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Abstract: This article presents an analysis of current state-of-the-art sensors and how these sensors
work with several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications, focusing
on low-altitude and high-speed scenarios. A new experimental construct is created using highly
realistic environments made possible by integrating the AirSim simulator with Google 3D maps
models using the Cesium Tiles plugin. Experiments are conducted in this high-realism simulated
environment to evaluate the performance of three distinct mapping algorithms: (1) Direct Sparse
Odometry (DSO), (2) Stereo DSO (SDSO), and (3) DSO Lite (DSOL). Experimental results evaluate
algorithms based on their measured geometric accuracy and computational speed. The results
provide valuable insights into the strengths and limitations of each algorithm. Findings quantify
compromises in UAV algorithm selection, allowing researchers to find the mapping solution best
suited to their application, which often requires a compromise between computational performance
and the density and accuracy of geometric map estimates. Results indicate that for UAVs with
restrictive computing resources, DSOL is the best option. For systems with payload capacity and
modest compute resources, SDSO is the best option. If only one camera is available, DSO is the option
to choose for applications that require dense mapping results.
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1. Introduction

UAVs, also known as drones, have transcended conventional applications to become
indispensable tools across an array of disciplines, from environmental monitoring and
precision agriculture to disaster response and infrastructure inspection. At the heart of their
efficacy lies the sophisticated interplay between UAVs and mapping algorithms, which
serve as the backbone for converting raw sensor data into coherent, high-fidelity maps.
These algorithms play a pivotal role in navigating complex terrains, extracting meaningful
information, and ensuring precise localization of the UAV in real time. From traditional pho-
togrammetry to advanced techniques like Simultaneous Localization and Mapping (SLAM),
these algorithms continuously evolve to meet the diverse demands of UAV applications
ranging from agriculture and forestry to disaster response and urban planning.

Mapping algorithms for UAVs are significantly influenced by flight altitude, dictat-
ing the scale of environmental perception and mapping capabilities. For high-altitude
flights, the imagery changes between successive frames are slower than for low-altitude
flights, which allows more overlap/correspondence between successive frames. However,
as altitude increases, challenges such as reduced sensor performance, diminished feature
visibility, and heightened geometric distortions emerge. While 3D or 2D laser scanners
generate effective terrain models, their weight and sensitivity to ground proximity pose
challenges. Compact depth-sensing devices, though commercially available, often fall short
in operational range. Camera-based mapping systems, while lightweight and scalable, face
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accuracy challenges at high altitudes due to reduced texture and discernible features. This
limitation hampers feature tracking and matching, impacting overall mapping algorithm
performance. High-altitude flights also amplify drift and uncertainty in UAV trajectory
estimation, particularly affecting SLAM algorithms relying on sensor fusion. The accu-
mulation of errors over time compromises poses estimations, emphasizing the critical
consideration of flight altitude in optimizing mapping algorithm outcomes. This article
focuses on multirotor UAVs and analyzes UAV algorithm performance at altitude ranges
from 12 m to 20 m from the ground, which is considered to be “low-altitude” in this article.
Investigations for this context provide an analysis of key sensor options and their strengths
and weaknesses. Specific recommendations are also provided for light-duty UAVs (U.S.
military UAS Group 1).

Mapping algorithms tailored for high-speed UAVs address the specific demands of
dynamic and rapid flight scenarios. Real-time operation in these contexts is imperative,
necessitating synchronization and integration of data from diverse sensors such as LiDAR,
cameras, and inertial measurement units (IMUs). Adaptive navigation is equally crucial to
accommodate the UAV’s swift maneuvers and maintain mapping precision. Overcoming
challenges related to large distances covered between sensor readings during high-speed
flights is essential for achieving precise mapping results. Additionally, robustness in the
face of environmental variability, including changes in lighting, weather conditions, and ter-
rains, is vital. High-speed UAVs, integral in applications like surveillance and emergency
response, benefit from ongoing advancements in mapping algorithms. These improve-
ments enhance effectiveness, allowing UAVs to navigate rapidly changing environments
and deliver precise and timely mapping outcomes. This article analyzes multirotor UAV
algorithm performance for speed ranges from 15 m/s to 20 m/s which corresponds to the
maximum speed for typical commercially available platforms in this Group [1].

In recent decades, research investigating methods for 3D reconstruction from images
has thrived. Examples of approaches include Structure-from-Motion (SfM) algorithms [2–7]
and stereo reconstruction (Stereo3D) algorithms [8–12]. These approaches are the algo-
rithms that can be used as components of a SLAM system. SfM and Stereo3D differ in
both computation methods and output formats. SfM algorithms analyze a sequence of 2D
images from a camera and estimate the relative motion of the camera and the geometric
structure of the observed 3D scene. Motion estimates include the camera pose, i.e., position
and orientation, at each recorded image and the scene 3D structure observed in each image.
Stereo3D estimates 3D scene structure from a pair of 2D images captured simultaneously
by two cameras with known relative positions. Depth information is derived from the
correspondence of observed scene points between the two images. While both SfM and
Stereo3D target 3D scene reconstruction, they excel in different applications and scenarios.

The contributions of this article include:

• A comprehensive analysis outlining the strengths and limitations of state-of-the-art
SfM and stereo reconstruction algorithms;

• A benchmark of the geometry accuracy and computation speed of various map-
ping algorithms;

• A theoretical foundation for sensor selection tailored to low-altitude and high-speed
UAV mapping applications;

• A technical approach for extracting high fidelity geometric models from Cesium Tile
data to perform analysis on 3D mapping and odometry algorithms;

• An innovative approach to simulate realistic flights, utilizing Unreal Engine for high-
realism environment synthesis, Cesium plug-in for geographical context, AirSim for
vehicle dynamics, and PX4 Autopilot for precise vehicle control.

These contributions provide researchers new insight into how to best adopt mapping
technologies for their UAV design in low-altitude and high-speed drone applications.

An initial discussion evaluates the theoretical suitability of a wide variety of sensors
for this application and eliminates many sensors from candidacy for various technical
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reasons. Subsequent evaluation of algorithms is contingent on the proposed selection of
best-practice sensors for this context.

Mapping algorithm analysis surveys current state-of-the-art real-time reconstruction
algorithms suited to the sensors that were previously identified as appropriate for low-
altitude and high-speed multirotor UAV mapping applications. From a wide array of
possible algorithms, three were evaluated: (1) Direct Sparse Odometry (DSO) [13], (2) Stereo
Direct Sparse Odometry (SDSO) [14], and (3) Direct Sparse Odometry Lite (DSOL) [15].
While many algorithms are available in the literature, the selected algorithms provide a
representative sampling of reconstruction methods for the recommended camera sensors.

2. Related Work

This article compares three methods for 3D mapping in terms of their suitability for use
on Group 1 UAVs at high-speed, low-altitude flight. Discussion of current sensing options
indicates that camera-based methods are well-suited to this application. Experiments use
a simulated environment to evaluate leading camera-based methods. For these reasons,
a review of the related literature to this article is divided into three parts:

• A comparison of SfM and stereo3D reconstruction methods including recent leading
implementations of these methods;

• A compact review of three 3D-from-images algorithms;
• A review of different 3D simulation options for developing and evaluating these

mapping algorithms for the context of low-altitude high-speed flight.

A comprehensive literature review motivates the methodology and experimental
approach for this article. Specifically, the choice of mapping algorithms analyzed and the
simulation environment used was based on a comprehensive review of candidate solutions.

2.1. Structure-from-Motion vs. Stereo Reconstruction

Structure from Motion (SfM) and stereo reconstruction are two leading techniques
employed in 3D reconstruction. This subsection describes the principles of both techniques
to provide insights into their distinctive attributes and how they relate to high-speed
low-altitude mapping applications.

2.1.1. Structure-from-Motion

SfM [16] is the process of reconstructing a 3D structure from its projections into a
series of images taken from different viewpoints. It leverages the relative movement be-
tween a camera and objects in a scene to reconstruct the 3D structure. SfM estimates the
camera poses and the spatial arrangement of points in the scene by analyzing the changes
in perspective across multiple images. SfM has been extensively studied and applied in
diverse fields, including 3D modeling [17,18], augmented reality [19,20], autonomous navi-
gation [21,22], and remote sensing [23,24]. Researchers have explored various algorithms
and optimization methods to enhance the accuracy [2,25–27] and efficiency [4,6,7,28] of
SfM, making it a robust solution for scenarios where camera poses change dynamically,
a common occurrence in high-speed low-altitude flights.

2.1.2. Stereo Reconstruction

Stereo reconstruction (stereo3D) involves the process of estimating the 3D structure of
a scene from a pair of 2D images captured by two cameras with known relative positions.
By analyzing the disparities between the two images, stereo reconstruction algorithms can
calculate the depth information of the scene points. This depth information allows for the
creation of a 3D representation of the scene. Stereo3D is critical to enabling autonomous
capabilities in a wide range of fields including robotics [29,30], autonomous vehicles [9,31],
and 3D modeling [12,32,33].

Figure 1a illustrates the epipolar geometry of two pinhole cameras observing a 3D
point M. Stereo reconstruction estimates M’s distance by analyzing its projections m and
m′. The baseline B connects camera origins CL and CR, defining epipolar geometry with
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epipoles e and e′. The epipolar plane intersects with image planes π and π′, forming
epipolar lines. According to epipolar geometry, m in π′ lies on epipolar line l′. Depth
estimation involves finding corresponding points, simplified by image rectification in
Figure 1b, ensuring m and m′ align. Depth d is estimated through triangulation represented
by Equation (1), considering column differences from m and m′ to the center of the left and
right images, baseline B, focal length f , and pixel width δ in the rectified image sensor.

d =
B f

δ(x − x′)
(1)

(a) (b)
Figure 1. (a) Epipolar geometry of two cameras. (b) Epipolar geometry of a rectified image pair.

Figure 2 shows the theoretical dependency between the baseline parameter of a stereo
camera pair and the accuracy of the depth estimates that the stereo sensor will produce. Red
lines show the depth deviations associated with a ±1 pixel error in the disparity. The plot
shows that the disparity decreases as a square of the depth and error increases as a square
of the depth.

Figure 2. The dependency between depth estimation accuracy and the baseline of the stereo camera
design for a baseline, B of 34 cm, based on [34].

SfM can be computationally intensive and requires feature matching and bundle
adjustment for robust results. Stereo3D, with fixed camera positions, is typically less com-
putationally intensive and more straightforward compared to SfM. SfM systems estimate
the scene structure to an unknown scale and usually require fusion with other metric data,
e.g., from an IMU or a GPS sensor, to make estimated geometric measurements consistent
with the real geometric scene structure. Stereo3D directly estimates the scene structure and
uses the baseline distance to provide scene scale estimates that are metrically consistent
with the 3D scene geometry and do not require sensor fusion to recover the unknown scale.

2.2. Mapping Algorithms

This article focuses on the following three representative state-of-the-art real-time
algorithms to investigate their applications to multirotor UAV-borne mapping:

• Structure-from-Motion: Direct Sparse Odometry (DSO) [13];
• Stereo Reconstruction: Stereo Direct Sparse Odometry (SDSO) [14] and Direct Sparse

Odometry Lite (DSOL) [15].



Sensors 2024, 24, 2204 5 of 22

2.2.1. DSO: Direct Sparse Odometry

DSO is a visual odometry technique that adapts SfM methods for 3D reconstruction. It
directly estimates the camera motion and the sparse 3D structure of the environment from
a sequence of 2D images by minimizing photometric errors. DSO differs significantly from
traditional techniques by directly optimizing photometric errors in images, without relying
on keypoint detectors or geometric priors. For a point, p in reference frame Ii, observed
as p′ in target frame Ij, the photometric error, given by Equation (2), is formulated as the
weighted Sum of Squared Differences (SSD) over a small neighborhood of pixels.

Epj := ∑
p∈Np

wp

∥∥∥∥∥(Ij
[
p′]− bj

)
−

tje
aj

tieai
(Ii[p]− bi)

∥∥∥∥∥
γ

(2)

where Np is the set of pixels in the SSD; (ti, tj) the exposure times of the frame Ii and Ij;
(ai, bi, aj, bj) the brightness transfer variables defined in DSO for frame Ii and Ij, respectively,
and ∥ · ∥γ is the Huber norm. In addition to using robust Huber penalties, a gradient-
dependent weighting wp is applied. Further, p′ stands for the projected point position of p
with inverse depth dp, given by

p′ = Πc

(
RΠ−1

c
(
p, dp

)
+ t

)
(3)

with [
R t
0 1

]
:= TjT−1

i (4)

where Πc : R3 → Ω denotes projection, Π−1
c : Ω ×R → R3 denotes back-projection, c de-

notes the intrinsic camera parameters, and Ti, Tj ∈ SE(3) are the camera poses represented
by transformation matrices for frame Ii and Ij.

To minimize the photometric error between the corresponding points in two frames,
DSO incorporates a fully direct probabilistic model that jointly optimizes all model param-
eters, including camera motion and geometry, represented as inverse depth in a reference
frame. The optimization is accomplished using the Gauss-Newton algorithm in a sliding
window [35].

2.2.2. SDSO: Stereo Direct Sparse Odometry

SDSO is a stereo version of DSO. In a monocular mapping system like DSO, to initialize
the whole system, i.e., to track the second frame with respect to the initial one using
Equation (2), the inverse depth values dp of the points in the first frame are required.
In DSO, the points are initialized to have random depth values ranging from 0 to infinity,
corresponding to a large depth variance. Unlike that, SDSO uses stereo matching to
estimate a semi-dense depth map for the first frame, which significantly increases the
tracking accuracy. The constraints from static stereo introduce scale information into the
system. They also provide good geometric priors to temporal multi-view stereo.

2.2.3. DSOL: Direct Sparse Odometry Lite

DSOL presents an enhanced version of DSO and SDSO, proposing several algorithmic
and implementation improvements to significantly speed up computation. Following the
same practice as DSO of defining the photometric error in Equation (2), DSOL adopts the
inverse compositional alignment method [36] to perform computationally expensive calcu-
lations, i.e., the Gauss-Newton approximation to the Hessian matrix, at the pre-computation
phase, which largely improves the running speed of the algorithm. Compared to DSO
and Stereo DSO, key aspects of optimization in DSOL include the following: (1) utilizing
an inverse compositional alignment method for frame tracking, improving accuracy and
speed; (2) adapting a better stereo photometric bundle adjustment formulation compared
to SDSO; (3) simplifying keyframe creation and removal criteria from DSO, allowing for
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better utilization of computational resources and parallel processing; and (4) implementing
algorithmic enhancements to streamline the computation process, making it more suitable
for real-time applications, especially in resource-constrained environments. The focus of
DSOL is on mapping speed and efficiency while maintaining accuracy.

2.3. Aerial Simulation Solutions

There are various simulation platforms for vehicles and environments catering to the
diverse needs of researchers. Gazebo [37], with its open-source nature, stands as a versatile
choice, emphasizing realism and adaptability. Agilicious [38] specializes in agile quadrotor
flight, providing unique applications such as drone racing. RotorS [39], integrated with the
Robot Operating System (ROS), offers high-fidelity UAV simulation. Flightmare [40], part
of the AirSim project, excels in simulating multiple drones for swarm robotics research.
Kumar Robotics Autonomous Flight [41] addresses GPS-denied quadcopter autonomy.
MIT’s FlightGoggles [42] offers an immersive experience with photorealistic graphics.
AirSim, developed by Microsoft, on top of the Unreal Engine, excels in generating highly
realistic perceptual simulation data in complex and dynamic environments.

An approach is proposed in [43] to reproduce real-world experiments in simulation
using the AirSim open-source simulator with the Cesium Tiles plugin, allowing for large-
scale 3D geometry analysis. This paper adapts the methodology and extends it with other
aerial vehicle control technologies, achieving precise vehicle control in high-realism virtual
models that replicate real-world contexts world.

3. Methodology

The overall approach for the methods of this article consists of three steps:

• Describe the benefits and shortcomings of various candidate sensing modalities for
low-altitude high-speed mapping using Group 1 UAVs resulting in a recommendation
for using one or more high-frame rate conventional camera sensors for this application
(Section 3.1).

• Describe the simulation methods used to collect data using a highly realistic 3D
environment made possible by integrating the AirSim simulator with Google’s 3D
map database using the Cesium Tiles plugin for the Unreal Engine (Section 3.2).

• Describe the evaluation methods adopted to compare the mapping results generated
from experimental flights within the simulated environment (Section 3.3).

3.1. Sensors for UAV Mapping

Three prominent sensor types are investigated as potential components of the UAV
perceptual payload. These sensor types are listed below:

• LiDAR (Light Distance and Ranging) Sensors;
• Event Cameras;
• Conventional EO and IR Cameras.

Our assessment considered leading examples of each sensor that would be potentially
appropriate for the high-speed low-altitude context and commercially available. The specifi-
cations of the sensors were then reviewed in terms of their ability to provide measurements
that meet the requirements of UAV mapping. Based on this analysis, a determination was
reached regarding the suitability of each sensor.

3.1.1. LiDAR

Figure 3 shows several LiDAR sensors evaluated for inclusion in the platform payload.
LiDAR sensors have emerged as a popular choice for UAV mapping applications with
significant advancements in LiDAR-based techniques [44–47]. However, it was quickly
determined that these devices would not be appropriate for the UAV mapping application.
The shortcomings of these sensors are described in the list below:
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• Weight: LiDAR sensors typically weigh 500 g. or more which would be equivalent to
approximately 5 image sensors of 100 g.

• Measurement Method: LiDAR sensors measure individual 3D points at one time or a
collection of 3D points using a laser line-scanning technology. In either case, a rotating
mirror in the sensor scans the scene over time. Accurate integration of scan data
requires motion compensation for individual 3D point measurements for mapping
and geometry estimation.

• Measurement Speed: LiDAR sensors typically scan at low rates (10–20 Hz) which
makes the capture of a complete 3D scene geometry impractical for the rates required
by high-speed flight.

(a) (b) (c) (d)
Figure 3. SeveralLiDAR sensors were evaluated for inclusion on the platform. Left to right are
shown (a) the Ouster OS1, (b) the HRL131, (c) the RIEGL miniVUX-HA, and (d) the L3 Harris Tactical
Geiger-Mode LiDAR sensors.

The data stream, resulting from the combination of the measurement method and
measurement speed, requires highly accurate flight pose tracking over long distances at
high speeds for the accurate integration of data into a unified 3D map. Achieving this
may pose challenges considering the tracking accuracy limitations of onboard instruments,
and substantial computation may be required for per-point or per-scan line motion com-
pensation. Due to these reasons, the utilization of LiDAR sensing instrumentation for
high-speed UAV mapping is not advisable.

3.1.2. Event Cameras

Figure 4 shows several event camera sensors evaluated for inclusion in the platform
payload. The key attractive aspect of event cameras that has sparked considerable interest
from researchers and industry alike is the extremely high temporal accuracy. Specifi-
cally, event cameras can resolve intensity changes in the perceptual field at a temporal
resolution of approximately 1 µs. For this reason, event cameras have been used in high-
speed contexts.

Figure 4. A collection of event cameras commercially available from the iniVation Corp [48].
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While the deployment of event cameras as a component of UAVs may seem attractive
due to the temporal resolution, there are several shortcomings associated with integrating
this hardware into the UAV payload:

• Resolution: Resolution is a key parameter for depth accuracy as discussed in the stereo
reconstruction Section 2.1.2. Accuracy strongly ties to both resolution and pixel size,
δ, as shown in Figures 1b and 2. Event camera resolution, 0.3 pixels, is a factor of
5–10 times lower than conventional image sensors, and the pixel size of δ = 18 µm is
a factor of 6–18 times larger than conventional image sensors, e.g., the Sony IMX472
sensor has a resolution of 21 megapixels and a pixel size of 3.3 µm.

• Weight: While these sensors are lighter than LiDAR sensors, they weigh ∼100 g. and
much lighter camera sensors are available.

• Latency: While the temporal resolution of event cameras is an impressive 1 µs, the la-
tency of the measurements is on the order of <1 ms. This latency is similar to that of
high frame rate conventional image sensors with frame rates of +100 fps and similar
<1 ms latency.

• Nighttime Performance: Event cameras operate on similar principles to conventional
visible light cameras. As such, they are suited to deployment in daytime contexts.
The lack of an infra-red event camera requires completely separate perceptual software
stacks for the vehicle in daytime and nighttime contexts.

Event cameras are a recent technology that has emerged and matured over the past
decade. These sensors have unparalleled temporal resolution of 1 µs which makes them
popular for capturing high-speed phenomena endemic to high vehicle speed applications.
Yet, current technology has not matured to the extent required to make this sensor a viable
option. Further, the development of a nighttime IR sensing event camera is an active area
of sensor development under initiatives with no commercially viable examples. The draw-
backs of having low sensor resolution, large pixel size, and no nighttime performance
combined with comparable latency and weight to standard conventional cameras suggest
that this sensor is not appropriate for inclusion as a component of the UAV payload for
high-speed mapping applications.

3.1.3. Electro-Optical and Infrared Cameras

Conventional image sensors, including electro-optical (EO) and infrared (IR) sensors,
have many beneficial attributes that often make them the sensor of choice for perception
designs that must satisfy low Size, Weight, and Power (SWaP) requirements. They are well
suited for UAV mapping tasks for several reasons:

• SWaP: Both EO and IR camera modules are available commercially in a very large vari-
ety of form factors. This includes a compact 25 mm3 weighing 10–50 g requiring ∼1 W
for power and providing temporally synchronized high framerate (60 fps) images.

• High-Quality Imaging: Modern cameras offer high-resolution imaging with the ability
to capture fine details, which is crucial for mapping tasks, especially in scenarios
where identifying objects is essential.

• Mapping and Geospatial Data: Cameras can be used for aerial imaging and pho-
togrammetry to create detailed maps and 3D models of areas, making them valuable
for urban planning, environmental monitoring, and disaster management.

• Stereo Vision: Cameras can be paired to create a stereo vision system. By capturing im-
ages from two slightly offset viewpoints, they can calculate depth information through
triangulation, using the disparity between corresponding points in the two images.
This method provides accurate 3D information.

• Integration with Other Technologies: Cameras can be integrated with other sensors
and technologies, such as Inertial Measurement Units (IMUs) and Global Navigation
Satellite System (GNSS), to enhance their capabilities and improve accuracy.

• Wide Field of View: Many cameras have wide-angle lenses or the ability to pan, tilt,
and zoom (PTZ), providing a broad field of view and the flexibility to focus on specific
areas of interest.
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• Daytime and Nighttime Versatility: Camera sensors are capable of sensing in both
daylight and nighttime conditions. If high sensitivity is needed in both scenarios,
it is possible to replace daytime image sensors with infrared image sensors during
nighttime conditions. This can be achieved with minor modifications to the underlying
software and algorithms.

• Large Active Algorithm Ecosystem: Researchers worldwide develop cutting-edge
algorithms for these sensors at top institutions. Utilizing this sensor type enables
leveraging the latest, optimized, and theoretically advanced algorithms for vehicle
perception tasks.

• Cost-Effectiveness: Compared to some other sensing technologies, cameras are cost-
effective, making them accessible for a wide range of surveillance and mapping
applications.

Conventional image sensors have many beneficial attributes that make these sensors
attractive for multirotor UAV applications. These sensors have low SWaP requirements
and can record >16 M measurements at a time from the environment. These sensors can be
combined with lens components that provide both wide-angle viewpoints, e.g., a 230◦ FOV
via the fisheye lens, for omnidirectional perception and confined viewpoints, e.g., 80◦ FOV
“standard” lens, for high fidelity target tracking and mapping. The intensive work required
to integrate these sensors and develop optimized algorithms to process their data to work
using onboard computing resources can be reused between daytime (EO) and nighttime
(IR) sensing contexts.

Image sensors designed for both infrared (IR) and visible light often share common
image processing algorithms, including basic processes like filtering, noise reduction, con-
trast enhancement, and image registration. Additionally, object detection, recognition,
feature extraction, and image fusion algorithms can typically be adapted for both IR and
visible light images, leveraging shared features and patterns. However, notable differences
emerge, primarily related to spectral characteristics, illumination, noise, calibration, temper-
ature considerations, environmental conditions, and the unique sensitivities of IR images
to object materials. These distinctions necessitate adjustments in algorithms to address
variations in contrast, object recognition, and material discrimination, showcasing the need
for specialized approaches in certain contexts.

3.1.4. Recommendations

The assessment of available sensors suggests that the conventional image sensors
are the best-practice sensors for multirotor UAV applications. EO and IR sensors, being
lighter in weight and faster in measurement speeds compared to LiDAR sensors, also
offer better image quality and nighttime measurement capability in contrast to event
cameras. The choice of conventional sensors not only aligns with budgetary constraints but
also caters to the diverse needs of UAV operations, encompassing navigation, mapping,
and surveillance with exceptional performance and reliability.

3.2. Benchmark Dataset

A virtual environment that mimics real-world scenes was used for evaluation. Com-
pared to real datasets, synthetic datasets for evaluating mapping algorithms bring a notable
advantage in the form of readily available ground truth 3D models. This availability of
ground truth data facilitates a more rigorous assessment of mapping performance, en-
suring precise comparisons between the algorithm’s outputs and the known true state of
the environment.

3.2.1. Environment Simulation

AirSim [49] was used to simulate the dynamics of the drone. AirSim, developed
by Microsoft, stands as a groundbreaking and influential simulator that has become a
cornerstone in the development of autonomous drones and robotics. What sets AirSim
apart is its capacity to simulate complex and dynamic environments with exceptional
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fidelity, replicating not only the physics of flight but also the intricacies of various sensors
like cameras (RGB and depth), LiDAR, and GPS. Figure 5 shows an example of the AirSim
simulated images captured by the cameras mounted on the multirotor.

(a) (b) (c) (d)
Figure 5. An example of an AirSim city environment showing the following: (a) the FPV view in the
simulator where the drone is hovering, (b) RGB image from the simulated left camera mounted on
the drone, (c) RGB image from the simulated right camera, and (d) depth image from the simulated
depth sensor where objects closer to the depth camera appear darker. (a) AirSim simulator; (b) left
camera image; (c) right camera image; (d) Depth image.

The proposed approach used the Cesium plugin for the Unreal Engine, also known as
“Unreal Cesium”, to simulate real-world scenes, and enhance the effectiveness of simula-
tions. Although AirSim provides rich virtual environments for testing and fine-tuning a
wide array of autonomous systems, these environments are often designed for games and
lack realism. To synthesize virtual models that replicate real-world contexts, AirSim can be
integrated into the Unreal Engine to allow the Unreal Cesium plugin to create digital twins
of real-world environment models. The Cesium plugin, given the latitude and longitude
coordinates of desired locations, can load 3D tilesets at the location from Google Maps in
the AirSim simulator.

The Unreal Cesium plugin creates a powerful combination by integrating the Unreal
Engine’s advanced rendering and simulation capabilities with Cesium’s geo-spatial vi-
sualization and data streaming features. By streaming high-resolution 3D models from
Google Maps, overlying them onto real-world maps, and applying dynamic lighting and
shadows, to provide precise representations of real-world locations, such as cities, terrains,
and 3D models of buildings. This integration allows developers to create highly realistic
and spatially accurate virtual environments for various applications. Once the 3D map is
generated, it behaves as a collision object in the Unreal Engine. The UAV then interacts
with this model using the geometry of the environment and a physics engine. Figure 6
demonstrates the benefits of the Unreal Cesium plugin for simulation. It shows three
real-world locations: (1) the UNC Charlotte campus, USA, (2) the Grand Canyon, USA,
and (3) Paris, France.

(a) (b) (c)
Figure 6. Realistic environments created using Unreal Engine and Cesium Plug-in. (a) UNC Charlotte,
NC, USA; (b) Grand Canyon, AZ, USA; (c) Eiffel Tower, Paris, France.

3.2.2. Flight Simulation

Figure 7 depicts the proposed pipeline for flight simulation. QGroundControl and
PX4-Autopilot (https://github.com/PX4/PX4-Autopilot/tree/98d893503495f7c28856bccf8
30082451b20265d accessed on 14 March 2024) are software components commonly used in
the field of UAVs and drones. They work together to provide a comprehensive solution for

https://github.com/PX4/PX4-Autopilot/tree/98d893503495f7c28856bccf830082451b20265d
https://github.com/PX4/PX4-Autopilot/tree/98d893503495f7c28856bccf830082451b20265d


Sensors 2024, 24, 2204 11 of 22

controlling and managing drone flights. The missions are planned by defining waypoints,
flight paths, and specific actions for the drone to perform and QGroundControl sends the
mission plans to the autopilot system PX4-Autopilot. As an open-source flight control
software for UAVs, PX4-Autopilot runs on the flight controller onboard the drone and is
responsible for stabilizing the aircraft, executing flight plans, and interfacing with sensors
and actuators. Controlled by PX4-Autopilot, the simulated UAV in AirSim follows the
planned trajectory in a high-realism virtual environment created by Unreal Engine and
Cesium plug-in. The cameras mounted on the UAV then capture the images (RGB, depth,
etc) of the scene. These images, along with the ground truth vehicle odometry, can be
obtained from AirSim, which then can be applied together to generate the ground truth 3D
model of the world.

Figure 7. The flight simulation pipeline integrates the following four robot development technologies
to facilitate development and testing: (1) Unreal Engine and Cesium plugin (high-realism image
synthesis), (2) AirSim (vehicle dynamics), (3) QGroundControl (mission planning), and (4) PX4-
Autopilot (vehicle control and Software-In-The-Loop).

3.2.3. Ground Truth Geometry

The ground truth geometry is generated by applying AirSim’s built-in functionality for
ground truth pose and noiseless telemetry to collect color-attributed point cloud data from
simulated noiseless pixel-aligned RGB and depth images captured by a drone that traverses
the environment. The telemetry is extracted from Cesium Tile data for generating high-
fidelity geometric models. Poses and point clouds are integrated using standard mapping
methods to reconstruct the scene geometry. Figure 8 shows an example of integrating the
drone odometry (shown as the red curve Figure 8c) and the point cloud from RGB-D image
sequences to create a geometric model of the scene.

(a) (b) (c)
Figure 8. Ground truth geometry can be generated by transforming the point clouds of RGB-D
frame sequences to the odometry of the drone which is shown in red in Figure 8c. (a) An RGB frame
captured by the drone; (b) A depth frame captured by the drone; (c) Integrating pose and point
clouds to generate a map.
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3.3. Evaluation Methods

Mapping algorithm performance is evaluated using the following two key perfor-
mance criteria: (1) mapping accuracy, and (2) mapping speed. Mapping accuracy is assessed
by comparing the geometry of the reconstructed point cloud with the ground truth point
cloud. Geometric accuracy measures each mapping algorithm’s ability to faithfully capture
spatial relationships in the environment. Algorithm performance speed quantifies the
amount of 3D estimates generated per unit of allocated computational resources. More
computation allows more points to be tracked in sequential frames and the creation of more
keyframes. Both tracked points and keyframe data feed non-linear bundle adjustment
and batch trajectory optimization processes which improve map fidelity but can require
significant computational resources. The evaluation methods allow result analysis that
indicates design trade-offs associated with each mapping algorithm.

3.3.1. Point Cloud Registration

Point cloud registration seeks to compute the alignment between two 3D point clouds
measured from the same surfaces in distinct coordinate systems. Alignment algorithms
identify point correspondences between the misaligned point cloud datasets and compute
the rigid Euclidean transformation that makes corresponding points coincide. To accom-
plish this, a point cloud is selected as the static dataset and all other measured point clouds
are transformed to align with the measurement coordinate system of the staticdataset.
Figure 9 shows an example of registering two point clouds where the red point cloud is the
source set and the blue is the static dataset.

The Iterative Closest Point (ICP) algorithm [50] is employed to estimate point cloud
alignments. The ICP algorithm consists of the following two steps: (1) compute correspon-
dences and (2) compute the best alignment given the correspondence. Steps (1) and (2)
are iterated until the alignment of Step (2) stops changing. Correspondences for a given
iteration are calculated by finding the closest point in the static dataset to each point in
the dataset being aligned. Closest point searches stop at a user-specified search radius for
each point. The ICP algorithm seeks to minimize the RMSE (Root Mean Square Error) of all
the distances between corresponding points and terminates when the gradient of RMSE
is below a predefined threshold or a predetermined maximum iteration count is reached.
Alignments resulting from the ICP algorithm are used to evaluate the geometry accuracy
of mapping algorithms.

Figure 9. An example of point cloud registration [51]. Red: source point cloud. Blue: target point
cloud. Purple: registration result.

3.3.2. Geometric Accuracy

With the correspondences found using the ICP algorithm, the geometric accuracy of
the reconstructed map is measured by the distance between corresponding points in the
ground truth 3D model and the reconstructed 3D map. The mean of this distance of all the
corresponding points is used to evaluate the accuracy performance, calculated as follows:

x̄ =
1
N

N

∑
i=1

||Pi − Ti|| (5)
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where N is the total number of corresponding points, Pi is the position of the i-th corre-
sponding point, and Ti is the ground truth (reference) position for that point.

Further, the standard deviation (std) of the errors (distances) is used to evaluate the
variability in the errors, calculated as follows:

σ =

√
∑N

i=1(||Pi − Ti|| − x̄)2

N
(6)

3.3.3. Computational Cost

To assess the computational efficiency of mapping algorithms, two key metrics were
focused on in this article: keyframe creation time and frame tracking time. These metrics
were selected to provide insights into the mapping speed of the algorithms.

Keyframe Creation Time: Keyframe creation time quantifies the time required to
identify keyframes during the mapping process. Keyframe creation is arguably the most
time-consuming process of the mapping pipeline, often 5–10× slower than tracking [15].
Creating too many keyframes will cause the system to eventually lag behind the frame rate.
Keyframe creation time reflects the computational efficiency of map reconstruction.

Frame Tracking Time: Frame tracking time represents the duration required for the
algorithms to process and track individual frames with respect to the keyframes. This metric
reflects the algorithm’s ability to track and update the mapping information in real-time.

These two metrics collectively provide a comprehensive evaluation of the compu-
tational cost of mapping algorithms. The results of these evaluations are discussed in
Section 4.2, providing the relative efficiency and performance trade-offs among the imple-
mented algorithms.

4. Results

The experimental scene was a virtual model of the UNC Charlotte campus near the
football stadium. The model was generated using AirSim and the underlying Unreal
Engine in combination with the Cesium Tiles plugin.

Experiments were conducted on an Intel i7-12700KF CPU. The implementations of
DSO and DSOL that were made available on GitHub by the authors were used [52,53].
SDSO implementation by the authors is not available so an open-source third-party im-
plementation on GitHub was chosen [54]. All implementations adhered to the original
configuration optimized by their authors for accuracy and/or speed performance including
the number of active keyframes and maximal tracking points per frame. Customized modi-
fications made to all three algorithms respectively for collecting experimental data include
the following: (1) saving the generated point cloud to a PCD file; (2) saving the keyframe ID
and associated creation time to a text file; (3) saving the frame ID and associated tracking
time to a text file.

Experiments consist of a simulated quadrotor vehicle that traverses the virtual scene
at heights ranging from 12 m to 20 m and at speeds ranging from 16.5 m/s to 20 m/s.
During the flight camera sensor telemetry was recorded from a stereo pair of camera mounts
to the UAV chassis. Algorithms processed the telemetry to generate mapping data for the
environment. The SfM algorithm (DSO) used data from the left camera of the stereo rig
while DSOL and SDSO (stereo reconstruction) utilized all the available image data. The left
camera is chosen to define the sensor coordinate system and the noiseless depth sensor
is co-located with the left camera to record ground truth depth for each pixel measured
within the view of the left camera. Figure 10a illustrates the simulated drone’s flight over
the UNC Charlotte football stadium, covering a 3-min flight duration and capturing 1027
RGB stereo pair frames and associate ground truth depth. Sample images from the drone’s
simulated RGB and depth sensors are displayed in Figure 10b,c.
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(a) (b) (c)
Figure 10. A simulated UNC Charlotte campus world. (a) A quadrotor flying in a virtual model of
UNC Charlotte; (b) A RGB image captured by the drone camera; (c) A depth image captured by the
drone camera.

4.1. Mapping Accuracy Evaluation

Using the methods of Section 3.2.3, a ground truth point cloud of the experimental
scene was calculated which is shown in Figure 11. This point cloud serves as the ground
truth geometry to evaluate the mapping accuracy of different algorithms. Figure 12 shows
the point cloud respectively reconstructed by DSO, SDSO, and DSOL. All three maps
qualitatively encode the shape and size of objects from the experimental scene. However,
the point density and scene details of DSO and DSOL maps outperform the DSOL map.

Figure 11. The ground truth point cloud of the scene generated by applying the ground truth
odometry to the point cloud of each RGB-D frame.

(a) (b) (c)
Figure 12. Point clouds generated by (a) DSO, (b) SDSO, and (c) DSOL. DSO and SDSO generated
much more point clouds than DSOL. The color of the points is represented by the grayscale color of
the scene point.

4.1.1. Quantitative Analysis

Table 1 details the density and accuracy characteristics of mapping results obtained
from different algorithms. The ICP algorithm was used to align estimate maps with
the ground truth point cloud. Criteria for alignment convergence and correspondence
calculation included the following: (1) a search radius of 0.5 m, (2) algorithm termination
criteria which are triggered when either the RMSE of corresponding points changes by
less than 0.00001 or the maximum number of iterations exceeds 1500. Alignment results
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allow for statistics to be tabulated on the point cloud accuracy for each algorithm. DSO,
as a monocular SfM algorithm, is unable to estimate the scene scale accurately. The scale
factor was estimated from the ICP algorithm for DSO and the DSO mapping result (point
cloud) was scaled by the estimated factor for accuracy evaluation. For SDSO and DSOL,
the scale factor was not estimated since the scale of the scene can be derived from the stereo
data. In our experiments, the estimated map scale of DSO was 35.98. Table 1 captures key
statistics of the alignment process for the three algorithms evaluated. Each row of this table
is explained below:

• points: Total points in the reconstructed point cloud.
• correspondences: Total amount of correspondences.
• mean: Mean of the distance between all corresponding points.
• std: Standard deviation of the distance between all corresponding points.

Table 1. Quantitative evaluation of the point clouds generated by three mapping algorithms. DSO
and SDSO maps contain more points and correspondences than the DSOL map. The error statistics
(“mean” and “std”) indicate both higher accuracy and consistency in the DSO and SDSO mapping
results than DSOL. The DSO map was scaled by a factor (35.98) estimated from the ICP algorithm.

DSO SDSO DSOL

points 204,345 212,179 6662
correspondences 172,862 183,460 2799

mean (m) 0.110 0.110 0.177
std (m) 0.110 0.111 0.145

Notably, DSO and SDSO maps, similar to each other in the total amount of points,
encompass ∼30 times more points than the DSOL map. This aligns with the observations
in Figure 12. The difference in the correspondence sets is more pronounced, with DSO and
SDSO revealing ∼65 times more correspondences than DSOL. DSO, after scaling, follows
very closely to SDSO in terms of mapping accuracy performance, while both of them exhibit
a 60.9% lower mean error than DSOL and a 31.8% smaller standard deviation. DSO and
SDSO prove more accurate and consistent in their mapping results, while DSOL lags in
terms of both precision and reliability.

Figure 13 depicts the distribution of the distance between corresponding map loca-
tions for the three algorithms. DSO and SDSO exhibit similar distributions and most 3D
measurements lie within 0.15 m to their corresponding location in the ground truth model.
In contrast, DSOL has significantly fewer points within the 0.15 m distance range and a
nearly constant number of points having similar errors for greater distances. This supports
the mapping accuracy results shown in Table 1.

Figure 14 indicates the capability of each algorithm to estimate large depths from
a given viewpoint (Figure 14a) and expected error for a depth estimate for each depth
(Figure 14b) where depths have been binned to 5 mintervals for tabulation.

Figure 14a shows the distribution of depth values for the keyframes of the trajectory
which are responsible for generating depth values. Figure 14a indicates that a majority
of depth estimates range from 20 m to 60 m. One can also see that DSO is capable of
generating estimates at larger depths than the two other algorithms (see ranges 100–130 m).
DSOL tends to reconstruct points within 60 m and shows a slightly bimodal behavior
with a high population of measurements in the 60–100 m range which may be an artifact
due to the experimental context. Figure 14b portrays the expected depth error in each
keyframe. Figure 14a also lacks any presence of short ranges. This can be attributed to
flying at low-altitude where most data is further than 10 m away.
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Figure 13. Quantitativeanalysis of the distribution of the closest point distances for correspondences
from the mapping results to the ground truth point cloud. DSO and SDSO have similar distributions
while the mean correspondence error is larger in DSOL.

(a) (b)
Figure 14. (a) Distribution of point depth in the reconstructed maps and (b) the average distance
between the matched points at different depth ranges.

Figure 14b, shows the expected depth error for estimate depths. Inspection of the
results for distances of 20–40 m, the reconstruction error of DSOL is approximately 0.15 m
per point while DSO and SDSO are close to each other having an error of approximately
0.085 m. DSO outperforms SDSO across most depth ranges with slightly smaller distance
measurements. Additionally, the error distributions exhibit a quadratic growth pattern as
predicted by theoretical models as described in Figure 2. High error is noted at short ranges
of less than 25 m. This can be attributed to a lack of sufficient supporting image data due to
the high velocity of the UAV. Surfaces close to the vehicle move quickly through the field of
view and exhibit more motion artifacts leading to higher depth estimation error.

Figure 14 indicates that DSO exhibits lower error values across all ranges yet has fewer
points. This can be attributed to a strong filter on the acceptable point depth covariance for
map points within the algorithm. SDSO and DSOL exhibit lower accuracy compared to
those produced by DSO.

4.1.2. Qualitative Analysis

Figure 15 shows reconstructed maps from DSO, SDSO, and DSOL. A qualitative
examination of these results unveils notable distinctions in their alignment with the ground
truth. DSO and SDSO, with their significantly higher point densities appear to exhibit
good accuracy as evidenced by the details of the road network that have been captured
and include intricate and well-aligned geometries, e.g., road curbs. The enhanced point
density, particularly evident in the football stadium region, allows for a more detailed
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reconstruction and appears to provide better alignment results relative to ground truth
here. Conversely, DSOL, characterized by a sparser point cloud provides a reduced level of
detail, particularly in complex structures like the football stadium. Although DSOL shows
good alignment for roads, the sparsity of the estimate limits the map details.

(a) (b) (c)
Figure 15. Reconstructed point clouds (blue) overlaid with the ground truth point cloud (actual
color): (a) DSO, (b) SDSO, and (c) DSOL. DSO point cloud has been scaled by the factor estimated by
ICP.

4.2. Computational Cost Evaluation

Computation cost for the considered algorithms considers the resources required by
two critical mapping algorithm functions cost: (1) keyframe creation time and (2) frame
tracking time. These metrics serve as crucial benchmarks in assessing the algorithms’ ability
to swiftly and accurately generate keyframes, as well as tracking real-time camera pose
changes during the mapping process. Through this examination, we seek to offer valuable
insights that contribute to the informed selection and deployment of mapping solutions for
low-altitude UAV flights, particularly for high-speed applications.

4.2.1. Keyframe Creation Time

Figure 16 illustrates the keyframe creation time for DSO, SDSO, and DSOL. It can
be seen that SDSO requires the most time to create a keyframe, averaging ∼220.73 ms
per keyframe, as reported in Table 2. DSO incurs lower computational cost for keyframe
creation since the stereo disparity map estimation algorithm is not required resulting in
keyframe times averaging around ∼200.28 ms per keyframe. DSOL requires ∼7.39 ms
per keyframe which is approximately 30 times faster than competing approaches. This
can be attributed to the simplified keyframe creation process facilitated as a combination
of a simplified disparity computation algorithm and parallel processing. The columns
in Table 2 delineate the statistical distribution of keyframe creation times, including the
minimum, maximum, and mean values, with the “std” column denoting the standard
deviation. In summary, SDSO necessitates 10.21% more keyframe creation time than DSO
and 2886.87% more than DSOL, while DSO requires 2610.15% more time than DSOL.

Table 2. Statistics of the keyframe creation results of three mapping algorithms. The “total kfs”
column shows the total amount of the keyframes created by three algorithms. The “min”, “max”,
and “mean”, respectively, show the minimum, maximum, and average time for keyframe creation.
The “std” column denotes the standard deviation of the keyframe creation time.

Total kfs min (ms) max (ms) mean (ms) std (ms)

DSO 330 151.83 274.44 200.28 19.63

SDSO 359 172.19 300.79 220.73 23.08

DSOL 61 1.88 17.99 7.39 2.66
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Figure 16. The points plotted along the curves represent the keyframe creation time at each frame.
Stereo DSO (SDSO) exhibits a higher temporal requirement than monocular DSO, demonstrating
significantly greater computational overhead than DSO-Lite (DSOL). The density of points on the
curves serves as a visual indicator of the number of keyframes generated, revealing that both DSO
and SDSO produce a larger quantity of keyframes than DSOL.

Table 2 contains data that provides quantitative measures for the aggregate number of
keyframes generated by the three algorithms (“total kfs” column). DSOL generates approx-
imately ∼80% fewer keyframes compared to its counterparts which can be attributed to
slightly more restrictive requirements for keyframe creation. Noteworthy is the observation
that DSO creates 29 fewer keyframes than SDSO. This discrepancy is attributed to a de-
layed initialization of the DSO system, commencing at the 50th frame in our experiments,
in contrast to the immediate initialization of SDSO and DSOL. Such delay is also illustrated
in Figure 16 as the DSO curve starts later than SDSO and DSOL. The DSO initialization
process relies on assigning random depth values to candidate points and predicting the
initial camera movement pattern, demanding precise assumptions about initial depth
values and camera motion. In contrast, mapping systems employing stereo cameras, such
as SDSO and DSOL, leverage stereo matching for enhanced depth initialization, leading to
increased accuracy. Divergence in keyframe quantities among the algorithms also mirrors
the disparities in point cloud density depicted in Figure 12, given that these points are
derived from the keyframes.

4.2.2. Frame Tracking Time

Figure 17 depicts the frame tracking time across various algorithms, employing scatter
points for visualization. Results show the very high performance achieved by DSOL
which requires very little computation for each tracked frame. In the case of DSO and
SDSO, the tracking time is stratified into two distinct regions. The upper region, requiring
approximately ∼60 ms for tracking, corresponds to keyframes, while the lower region,
with an average tracking time of ∼20 ms per frame, pertains to non-keyframes. This 3×
difference in tracking time arises from the creation of a new keyframe, where existing
point tracks must be terminated and a collection of new point tracks must be initialized
incurring significant computational cost to transfer the tracking information. Subsequent
frames are then exclusively tracked to this keyframe, employing traditional two-frame
direct image alignment methods. This stratification in tracking time offers insights into the
computational demands associated with keyframe and non-keyframe tracking, highlighting
the intricacies involved in SfM methods that must maintain accurate and efficient tracking
across consecutive frames.
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(a) (b)
Figure 17. Frame tracking time of different algorithms. (a) shows the tracking time for all frames
including keyframes and non-keyframes. The data are plotted as scatter points for a clear visualization.
(b) shows the DSO and SDSO tracking time for frames 290∼310 which corresponds to the region
highlighted by the red box in (a).

Figure 17 also shows two apparent bands in the lower region for results of DSO and
SDSO. The higher band characterizes the tracking time for frames immediately succeeding
keyframes, while the lower band denotes the tracking time for other frames. A repeated
pattern exists where ∼5 ms of addition time is required to process frames following
keyframes. Figure 17b zooms into a subsection of the data associated with frame indices
290–310. Close examination of this phenomenon indicates that newly formed tracks require
more time as the points of the initial keyframe have to be sorted into reliable and unreliable
tracks thereby necessitating slightly more computation.

5. Conclusions

This paper presents a study on low-altitude and high-speed drone applications. An ex-
amination of various sensors underscored their strengths and challenges, guiding the
selection of suitable devices for specific operational scenarios. The experiments centered
on evaluating three prominent mapping algorithms—DSO, SDSO, and DSOL—in a sim-
ulated environment, providing valuable insights into the performance of these mapping
algorithms. Each algorithm exhibits unique strengths and trade-offs, catering to specific
requirements in UAV-based mapping scenarios. DSO, operating as a monocular mapping
algorithm, demonstrates versatility in capturing scenes with a single camera, albeit with
limitations in scale estimation. SDSO, incorporating stereo depth perception, excels in
accuracy and spatial fidelity, as evidenced by its superior point cloud density and detailed
reconstructions, particularly in complex structures like the football stadium. On the other
hand, DSOL, designed for efficiency, streamlines the mapping process, offering reliable
reconstructions with reduced computational demands. The findings suggest that, in cases
where UAVs have limited computing resources, DSOL emerges as the optimal choice.
For systems equipped with payload capacity and moderate compute resources, SDSO
proves to be the most suitable option. When dealing with a single camera, DSO is the
preferred choice for applications demanding dense mapping results.

Future work may involve refining these algorithms for optimized performance in
diverse environments, ultimately contributing to advancements in UAV-based mapping
for low-altitude and high-speed drone applications. This study contributes to the ongoing
discourse on mapping algorithms, providing valuable insights for researchers and prac-
titioners navigating the dynamic landscape of UAV applications in remote sensing and
environmental monitoring.
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Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
SfM Structure-from-Motion
FOV Field Of View
DSO Direct Sparse Odometry
DSOL Direct Sparse Odometry Lite
SDSO Stereo Direct Sparse Odometry
IMU Inertial Measurement Unit
GNSS Global Navigation Satellite System
RMSE Root Mean Square Error
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