τ, t = min

t
max

T

∑
t=1

Utotal
n,t . (12)

3.4. Problem Formulation

The execution time of all completed tasks in time slot t can be expressed as follows:

Pt(M(t), ρ(t)) =
T

∑
t=1

ttotal
n (13)

where M(t) = {Mn(t)|n ∈ N} represents the mode chosen by TaVn in time slot t.
ρ(t) = {ρn(t)|n ∈ N} represents the proportion of computation resources allocated to
TaVn by VECS in time slot t. Our goal is to minimize the execution time of all tasks:

P min
M(t),ρ(t)

Pt(M(t), ρ(t)) =
T

∑
t=1

min
M(t),ρ(t)

ttotal
n

s.t. C1 : Mn(t) ∈ {M0, M1, M2, M3}, n ∈ N
C2 : 0 ≤ ∑

n∈N
ρn(t) ≤ 1

C3 :0 ≤ ρn(t) ≤ 1, n ∈ N
C4 :ttotal,n ≤ tmax, n ∈ N

where C1 denotes the mode chosen by TaVn, which is one of the four modes, and C2
indicates that the VECS resources allocated to all TaVs do not exceed the total computation
resources of the VECS. C3 limits the proportion of the VECS’s computation resources
allocated to each TaV. C4 means that the execution time does not exceed the maximum
delay of TaVn.

4. Multi-User Computing Offloading and Resource Allocation Method Based on DDPG

In order to solve the formulated objective, we propose a DDPG-based computing
offloading and resource allocation scheme. Considering the actual VECNs environment,
the objective P is described as MDP. Then, the DDPG algorithm is designed to solve it,
and the key issues are the normalization of states and actions and the design of the reward
function. Finally, the task offloading algorithm based on DDPG was used to solve the
optimization objective.

4.1. Markov Decision Processes for Mode Selection and Computing Offloading

MDP is a mathematical framework for describing sequential decision-making prob-
lems with stochastic properties [36]. A Markov model can be represented as a quadruple
(S ,A,P ,R). The elements inside represent the set of states, the set of actions, the states’
transition probability, and the immediate reward function for performing the actions.

(1) State space. System state st ∈ S can be expressed as follows:

st = (R(t), O(t),Ti), (14)

where (a) R(t) = {[Rv2v
1 (t)..., Rv2v

n (t), ..., Rv2v
N (t)], [Rv2i

1 (t)..., Rv2i
n (t), ..., Rv2i

N (t)]} denotes
the data transmission rate of V2V/V2I links at time t; (b) O(t) = {[O1(t)..., On(t), ..., ON(t)]}
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represents the proportion of TaVn’s tasks remaining to be processed; (c) Ti= {Ti(t)} de-
notes the remaining processing time.

(2) Action space. at ∈ A can be expressed as follows:

at = (M(t), ρ(t)), (15)

where (a) M(t) = {[Mm
1 (t), ..., Mm

N(t)]} denotes the mode selected by each TaVs in time slot
t; (b) ρ(t) = {[ρ1(t), ..., ρN(t)]} denotes the proportion of computation resources allocated
to TaVn by VECS at time slot t.

(3) Reward function.

Rim
t (st, at) =

{
1 if π(t) = N,
1− (Pt(M(t), ρ(t))) else,

(16)

where π(t) represents the number of tasks completed in time slot t. If all tasks are com-
pleted, the reward is assigned to 1 immediately; otherwise, the average remaining available
time is assigned to the reward function.

4.2. DDPG-Driven Computation Resource Offloading and Resource Allocation Strategies

The DDPG-based deep reinforcement learning algorithm is used to solve the joint
computing offloading and resource allocation problem. As shown in Figure 2, the algorithm
includes three modules: main network, target network, and experience replay memory.
The policy of the main network is to produce action at based on current state st. The main
network includes two parts, the main actor depth neural network (DNN) π(st|θπ) and
the main critic DNN Q(st, at|θQ). The target network, aiming to train the network in the
target, has the same structure as the main network. The parameters can be expressed as
π′(st|θ′π) and Q′(st, at|θ′Q). The experience replay memory is used to store the resulting
experience tuples.

VECNs 
ENV

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

Resource Pool

 im
1, , ( , ),t t t t ts a R s a s

im
1( , )ts R

st

Main 
Network

Target 
Network

critic
DNN

actor
DNN

( , )t ts a

( )QLs
 J

 ( | )ts
at

1ts st 1ts( , )t ts a

imR

 ( | )tsUpdate 

UpdateQ

Soft updateSoft update

( , | )t t QQ s a

  1( | )ts
      1 1( , ( | ) | )t t QQ s s

  ( , ( | ) | )t t QQ s s

Figure 2. DDPG structure and its update process.

(1) Main actor DNN training. The explored policy can be defined as a function with
parameter θπ , which maps the current state to an action ât = π(st|θπ), where ât is obtained
by mapping, and π(st|θπ) is the model selection and computation resource allocation
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policy obtained by the exploration of actor DNN. The added noise nt follows Gaussian
distribution nt ∼ (µt, σ2

t ). Then, the refactoring action can be expressed as follows:

at = clip(π(st|θπ) + nt, alow, ahigh), (17)

where the clip function limits the range of action values to alow and ahigh, and the main
actor DNN uses sampled policy gradients to update the network parameters:

∇θπ
J ≈ [∇aQ(st, at|θQ)∇θπ

π(st|θπ)], (18)

where Q(st, at|θQ) is an action-value function. At each step of the training process, θπ is
updated by a batch of experience < st, at, Rim

t , st+1 >:

θπ = θπ −
απ

V

V

∑
t=1

[∇aQ(st, at|θQ)∇θπ
π(st|θπ)], (19)

where απ represents the learning rate of the main actor DNN.
(2) Main critic DNN training. The main critic DNN evaluates the performance of the

selected action based on the action-value function. The action-value function is computed
based on the Bellman optimality equation, which can be expressed as follows:

Q(st, at|θQ) = [Rim
t (st, at) + εQ(st+1, π(st+1)|θQ)], (20)

where the main critic DNN considering the current state st and the next state st+1 is used
to calculate each state-action value Q(st, at|θQ). The main critic DNN updates the network
parameters θQ by minimizing the loss function Ls(θQ):

Ls(θQ) =
[
(yt −Q(st, at|θQ))

2
]
, (21)

where yt is the target value, which can be expressed as follows:

yt = Rim
t (st, at) + εQ′(st+1, π′(st+1|θ′π)|θ′Q), (22)

Q′(st+1, π′(st+1|θ′π)|θ′Q) is obtained by the target network which is the network with
parameters θ′π and θ′Q. The gradient computation of Ls(θQ) is expressed as follows:

∇θQ Ls =
[
2(yt −Q(st, at|θQ))∇θQ Q(st, at)

]
. (23)

In each training step, θQ is updated by a batch of experience < st, at, Rim
t , st+1 >

as follows:

θQ = θQ −
αQ

V

V

∑
t=1

[2(yt −Q(st, at|θQ))∇θQ Q(st, at)], (24)

where αQ represents the learning rate of the main actor DNN.
(3) Target network training. The target network can be regarded as an older main

network version with different parameters θ′π and θ′Q. In each iteration, the parameters θ′π
and θ′Q are updated according to (25):

θ′π = ωθπ+(1−ω)θ′π
θ′Q = ωθQ+(1−ω)θ′Q

, (25)

where ω ∈ [0, 1].
The computation offloading and resource allocation algorithm based on DDPG is

shown in Algorithm 1. Firstly, parameter θπ is used to initialize the computation offloading
and resource allocation strategy π(s|θπ) of main actor DNN, and parameter θQ is used to
initialize the action-value function of critic DNN Q(st, at|θQ). The parameters θ′π and θ′Q of
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the target network are initialized at the same time. Then, the main actor DNN generated
action at according to the current policy π(s|θπ) and state st. Based on the observed reward
Rim

t (st, at) and the next state st+1, the tuple < st, at, Rim(st, at), st+1 > is constructed and
stored in an experience replay memory. The memory is stored in a first-in-first-out manner,
and if the memory is about to overflow, the oldest experience will be deleted and updated
to the latest experience. Based on the mini-batch technique, the algorithm updates the
DNN network of the main critic DNN by minimizing the function Ls(θQ) and updates
the main actor DNN by using the sampled policy gradient. After a period of training, the
parameters of the target network are updated according to (25).

Algorithm 1 Multi-user computation offloading and resource allocation algorithm
Initialization:
1. Leverage parameters θπ and θQ to initialize π(s|θπ) and Q(s, a|θQ);
2. Leverage parameters θ′π ← θπ and θ′Q ← θQ to initialize π′(s|θ′π) Q′(s, a|θ′Q);
3. Initialize experience replay memory;
for each episode do:

Initialize system environment setup;
for each time slot t do:

Acquire action at according to (17);
Obtain immediate reward Rim(st, at) with (16) and accumulated reward, update next

state st+1;
if experience replay memory is not full do:

Store tuple < st, at, Rim(st, at), st+1 > into experience replay memory;
else:

A batch tuple V is randomly drawn from the experience replay memory;
The target value yt is calculated based on (22);
Parameters θQ are updated by minimizing the loss function based on (21);
Parameters θπ are updated according to the sampled policy gradient based on (18);
Parameters θ′π and θ′Q are updated based on (25);

End if
End for

End for

5. Simulation Results and Analysis
5.1. Simulation Environment

The experiment was carried out on the Windows10 operating system with the pro-
cessor Intel Core i7-6700 CPU @3.40GHz (Santa Clara, CA, USA), while the software used
was Python3.7.9 and TensorFlow1.15.0. The urban IoV simulator, including the vehicle,
lane, and wireless communication network model defined in Appendix A of 3GPP TR
36.885 [35] is adopted. The main simulation parameters are shown in Table 2. The actor
and critic networks of the DDPG agent both consist of three fully connected hidden layers
consisting of 64, 16, and 4 neurons, respectively. ReLU is used as the activation function,
and Adam is used as the optimizer to train and update the weights of the neural network
iteratively. The algorithm was trained for a total of 2000 episodes, and the exploration
probability was annealed by linear annealing algorithm from 1 at the beginning to 0.01 at
1600 episodes, and then remained unchanged in the following training steps [37]. Unless
otherwise specified, the simulation parameters in this chapter are executed according to
Table 2, and the results are the average values of the last 100 episodes.
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Table 2. Simulator parameters.

Parameter Value

Wireless bandwidth of the links (B) 2 MHz
The number of TaVs (N) 20
Transmit power of TaVn (Pn) 23 dBm
Noise power (δ2) −114 dBm
CPU cycle frequency of TaVn ( f loc

n ) or SeVn ( f sev
n ) [1, 2] GHz

The speed of TaVn (vtav
n ) or SeVn (vsev

n ) [10, 15] m/s
The distance between TaVn and SeVn [50, 100] m
CPU cycle frequency of the VECS (Fedg) 40 GHz
Data size of a task (Dn) [5, 15] Mbits
The required CPU cycles per bit of a task (Appn) [50, 150] CPU cycles/bit

5.2. Baseline Algorithms

1. OLSM [10]: TaVs choose to offload part of the tasks to corresponding SeVs via
V2V links.

2. OLEM [14]: TaVs choose to offload part of the tasks to the edge server via V2I links.
3. ORM: TaVs choose the offloading mode randomly.

5.3. Simulation Results

In this section, the convergence of the proposed algorithm is first analyzed. Then, the
cumulative reward and performance of the proposed algorithm are verified and compared
with the baseline algorithms in four aspects: the number of TaVs, task size, required
computation resources per bit, and the computing capability of vehicles and VECS.

Figure 3 shows the changing trend of different algorithms’ rewards with the number
of iterations. When the number of iterations is 500, the proposed MCORA and OLSM
algorithms converge. In contrast, the cumulative rewards of the OLEM and ORM algo-
rithms are relatively stable throughout the process. Due to the change in network topology
and channel fading caused by vehicle mobility, the fluctuation of TaVs’ task size and pro-
cessing density, and the change in system computing capability, the convergence value of
cumulative rewards will fluctuate. It is seen that MCORA has the best cumulative reward.
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Figure 3. Cumulative rewards of different algorithms vs. the number of iterations.

Figure 4 shows the cumulative rewards of different algorithms as the number of
TaVs changes. As the number of TaVs increases, the cumulative rewards of all algorithms
decrease. Due to the limitation of VECS resources, the cumulative reward of the OLEM
algorithm decreases sharply, and the decreasing trend of the ORM algorithm is faster than
that of the OLSM algorithm because part tasks in the ORM algorithm choose Loc + Edge
mode. Moreover, the decreasing trend of the cumulative reward of the MCORA algorithm
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and the OLSM algorithm is relatively stable, and the cumulative reward of the MCORA
algorithm is always the largest.
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Figure 4. Cumulative rewards of different algorithms vs. the number of TaVs.

Figure 5 shows the performance of different algorithms when the number of TaVs
increases, and the performance comparison mainly includes the loss rate, the total com-
pletion time of tasks, and the maximum task completion time. The loss rate is defined as
the ratio of tasks that cannot be completed with limited delay. As shown in Figure 5a, the
OLEM algorithm has the highest loss rate, which reaches nearly 5% when the number of
tasks is 40. However, the other three algorithms, MCORA, OLSM, and ORM, are all below
1%, with MCORA almost 0%. As shown in Figure 5b, when the number of tasks is 40,
compared with the OLSM algorithm, OLEM algorithm, and ORM algorithm, the total task
completion time of the MCORA algorithm is reduced by 13%, 28%, and 19%, respectively.
From Figure 5c, it can be seen that the maximum task time of the OLEM algorithm has a
significant upward trend. When the number of tasks is small, the maximum task execution
time of the OLEM and ORM algorithm is smaller than that of the OLSM algorithm due
to the abundant VECS resources. As the number of TaVs and tasks increases, compared
with the OLEM and ORM algorithms, the maximum task completion time of the OLSM
algorithm rises slowly. When the number of tasks is greater than 12 and 20, the maximum
task completion time of the OLEM algorithm and the ORM algorithm is gradually close to
and greater than the OLSM algorithm.
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Figure 5. Cont.
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Figure 5. Performance comparison of different algorithms vs. the number of TaVs. (a) Loss rate
vs. the number of TaVs. (b) Total processing time vs. the number of TaVs. (c) Tasks’ maximum
completion time vs. the number of TaVs.

When the task size of TaVs and the computation resource required per bit varied,
the cumulative rewards of different algorithms are shown in Figure 6a and Figure 6b,
respectively. As the task size and computing density increase, the computation resources
required by the TaVs gradually increases, and the cumulative reward decreases.
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Figure 6. Cumulative rewards of different algorithms as task size and required computation resource
per bit vary. (a) Cumulative rewards of different algorithms vs. task size. (b) Cumulative rewards of
different algorithms vs. required computation resource per bit.

When the computation capability of vehicles and VECS are changed, the cumulative
rewards of different algorithms are shown in Figure 7. It can be seen from Figure 7a that the
increases in vehicle computation capability gradually increase the cumulative rewards of all
algorithms. The growth trend of these algorithms is similar and stable because they use their
computation resources to process tasks, and improving vehicle computing performance is
bound to increase the cumulative rewards. However, as shown in Figure 7b, as the VECS
performance increases, the cumulative reward of the OLSM algorithm remains unchanged
because the OLSM algorithm does not use the VECS resources. The other three algorithms
have steadily increased cumulative rewards.
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Figure 7. Cumulative rewards of different algorithms as task size and required computation resource
per bit vary. (a) Cumulative rewards of different algorithms vs. computing capability of TaVs.
(b) Cumulative rewards of different algorithms vs. computing capability of edge server.

Figure 8a,d, Figure 8b,e, and Figure 8c,f show the comparison of the loss rate, the
total task completion time, and the maximum completion time of a single task as the TaVs’
task size and computing density varies, respectively. When the task size or computing
density is small, it can be seen from Figure 8a,d that the loss rate of all algorithms is close
to 0%. With increased task size or computing density, the loss rate of the OLSM algorithm,
OLEM algorithm, and ORM algorithm increases due to insufficient utilization of system
computation resources. It can be seen from Figure 8b,e that the growth trend of the total
task completion time is similarly under the influence of these two variables.

Meanwhile, as the tasks’ number is 20, the performance of the OLSM and OLEM
algorithm is almost the same, which can be confirmed in Figures 4 and 5. When the single
task size is 15 Mbits, the total task completion time of the MCORA algorithm is reduced by
18%, 21%, and 20%, respectively, compared with the OLSM algorithm, OLEM algorithm,
and ORM algorithm. When the required computation resource per bit is 150 cycles/bit,
the total task completion time of the MCORA algorithm is reduced by 20%, 24%, and 20%,
respectively, compared with the OLSM algorithm, OLEM algorithm, and ORM algorithm.

Figure 9a–c and Figure 9d–f show the performance comparison with the change
in vehicle computing capability and VECS computing capability, respectively. When
the computing capacity of the vehicle is small, TaVs and SeVs can only provide fewer
computing resources, and the system computing resources are relatively scarce, which
leads to the larger loss rate, task completion time, and the maximum single task completion
time of the OLSM algorithm, OLEM algorithm, and ORM algorithm. When the vehicle
computation capability exceeds 1.5GHz, all algorithms can complete all tasks according to
the regulations. When the vehicle computation capability is 3 GHz, the total task completion
time of the MCORA algorithm is reduced by 13%, 30%, and 19% compared with the OLSM
algorithm, OLEM algorithm, and ORM algorithm, respectively. From Figure 9d, we can see
that the loss rate of the OLEM algorithm is less than 1% only when the VECS computation
capability is greater than 20 GHz, while the loss rate of the other three algorithms is always
in a low range because when the number of tasks is 20, according to the average vehicle
computation capability, the computation capability that vehicles can provide is 20 × 15,
namely, 30 GHz. It has certain advantages to make full use of ubiquitous vehicle resources
reasonably. It can be seen from Figure 9b that when the computation capability of VECS
is 30 GHz, the total task completion time of the MCORA algorithm is reduced by 26%,
29%, and 24%, respectively, compared with the OLSM algorithm, OLEM algorithm, and
ORM algorithm.
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Figure 8. Performance comparison of different algorithms as task size and required computation
resources per bit vary. (a) Loss rate vs. task size. (b) Total processing time vs. task size. (c) Tasks’
maximum completion time vs. task size. (d) Loss rate vs. required computation resource per bit.
(e) Total processing time vs. required computation resource per bit. (f). Tasks’ maximum completion
time vs. required computation resources per bit.



Sensors 2024, 24, 2205 16 of 19

1.0 1.5 2.0 2.5 3.0
Computing capability of Vehicles(GHz)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lo
st

 ra
te

MCORA
OLSM
OLEM
ORM

(a)

1.0 1.5 2.0 2.5 3.0
Computing capability of Vehicles(GHz)

4

5

6

7

8

9

10

To
ta

l p
ro

ce
ss

in
g 

tim
e 

of
 a

ll 
ta

sk
s(

s)

MCORA
OLSM
OLEM
ORM

(b)

1.0 1.5 2.0 2.5 3.0
Computing capability of Vehicles(GHz)

0.4

0.5

0.6

0.7

0.8

0.9

Th
e 

m
ax

im
um

 c
om

pl
et

io
n 

tim
e 

of
 a

ll 
ta

sk
s(

s)

MCORA
OLSM
OLEM
ORM

(c)

10 15 20 25 30
Computing capability of edge server(GHz)

0.00

0.01

0.02

0.03

0.04

Lo
st

 ra
te

MCORA
OLSM
OLEM
ORM

(d)

10 15 20 25 30
Computing capability of edge server(GHz)

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

To
ta

l p
ro

ce
ss

in
g 

tim
e 

of
 a

ll 
ta

sk
s(

s)

MCORA
OLSM
OLEM
ORM

(e)

10 15 20 25 30
Computing capability of edge server(GHz)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Th
e 

m
ax

im
um

 c
om

pl
et

io
n 

tim
e 

of
 a

ll 
ta

sk
s(

s)

MCORA
OLSM
OLEM
ORM

(f)

Figure 9. Performance comparison of different algorithms as task size and required computation
resource per bit vary. (a) Loss rate vs. computing capability of TaVs. (b) Total processing time vs.
computing capability of TaVs. (c) Tasks’ maximum completion time vs. computing capability of
TaVs. (d) Loss rate vs. computing capability of edge server. (e) Total processing time vs. comput-
ing capability of edge server. (f) Tasks’ maximum completion time vs. computing capability of
edge server.

These simulation results show that, compared with the other three schemes, the
MCORA scheme can effectively reduce the total delay of task execution, guarantee the QoS
of TaVs, and have a certain scalability and stability.



Sensors 2024, 24, 2205 17 of 19

5.4. Discussion, Comparison, and Limitations

According to the number of bits each TaV can execute in different modes, the DDPG-
based MCORA algorithm is used to select the appropriate task execution mode for each TaV
in each time slot τ. Meanwhile, the computing resources of VECS are allocated. Compared
with the OLSM and OLEM algorithms, the proposed MCORA algorithm can fully use
ubiquitous communication and computing resources in VECNs. Although four execution
modes are considered, the simulation results are carried out regarding the number of TaVs,
task size, required computation resource per bit, and the computing capability of vehicles
and VECS. However, the following shortcomings and limitations still exist: 1. The delay
for each task in our proposed system is tmax, regardless of the diversity of tasks; 2. The
limited latency of tasks is considered, but the overhead of energy consumption is ignored;
3. DDPG is more challenging to deploy.

6. Conclusions

This paper proposes a MCORA optimization model based on DDPG reinforcement
learning for the computing task offloading environment of the IoV. Reinforcement learning
is used to allocate task offloading modes and VECS computation resources, aiming to solve
the problem of the insufficient utilization of system resources in the dynamic environment
of VECNs. The proposed method can quickly obtain the approximate optimal solution in
a time-varying environment and achieve a low total task completion delay with almost
no task lost. The proposed method has better stability and scalability than the existing
algorithms. VECNs are gradually developed and improved with the development of
cellular networks, and it occupies a certain proportion in the development of 5G and 6G. It
can be used for autonomous driving, smart city, and digital twin construction in the future.
Additionally, more effective offloading strategies deserve to be formulated by combining
task execution and energy consumption because energy saving is essential [38–40].

Author Contributions: Conceptualization, X.L. and J.Z.; methodology, X.L. and M.Z.; software, X.L.
and Y.L.; investigation, X.L.; resources, J.Z.; writing—original draft preparation, X.L., R.W. and
Y.H.; writing—review and editing, X.L., J.Z., M.Z. and Y.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

VECNs Vehicular Edge Computing Networks
QoS Quality of Service
VECS Vehicular Edge Computing Server
DDPG Deep Deterministic Policy Gradient
MINLP Mixed Integer Nonlinear Programming
IoV Internet of Vehicles
TaVs Task Vehicles
SeVs Service Vehicles
V2V Vehicle-to-Vehicle
RSU Road Side Unit
BS Base Station
V2I Vehicle-to-Infrastructure
Loc Local Execution
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Loc + SeV Local + SeV execution
Loc + Edge Local + VECS execution
Loc + Sev + Edge Local + SeV + VECS execution
MCORA Multi-user computation offloading and resource allocation
OLSM Offloading in Loc + Sev mode
OLEM Offloading in Loc + Edge mode
ORM Offloading in Random Mode
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