
Citation: Bazarov Ravshan Ugli, D.;

Mohammed, A.F.Y.; Na, T.; Lee, J.

Deep Reinforcement

Learning-Empowered Cost-Effective

Federated Video Surveillance

Management Framework. Sensors

2024, 24, 2158. https://doi.org/

10.3390/s24072158

Academic Editor: Marcin Woźniak

Received: 9 February 2024

Revised: 16 March 2024

Accepted: 26 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep Reinforcement Learning-Empowered Cost-Effective
Federated Video Surveillance Management Framework
Dilshod Bazarov Ravshan Ugli 1, Alaelddin F. Y. Mohammed 2 , Taeheum Na 3 and Joohyung Lee 1,*

1 Department of Computing, Gachon University, Seongnam-si 13120, Republic of Korea;
dilshod@gachon.ac.kr

2 Department of International Studies, Dongshin University, 67, Dongshindae-gil, Naju-si 58245,
Republic of Korea; alaelddin@dsu.ac.kr

3 Electronics and Telecommunications Research Institute (ETRI),
Yuseong-gu, Daejeon 34129, Republic of Korea; taeheum@etri.re.kr

* Correspondence: j17.lee@gachon.ac.kr

Abstract: Video surveillance systems are integral to bolstering safety and security across multiple
settings. With the advent of deep learning (DL), a specialization within machine learning (ML),
these systems have been significantly augmented to facilitate DL-based video surveillance services
with notable precision. Nevertheless, DL-based video surveillance services, which necessitate the
tracking of object movement and motion tracking (e.g., to identify unusual object behaviors), can
demand a significant portion of computational and memory resources. This includes utilizing GPU
computing power for model inference and allocating GPU memory for model loading. To tackle
the computational demands inherent in DL-based video surveillance, this study introduces a novel
video surveillance management system designed to optimize operational efficiency. At its core,
the system is built on a two-tiered edge computing architecture (i.e., client and server through
socket transmission). In this architecture, the primary edge (i.e., client side) handles the initial
processing tasks, such as object detection, and is connected via a Universal Serial Bus (USB) cable to
the Closed-Circuit Television (CCTV) camera, directly at the source of the video feed. This immediate
processing reduces the latency of data transfer by detecting objects in real time. Meanwhile, the
secondary edge (i.e., server side) plays a vital role by hosting a dynamically controlling threshold
module targeted at releasing DL-based models, reducing needless GPU usage. This module is a
novel addition that dynamically adjusts the threshold time value required to release DL models.
By dynamically optimizing this threshold, the system can effectively manage GPU usage, ensuring
resources are allocated efficiently. Moreover, we utilize federated learning (FL) to streamline the
training of a Long Short-Term Memory (LSTM) network for predicting imminent object appearances
by amalgamating data from diverse camera sources while ensuring data privacy and optimized
resource allocation. Furthermore, in contrast to the static threshold values or moving average
techniques used in previous approaches for the controlling threshold module, we employ a Deep
Q-Network (DQN) methodology to manage threshold values dynamically. This approach efficiently
balances the trade-off between GPU memory conservation and the reloading latency of the DL model,
which is enabled by incorporating LSTM-derived predictions as inputs to determine the optimal
timing for releasing the DL model. The results highlight the potential of our approach to significantly
improve the efficiency and effective usage of computational resources in video surveillance systems,
opening the door to enhanced security in various domains.

Keywords: LSTM; federated learning; DQN; hierarchical edge computing; cost-effective video
surveillance management system

1. Introduction

In recent years, the field of video surveillance has witnessed significant advancements
through the application of machine learning (ML) techniques [1]. ML has played a pivotal

Sensors 2024, 24, 2158. https://doi.org/10.3390/s24072158 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072158
https://doi.org/10.3390/s24072158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3709-2933
https://orcid.org/0000-0003-1102-3905
https://doi.org/10.3390/s24072158
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072158?type=check_update&version=1


Sensors 2024, 24, 2158 2 of 19

role in revolutionizing how objects are identified and tracked in video streams, providing
enhanced security, safety, and situational awareness in various domains such as public
spaces, transportation, and industrial environments. One subset of ML, known as deep
learning (DL) [2], has improved video surveillance capabilities by achieving greater ac-
curacy because of its ability to more accurately learn from enormous data patterns using
neural networks (NNs) [3], as opposed to ML [4]. DL models have proven to be highly
effective at automatically analyzing video data, enabling the detection of objects of interest,
and monitoring their movements with unprecedented accuracy [5].

Nevertheless, one of the significant challenges in processing large amounts of video
data and running DL models for accurate object identification and tracking in real time
lies in the efficient utilization of limited computational resources [6]. DL-based models
require a great deal of computing resources, such as (i) GPU computing resources for model
inference, and (ii) GPU memory resources for model loading. Specifically, utilizing GPU
computing resources for model inference and GPU memory resources for model loading
presents a critical bottleneck in video surveillance systems. Despite this, the availability of
GPUs is often limited, making efficient resource allocation crucial for maximizing system
performance [7,8]. Once a DL model is loaded into GPU memory, it needs to be kept
allocated until unloaded. This approach ensures the model is readily available for inference
when new frames are processed. Even so, in video surveillance systems, rare events are
often captured, resulting in standby GPU memory being wasted for extended periods. This
idle memory represents a missed opportunity to utilize GPU resources for other tasks and
limits the system’s scalability.

Smart scheduling techniques [9] and resource management frameworks [10] optimize
GPU resource usage for video surveillance systems. Smart scheduling dynamically loads
and unloads deep learning models on GPUs to match video stream demand, efficiently
reclaiming standby resources. Meanwhile, the resource management frameworks automat-
ically allocate GPU resources to different video streams based on availability and demand,
adjusting model loading according to system load and priority. This can enhance resource
utilization and scalability for surveillance systems operating in complex environments
with multiple camera feeds [9,10]. In this context, the AdaMM framework [11] was devel-
oped to address the challenges of always loading GPU memory resources for DL-based
object movement and motion-tracking models in hierarchical edge computing systems.
The main idea behind AdaMM was to introduce a constant threshold value denoted as
θm to determine when to release the DL model. However, the framework faces two main
shortcomings in setting the threshold value θm. If θm is set to a large value, it means that
the DL model will be released less frequently. This can lead to increased GPU memory
consumption because the DL model remains active for a longer duration. Conversely, if the
threshold value θm is set too small, it leads to frequent DL model releases and reloads. This
constant switching between model states can significantly increase the delay and impose
other operational issues. Another framework named CogVSM was proposed in [12], in-
corporating predictive modeling and smoothing techniques to control the threshold value
(i.e., θm) for releasing the DL model. According to the claim in the CogVSM framework,
the Long Short-Term Memory (LSTM) model predicts future object occurrences based on
historical data, and these predictions are then passed to smooth the LSTM predictions using
the Exponential Weighted Moving Average (EWMA) technique. Based on the smoothed
predictions, the threshold value is adjusted dynamically. The authors achieved a significant
reduction in GPU memory compared to previous studies. While The CogVSM framework
offers a promising approach to dynamic threshold management for DL model release
in edge computing systems, it does have certain limitations. Firstly, training a machine
learning model like LSTM typically requires access to a substantial amount of data, which is
often centralized on a server. As a result, using centralized data for model training can raise
privacy concerns, especially when dealing with sensitive information. This centralized ap-
proach may not be suitable for applications where data privacy and security are paramount.
Also, training a DL (i.e., LSTM) model demands significant computational resources and



Sensors 2024, 24, 2158 3 of 19

can be expensive, as mentioned in [13]. Secondly, the limitations of EWMA [14] include its
reliance on a static smoothing factor that may not adapt well to diverse scenarios, especially
when dealing with non-linear problems or fluctuating object patterns in video surveillance
data, which can lead to suboptimal performance in rapidly changing object movement
patterns. Additionally, EWMA is a static smoothing technique that lacks learning capability,
hindering the ability of the CogVSM framework to continuously optimize threshold values
based on evolving data patterns.

In order to address centralized training issues, adopting FL in a novel system can make
it safe, private, and computationally efficient to train the LSTM model on massive amounts
of decentralized data. FL has emerged as a promising approach to address the challenges
associated with centralized data processing and privacy concerns in machine learning
applications [15], a concept initially coined by Google [16]. To alleviate the limitations
of the EWMA technique, as described in [12], the Deep Q-Network (DQN) model [17]
can be used to adapt to changing conditions and optimize the framework’s performance
over time. The DQN [17] is a reinforcement learning (RL) technique that combines deep
neural networks with the Q-learning algorithm to learn optimal decision-making policies.
Correspondingly, this paper investigates the impact of dynamic model release on efficiently
utilizing computing resources in video surveillance systems. We explore various strategies
for reducing wasted GPU memory usage and propose a novel algorithm that intelligently
loads and unloads DL models based on the characteristics of video streams. Through exten-
sive experiments and evaluations, we assess the effectiveness of our proposed method in
improving resource utilization, scalability, and real-time performance of video surveillance
systems. The contributions of the paper are as follows:

• Design of a hierarchical edge computing system that uses the You Only Look Once
(YOLO) algorithm for object detection in the first-level edge (i.e., client side) and a
hierarchical interaction of object occurrence prediction and dynamically controlled
threshold modules in the second-level edge (i.e., server side), which helps reduce
standby GPU memory and prevent latency during unnecessary model reloading.

• Instead of relying on fixed threshold values or basic moving averages, our design
for the controlling threshold module employs the DQN methodology to dynamically
adjust threshold values by utilizing predictions derived from LSTM as inputs to
determine the most appropriate timing for releasing the DL model. This effectively
strikes a balance between conserving GPU memory and preventing unnecessary
reloading of the DL model.

• Prediction of future object appearance patterns using the LSTM model and controlling
the threshold module hierarchically based on the LSTM prediction outcomes, further
improving the system’s accuracy.

• Implementation of federated learning (FL) to train the LSTM model on data from
multiple cameras without compromising privacy and efficient use of resources, which
addresses the limitations of training on a centralized dataset, including privacy con-
cerns and processing power limitations.

• Adoption of a Deep Q-Network (DQN) model to make more intelligent decisions
about when to trigger the model release based on the object appearance patterns
predicted by the FL-based LSTM model, which overcomes the limitations of the fixed
smoothing factor and the lack of learning capability of the EWMA technique in the
previous work.

The rest of this paper is structured as follows. We discuss the related works in Section 2.
Section 3 presents the proposed method. We discuss the framework’s implementation in
Section 4. Section 5 describes the experimental setup and analyzes the results obtained
from our evaluations. Finally, we conclude with a summary of our findings and provide
insights into future research directions in Section 6.



Sensors 2024, 24, 2158 4 of 19

2. Related Works

Several approaches have recently been proposed to make DL-based video surveillance
with edge computing servers more cost-effective. We have summarized the state of the
art (SOTA) in energy-efficient and DL-based video surveillance studies in Table 1 for the
convenience of the reader. These approaches, as highlighted in [18–22], have achieved sig-
nificant improvements in energy efficiency by leveraging edge computing and optimization
mechanisms. This has reduced network bandwidth and response time in IoT-based smart
video surveillance systems, enabling effective object detection and analysis of abnormal
behavior. Ref. [23] presented a specialized architecture centered around edge computing
for Unmanned Aerial Vehicle (UAV) settings. It aimed to reduce delays and network
data usage by identifying unusual object occurrences. The proposed research emphasized
screening video frames of interest on the edge device and transmitting only the frames
needing analysis to the cloud server. In [24], the authors introduced an approach that
outperformed conventional methods in the precise detection and tracking of objects of
interest. They also tackled issues such as minimizing GPU processing requirements and
enhancing the accuracy of motion tracking. Several studies [25–28] on anomaly behavior
detection have focused mostly on improving the accuracy of DL models, making them tiny
on edge devices. In [29–31], the authors analyzed the challenges and potential of DL-based
pose anomaly detection in video analysis, emphasizing the advantages in terms of privacy
and computational efficiency. Nevertheless, these studies did not consider the hierarchical
structure of edge computing systems or the practical considerations related to delivering
real-time video surveillance services.

Table 1. Summary of related works on video surveillance management systems.

Publication Year Aim of Research Proposed Solution

Alam et al. [23] 2019 Cost-effective abnormal event detection Focused on reducing delays and network
data usage.

Lee et al. [24] 2019 Cost-effective precise object tracking Suggested TLD (Tracking, Learning,
and Detecting) approach.

Xu et al. [19] 2021 Cost-effective video surveillance system Suggested FL-YOLO algorithm for real-time
video analysis algorithm.

Rajavel et al. [20] 2022 Cost-effective video surveillance system Leveraged edge computing and
optimization mechanisms.

Farahdel et al. [25] 2022 Cost-effective abnormal event detection Suggested an efficient video
transmission algorithm.

Naveen et al. [22] 2022 Saving GPU resources Suggested reducing the number of
non-contributing parameters.

Kim et al. [11] 2021 Saving GPU resources Introduced a constant threshold for DL
model release.

Bazarov et al. [12] 2023 Saving GPU resources Applied LSTM and EWMA for adaptive DL
model release.

To address these challenges, the AdaMM framework [11] was proposed, which intro-
duced a constant threshold value (θm) for releasing the DL model (i.e., DL-based object
movement and motion-tracking model) in hierarchical edge computing systems. However,
the method is insufficient in two aspects. If θm is set too large, the frequency of DL model
releases decreases, leading to increased GPU memory consumption. Conversely, if the
threshold value θm is too small, frequent DL model release and reload switching occur,
resulting in delays and other issues. Another framework called CogVSM was proposed
in [12], in which the authors suggested the use of an LSTM [32] model to predict future
object occurrences and employed the EWMA technique to smooth the LSTM prediction re-
sults for controlling the threshold value (θm) to release the DL model. However, the method



Sensors 2024, 24, 2158 5 of 19

employed in the CogVSM framework has certain limitations. For instance, training an ML
(i.e., LSTM) model using data from a central server raises privacy issues due to potentially
sensitive information [33] while also demanding substantial computational resources and
costs [13]. Furthermore, the shortcomings of the EWMA method become evident [14],
as it relies on a static smoothing factor, which may not be adaptable to diverse scenarios
(i.e., non-linear problems), especially when dealing with fluctuating object patterns in video
surveillance data, and its lack of learning capability hampers its ability to improve decision
making over time through experience.

3. Cost-Effective Video Surveillance Management System Model

This section proposes a cost-effective video surveillance management system for
hierarchical edge computing systems. The proposed framework, depicted in Figure 1,
consists of two edge nodes: the first one handles object detection, whereas the second
one manages the prediction of future object occurrences through an FL-based LSTM, a
DQN-based controlling threshold, and motion-tracking modules. We assume the first
and second edge nodes are connected to each other. Specifically, we focus on detecting
and counting people at the first edge for smart DL model release by anticipating object
(e.g., people) occurrences in CCTV video frames at the second edge.

2nd edge

FL-based 

LSTM module

DQN-based 

controlling module

Put trigger message to the 

queue

Get the frame 

from the queue

Trigger message?

Run 

motion 

tracking

Stop 

motion 

tracking

Detect abnormal 

behavior

YesNo

Data transmission

1st edge
Object detection 

(YOLOv8)

Input

Output

Detected number of people

θm - Threshold time value

: Time-series data : Prediction value : θm - Threshold time value

LSTM model DQN model

Figure 1. Overall architecture of the proposed framework.

Notably, the processes start taking input video frames from the attached Internet
Protocol (IP) camera in the first edge node, and then the following four tasks are performed:

1. Task 1: Initiating the object detection process. Upon the arrival of video frames at
the first edge, the YOLO object detection algorithm [34] is initiated. Once objects are
identified, the first edge node sends the detection information (such as the number of
detected people and video frames) to the second edge for further processing.

2. Task 2: Handling object movement and motion tracking. Frames containing the results
of the object detection are forwarded to the second edge node. When the second edge
node receives both the video frames and detected person counts from the first edge
node, they are placed in a processing queue based on their identifications. Subse-
quently, the detection information is transmitted to the LSTM module for predicting
future object occurrences. Task (2) predicts the number of objects expected in future
video frames and conveys these predictions to the DQN-based control threshold
module. Then, the DQN model receives the predicted data.

3. Task 3: Controlling threshold management. Within this module, an RL-based DQN
model simultaneously makes binary decisions to adjust the threshold time value.
Ultimately, by employing this threshold, the DQN model within the control threshold



Sensors 2024, 24, 2158 6 of 19

module determines whether to issue a stop command or forward the video frames to
the motion-tracking module, which is the subsequent task.

4. Task 4: Execution of object movement and motion tracking. If the control module
opts to activate a DL-based motion-tracking model, a trigger signal is transmitted,
instructing the motion-tracking model to start while also pausing it as needed. Al-
ternatively, video frames are conveyed to the motion-tracking model via a queue.
Task (4) is responsible for managing object movement and executing motion tracking
whenever video frames are received through the control module.

Our main contribution to the proposed framework is divided into two parts: (i) an
FL-based LSTM prediction module, and (ii) a DQN-based controlling threshold module
that is highlighted with a yellow dashed rectangle at the second edge node in Figure 1.

FL-based LSTM prediction module: In this module, the LSTM model is trained on
multiple Closed-Circuit Television (CCTV) cameras using the FL approach to predict future
object occurrences by safeguarding data privacy and security, which were learned from the
earlier time-series patterns during the training process. Then, the LSTM module transmits
the predicted values to the DQN-based controlling threshold module.

DQN-based controlling threshold module: The DQN-based controlling threshold
module acts as the decision-making center that intelligently determines the controlling
threshold time value in the overall system. Here, the threshold time value represents a
timeout for deciding whether to hold or release the DL model. The DQN model receives
the predicted object occurrence outcomes generated by the LSTM model. These prediction
values are then used as state observations for the DQN model to make a crucial decision
(i.e., whether to release or hold the DL model into action). Using Algorithm 1, the threshold
time value is continually updated based on the DQN model’s decision. This algorithm
operates by continuously monitoring the DQN’s action, which adjusts the threshold time
value to determine whether to hold or release the DL model into action. If the DQN’s action
suggests holding the model, the motion-tracking threshold is incrementally increased by
one second, ensuring a cautious approach. Conversely, if the action indicates releasing
the model, the threshold is decreased by one second, facilitating quicker response times to
detected events. This iterative process ensures that the threshold adapts intelligently to the
system’s needs, optimizing its performance in real time.

Algorithm 1 Updating threshold time value (θm).

Require: DQN’s action (DQNact): release = 0, hold = 1, Motion-tracking threshold θm,
1: while True do
2: DQN’s action (DQNact)
3: if DQNact == 1 then
4: Motion-tracking threshold is increased by 1 sec (θm ← θm + ∆, θmax)
5: else
6: Motion-tracking threshold is decreased by 1 sec (θm ← θm - ∆, θmin)
7: end if
8: end while

Algorithm 2 presents the mechanism of the motion-tracking module at the second
edge node, which relies on both queue and threshold time values. Algorithm 2 continu-
ously receives frames and object detection data, updating the threshold time value from
Algorithm 1 based on the decision of the DQN model. The key decision-making point lies
in comparing the duration of an empty queue with the threshold time value: if the queue
remains empty for a duration equal to or exceeding the threshold, a command is issued to
halt the motion-tracking module, ensuring efficient resource utilization. Otherwise, frames
are forwarded to the motion-tracking process, maintaining the system’s responsiveness to
detected events.



Sensors 2024, 24, 2158 7 of 19

Algorithm 2 Controlling threshold module.

Require: Threshold for motion tracking θm, DQN’s action (DQNact), empty queue tempty
1: while True do
2: Put received frames and detected number of objects into the queue
3: DQN’s action (DQNact) based on LSTM module predictions
4: Update θm based upon the DQN’s action
5: if tempty ≥ θm then
6: Transmit a command to the motion-tracking module to stop, accompanied by

an activation signal.
7: else
8: Transmit the acquired frames to the motion-tracking process via queue mecha-

nisms.
9: end if

10: end while

3.1. FL-Based LSTM Prediction Module

FL is used in various applications, including personalized recommendations [35],
financial transactions [36], healthcare data analysis [37–39], and mobile keyboard predic-
tions [40]. In video surveillance systems, FL offers significant advantages [41]. Firstly, it
preserves privacy by keeping raw video data localized, reducing the risk of data breaches.
Secondly, it optimizes resource usage by distributing the training process among clients,
allowing scalability and efficient utilization of resources. Adopting FL in video surveillance
addresses privacy concerns and resource limitations, enabling collaborative learning and
distributed data utilization.

Similarly, in the case of the proposed cost-effective video surveillance system, FL
enables the LSTM model to be trained on data from multiple cameras without transferring
the data to a centralized server, as shown in Figure 2. Every client creates a local model by
optimizing its individual objective function, which is then shared with the FL server. Once
the FL server collects local models from all participating FL clients, it aggregates them to
update a global model. This global model is initially shared with all network clients at
the beginning of FL training. Subsequently, the updated global model is distributed to all
FL clients, and each FL client refines their local model by incorporating knowledge from
the global model. This process of interaction between FL clients and the server continues
until the global model achieves the desired level of accuracy, ultimately reaching the target
convergence of the model. As a result, FL ensures privacy preservation and mitigates
the risk of security breaches. Furthermore, FL enables the LSTM model to be trained in a
distributed manner, reducing the strain on processing power and storage capacity. This
approach allows for the utilization of a larger and more diverse dataset.

SERVER

Client 1

Client 2

Client n

1 3

2

4

1

1

3

3

4

4

Send trained local weights

Update global model

Send updated model to clients

Update local model

1

2

3

4

Figure 2. FL in video surveillance.



Sensors 2024, 24, 2158 8 of 19

3.2. DQN-Based Controlling Threshold Module

The DQN model offers adaptive decision-making capabilities, learning from expe-
rience and adjusting its decision-making process based on real-world performance [42].
In our research, we implement the DQN to optimize the threshold time for releasing the
DL model in the video surveillance system, as shown in Figure 3.

ENVIRONMENT
Rt+1

St+1

DQN Agent

A
c
tio

n

Release

Hold

State St :

Object 
Occurrence

Prediction

Reward 
Rt :

[-1; 0; 1] 

Figure 3. DQN in video surveillance.

Model-Free Approach: Our approach is model-free, meaning that we do not have
access to a predefined mathematical model of the system dynamics. Instead, we utilize
the predictions of the LSTM model, which captures the temporal dependencies of object
occurrence patterns, as input to the DQN model. The DQN model then learns the optimal
threshold time for releasing the DL model based on the LSTM predictions.

Policy-Based Model: The DQN model operates based on a policy-based approach,
where it learns a policy that maximizes the expected future reward. In our case, the current
state of the system is represented by the LSTM predictions. The DQN model takes this
state as input and selects actions from the binary action space, deciding whether or not to
release the DL model.

By considering various factors such as object appearance patterns, system performance,
and resource usage, a DQN model can make intelligent decisions regarding when to trigger
the release of the DL model, ensuring efficient resource utilization and improving the
overall effectiveness of the smart video surveillance management system. In the following,
we highlight the state space, action space, environment space, and reward function for our
DQN agent:

• State Space: The state space refers to the range of possible LSTM predictions, which
represent the predicted number of people in the CCTV video per second. This is the
information the DQN agent uses to make decisions, helping balance the trade-off
between GPU resource conservation and DL model reloading latency.

• Action Space: The action space defines the two available actions for the DQN agent:
either releasing the DL model or holding GPU resources. The agent chooses from
these actions to optimize resource allocation based on the state.

• Environment Space: The environment is the system in which our DQN agent interacts,
including the LSTM predictions and GPU resources. The DQN agent interacts with
this environment to determine when to release the DL model.

• Reward Function: The reward function quantifies the desirability of the DQN agent’s
decisions. Specifically, a negative penalty (−1) is incurred when the DL model is
released and objects appear shortly after. This discourages releasing the model when
objects are likely to appear. Conversely, a positive reward (+1) is earned when the DL
model is released but no objects appear within a few seconds. This rewards correct
decisions to withhold the model when unnecessary. A positive reward (+1) is also



Sensors 2024, 24, 2158 9 of 19

earned when the DL model is not released and objects appear within a few seconds.
This encourages resource conservation by withholding the model when objects are
unlikely to appear. Conversely, a negative penalty (−1) is incurred when the DL
model is not released but objects do not appear within a few seconds. This penalizes
incorrect decisions to retain the model in such cases.

The training procedure of the DQN-based decision-making model for DL model re-
lease consists of several critical components, as shown in Algorithm 3. Replay memory (D)
stores past experiences for learning, with a set capacity (N). The Q-network (Q) approxi-
mates Q-values, representing expected future rewards for actions in given states. The target
network (Qtarget) mirrors Q and initially stabilizes training. The state (s) represents the
LSTM predictions, serving as input. Various hyperparameters, including the learning rate,
discount factor (γ), and exploration strategy, must be configured. The model operates
in episodic loops, with episodes defining scenarios for deciding DL model release. Each
episode has step loops, where the agent selects actions based on Q-values. Learning in-
volves updating the Q-network with the observed rewards and transitions, while the target
network is periodically updated to ensure training stability. The DL model reload check
condition influences when to initiate new episodes, balancing resource-saving and model
reloading latency avoidance.

Algorithm 3 DQN training procedure.

1: Initialize replay memory D with capacity N
2: Initialize Q network with random weights Q
3: Initialize target network with weights Qtarget = Q
4: Initialize state s (LSTM predictions)
5: for episode in range(total episodes) do
6: Initialize the DL model
7: Set the initial state s from LSTM predictions
8: for t in range(max_time_steps) do
9: Choose action at

10: Execute action at, release DL model if at is 1, otherwise hold resources
11: Observe the next state s′ from updated LSTM predictions
12: Observe the reward rt (based on the reward function)
13: Store transition (st, at, rt, s′) in D
14: Sample random minibatch of transitions (si, ai, ri, s′i) from D
15: Calculate the target Q-values: Qtarget(si, ai) = ri + γ maxa Q(s′i, a)
16: Update the Q-network using a loss function: L = 1

2
(
Q(si, ai)−Qtarget(si, ai)

)2

17: Update Q using backpropagation and gradient descent
18: Update the target network
19: Set s to s′ for the next iteration
20: if DL model reloading latency is over then
21: Return to step 6 (start a new episode)
22: end if
23: end for
24: end for

4. Implementation

We provide the implementation details for building a cost-effective video surveillance
management framework. In our testing outline, we examine the hierarchy of two edge
nodes for a real-time surveillance system: the first edge node and the second edge node.
These edge nodes are interconnected. We selected the Jetson Nano for the first edge node
due to its sufficient computing resources for running the detection models. Conversely,
we used a desktop equipped with a GeForce RTX 2080 SUPER GPU for the second edge
node because it offers more powerful computational capabilities suitable for the motion-
tracking models.



Sensors 2024, 24, 2158 10 of 19

The first edge node is responsible for communication with the second edge node
and object detection using the YOLO algorithm. Specifically, it utilizes the YOLOv8s [43],
a compact model designed for mobile and edge devices with limited resources. To facilitate
this communication, the first edge node transmits video frames along with detection
information to the second edge node through Python sockets.

The second edge node has multiple functionalities, including predicting future ob-
ject occurrences (i.e., FL-based LSTM model), DQN-based management of the threshold
time value to optimize GPU memory usage, implementing the motion-tracking module,
and establishing a connection with the first edge node. The threshold management module
adjusts the threshold value, temporarily pausing processes to save GPU memory resources.
The Python Thread class manages data flow through the second edge coming from the first
edge node. In contrast, the Python Process class is employed to implement the motion-
tracking module, and it halts the motion-tracking module in unnecessary situations based
on the controlling module to conserve GPU memory at the second edge.

The workflow of the second edge node begins by receiving video frames with detec-
tion information through the Python socket from the first edge node. These frames and the
detection information are then placed in a queue to enable simultaneous communication
through multiple processes, such as the FL-based LSTM module for future object occurrence
prediction, DQN-based controlling threshold time, and motion-tracking algorithms. Since
the frames with their detection information are placed in a queue, the FL-based LSTM
module processes the detection information while the motion-tracking module simultane-
ously analyzes the frames. The DQN-based controlling threshold module sets and updates
the threshold time value based on the LSTM predictions, as described in Algorithm 1.
After setting the threshold value, if the queue remains empty for a specified duration by
exceeding the threshold time value, a trigger signal with a stop instruction is transmitted
to the motion-tracking module, terminating the motion-tracking process, as mentioned in
Section 3.

In our experiments, our LSTM model is trained using FL on multiple CCTV cameras.
We opted for the RMSE metric to evaluate the accuracy of the DL model’s predictions
(i.e., LSTM model), as it allowed us to impose penalties for larger errors [44]. This is
necessary because we occasionally encounter significant prediction errors due to unex-
pected object appearances in video surveillance services. For motion tracking itself, TF
pose estimation is used (i.e., Tensorflow-based human pose estimation model).

5. Performance Evaluation

In this section, we assess the effectiveness and efficiency of our proposed system. We
conduct experiments and analyses to measure key performance metrics, such as object
occurrence prediction accuracy, GPU memory utilization, and system responsiveness in
terms of performance optimization and resource management.

5.1. Evaluation Metrics

We also conduct performance assessments by comparing measurements with prior
research to demonstrate the feasibility of our proposed system. Here is a brief overview of
the benchmark, previous studies, and intended framework used in the evaluation section:

• Baseline: The baseline system, based on the proposed framework without the FL-
LSTM and DQN modules, uses object recognition and motion tracking for accurate
evaluation. It keeps GPU memory for motion tracking even when no object is detected
in the video frame.

• AdaMM: All proposed modules (i.e., frame differences and management of adaptive
processes) are included in AdaMM [11].

• CogVSM: This includes all the previous modules from more advanced models, such
as the LSTM prediction and controlling threshold modules in CogVSM [12].

• Proposed work: This covers all proposed modules, such as the FL-based LSTM
prediction and DQN-based enhanced intelligent controlling threshold modules.



Sensors 2024, 24, 2158 11 of 19

• Proposed work with CNN: This covers every module in the proposed framework,
with the exception of the LSTM model. This framework utilizes a DQN-based en-
hanced intelligent controlling threshold module and an FL-based convolutional neural
network (CNN) model in place of the FL-based LSTM module.

Moreover, we evaluate only one crucial performance indicator obtained from the
second edge node, the GPU memory utilization, denoted as GPUm [11,12]. The range of
GPUm is [0%, 100%]. Table 2 summarizes the parameters and settings of the proposed
framework.

Table 2. Configuration and hyperparameters of the second edge node.

Parameter Value

GPU memory usage, GPUm (%) [0%, 100%]
Threshold for stopping the process, θm (s) [10 s, 30 s]

About 3600 megabytes (MiB) (total memory of 7979 Mib) are needed to load the model
for motion tracking; hence, GPUm is roughly 46%. Moreover, θm is the threshold time value.
For the evaluation, we use different θm values (e.g., θm = 10 s and 30 s) for only the AdaMM
framework since it uses constant threshold values for releasing DL models.

5.2. Model Selection

In this subsection, we select the most accurate time-series prediction model. For this,
we experimented with common deep learning architectures designed for time-series predic-
tion problems. By using the RMSE metric as our accuracy measure, we can penalize large
errors caused by sudden object occurrences in surveillance videos [44,45]. We tested LSTM,
CNN, Gated Recurrent Unit (GRU), and vanilla RNN [46,47] on the dataset described in
Table 3. Table 4 illustrates the training results of the aforementioned mainstream DL models,
measured using the RMSE metric. Our results show that the LSTM model outperformed
other commonly used deep learning models, achieving an RMSE loss accuracy of 0.8046.

The dataset in Table 3 combines people detection information from two distinct sets of
video streams. One set, representing urban environments, was sourced from the Shinjuku
Kabukicho live camera [48] in Tokyo, Japan, while the other was obtained from the Koh
Samui live camera [49] in Laramie, Albany County, USA, capturing rural surroundings.
The dataset includes counts of people detected in CCTV videos using the YOLO algorithm
every second over a full day from each live camera. The dataset consists of two attributes:
time and the number of persons detected. With 172,000 instances, the dataset provides a
thorough representation of people’s patterns over two days. The lack of missing values
ensures the dataset’s integrity, which allows for more robust analysis. The numerical,
integer structure of the attributes emphasizes the exact measurement of people’s presence,
allowing for extensive analysis and modeling of time-series patterns.

Table 3. Dataset description.

Parameter Value

Characteristics Bivariate, Time− Series
Number of attributes 2, (time, number o f people)

Attribute characteristics Numerical, Integer
Missing values No

Number of instances 172,000



Sensors 2024, 24, 2158 12 of 19

Table 4. Training results of mainstream DL models using the RMSE metric.

Model RMSE

Long Short-Term Memory (LSTM) 0.8046
Convolutional Neural Network (CNN) 0.8101

Gated Recurrent Unit (GRU) 0.8198
Vanilla Recurrent Neural Network (RNN) 0.8403

5.3. Evaluation Results of FL-Based LSTM Module

In this subsection, we simulate the training process of our LSTM model using FL on
the dataset in Table 3. Figure 4 shows an overall comparison of the convergence of the
LSTM model during the training process in terms of federated and centralized learning on
the same dataset in Table 3.

Figure 4. Comparison of convergence results in centralized and federated learning.

We trained the LSTM model for 200 rounds and evaluated the training results using
the RMSE metric. Specifically, we first recorded the required communication rounds for
both the federated and centralized training results. We also compared the convergence
of the LSTM model across different numbers of clients (K) (e.g., K = 1 means centralized
training) in a federated way, as shown in Figure 5. We assessed the accuracy of our LSTM
model in terms of the RMSE. The convergence results show that the centralized-based
LSTM model achieved the lowest 0.79 RMSE value, following the FL-based LSTM models
with an increasing number of clients. One significant reason for this is that the dataset
was distributed among clients in the FL-based LSTM during the training process, which
influenced model performance. While centralized training can produce better outcomes in
these circumstances, it is crucial to acknowledge the unparalleled advantages of FL-based
LSTM training regarding privacy and security. Moreover, FL enables collaboration among
parties while safeguarding data integrity. This makes it an ideal choice where maintaining
ownership and data privacy are important. Considering these advantages, our research
recommends adopting FL-based LSTM training as the approach for privacy, even though
there were some performance differences compared to centralized training, as observed in
Figures 4 and 5.

Additionally, we created one example video to demonstrate the prediction accuracy
of the LSTM model in video surveillance services. The video’s duration, frame rate,
and resolution values were about 300 s, 30 fps, and 1280× 720, respectively. Figure 6 shows
the presence of objects and the forecast of object occurrences. In Figure 6, values of one
and zero indicate that the object was either detected or undetected utilizing our YOLO
algorithm at the first edge node. In the video, the object was only detected during the
intervals [0 s, 70 s], [94 s, 145 s], [152 s, 190 s], and [261 s, 307 s]. However, there was no
object in other intervals because the object was not detected.



Sensors 2024, 24, 2158 13 of 19

Figure 5. Comparison test results on different K clients.

Figure 6. Object occurrence and prediction in the sample video.

5.4. Evaluation Results of DQN

This subsection demonstrates the advantage of the designed DQN-based controlling
threshold module in the energy-efficient video surveillance system. To train our DQN
model, we utilized a sequence of LSTM predictions as input states.

Figure 7 shows the average cumulative reward for each episode during the training of
the DQN-based algorithm. The DQN was trained for 200 episodes. From Figure 7, we can
see that the reward grew rapidly in the initial 20 episodes as it learned quickly to balance the
trade-off between saving GPU memory and model reloading latency by learning through
trial and error. This is because our reward function was explicitly designed to balance this
trade-off. After about 50 episodes, the reward fluctuated slightly at around 25. This shows
that our training converged, verifying the efficacy of the designed DQN-based model.



Sensors 2024, 24, 2158 14 of 19

Figure 7. Convergence of the DQN model during training.

Moreover, we compared the efficacy of our DQN-based controlling module and the
EWMA-based controlling module, which was proposed in [12], using a sample video.
The comparison shows the controlling threshold methods by statistical technique and
deep reinforcement model, as shown in Table 5. The count values represent the detected
number of people obtained from the first edge node. The forecast values are the predictions
generated by our LSTM model.

Table 5. Comparison of DQN and EWMA.

Time(s) Count Forecast θm (EWMA) θm (DQN)

1 2 1.248076 2 2
2 1 0.710065 2 1
3 0 0.363475 1 2
4 0 0.891768 2 2
5 1 2.601207 2 2
6 3 2.819257 2 2
7 3 1.499124 2 2
8 1 0.512877 2 2
9 0 1.804097 2 2
10 2 2.623234 2 2
11 3 1.567843 2 2
12 1 0.623472 2 1
13 0 0.432745 2 2
14 0 0.254022 1 2
15 0 0.812373 2 2
16 1 1.675492 2 2
17 2 3.604922 2 2
18 4 2.214837 2 2
19 2 1.327493 2 2
20 1 0.654289 2 1
21 0 0.456283 2 0
22 0 0.249513 1 0
23 0 0.148536 0 0
24 0 0.031254 0 0
25 0 0.031254 0 0
26 0 0.031254 0 0
27 0 0.031254 0 0
28 0 0.885301 1 1
29 1 2.012847 2 2
30 2 2.003821 2 2



Sensors 2024, 24, 2158 15 of 19

The LSTM model predicts the occurrence of an object at Timet+1 using the information
from Timet. For example, at Time10(s), if the count is 2 and the forecast is 2.623234, it means
that the forecasted value at Time10(s) is a prediction of the object occurrence at Time11(s),
which corresponds to a count of 3.

The θm(EWMA) and θm(DQN) values represent the EWMA-based controlling thresh-
old values and DQN-based threshold values, respectively. For our experiments, we selected
the threshold time value from within the range of 0 to 2.

In Table 5, we compare the EWMA-based controlling threshold module in [12] and
the DQN-based controlling threshold module in our proposed framework by utilizing
the LSTM model prediction using the same sample video. The video duration was [0 s,
30 s], denoted as Time(s). Here, Count refers to the detected number of people and Forecast
represents the LSTM prediction based on the sample video. From Table 5, it can be clearly
seen that the DQN-based controlling module’s threshold time value was more sensitive
and faster in anticipating object absence (i.e., in the intervals [2 s, 5 s], [12 s, 15 s], and
[20 s, 27 s] in the sample video) in a video surveillance system compared to the EWMA-
based controlling threshold module. This is because our DQN-based controlling threshold
module made more accurate decisions compared to the EWMA-based controlling threshold
module. This ensures the avoidance of model reloading latency (i.e., 3 s) by balancing the
trade-off between saving GPU memory and model reloading latency.

5.5. Performance Comparison

This subsection delves into assessing our novel approach by comparing it against
prior methodologies. We experiment with real-time video surveillance, including first and
second edges, as mentioned in Section 3, using a sample video from a CCTV camera [49].

Moreover, we believe that our object detection model detects people accurately because
we followed the approach in [50] to improve the accuracy of people detection in video
surveillance systems. In addition, we optimized our YOLO algorithm [43] by employing
NVIDIA’s TensorRT [51] for inference purposes, resulting in a twofold increase in processing
speed while maintaining accuracy at a level of negligible reduction [52]. Regarding the
acceptable precision of our object detection method and accurate prediction of object
occurrence patterns, it stands to reason that our proposed technique has the potential to
optimize resource consumption, reducing the possibility of model release oversights during
object presence.

In the sample video, the object was detected only during the intervals [0 s, 63 s],
[97 s, 145 s], [153 s, 185 s], and [266 s, 304 s]. Figure 8 illustrates the performance contrast
among five different frameworks: baseline, AdaMM, CogVSM, our proposed framework,
and our proposed framework with the CNN model instead of the LSTM model. For a
detailed evaluation, we applied constant θm values (i.e., θm = 10 s and θm = 30 s) to the
AdaMM framework.

(a)

Figure 8. Cont.



Sensors 2024, 24, 2158 16 of 19

(b)

Figure 8. Comparison of the GPU memory usage on the second edge node for our proposed
framework, our proposed framework with CNN, CogVSM, AdaMM, and the baseline. (a) θm = 10 s.
(b) θm = 30 s.

Commencing at time 0 s, all frameworks loaded modules to address the video request.
Notably, our proposed framework exhibited the most efficient utilization of GPU memory,
followed by our framework with CNN, CogVSM, AdaMM, and lastly the baseline for both
θm values. This efficiency can be attributed to our approach of releasing GPU memory for
motion tracking, guided by the predictions of the LSTM model and the intelligent threshold
control facilitated by the DQN model.

Our proposed framework efficiently managed GPU memory at the second edge node
by employing predictive object occurrence and adeptly controlling the forecast outcomes. In
contrast, our framework with the CNN model followed suit by releasing the DL model because
of its low prediction accuracy, followed by AdaMM, which resulted in increased GPU memory
consumption because it waited for frames until θm seconds, with memory usage varying
according to θm values, as evident in Figure 8. This was followed by CogVSM, which exhibited
intermediate GPU memory usage compared to our approach and AdaMM. Finally, the baseline
could not save GPU memory regardless of object absence in the sample video because it always
loaded GPU memory regardless of the object absence setting.

When θm was set to 10 s for AdaMM, as shown in Figure 8a, our proposed framework
with CNN and CogVSM terminated the motion-tracking process three times, each time
effectively releasing GPU memory, whereas AdaMM released GPU memory twice. This
is because there were intervals at around [145 s, 153 s] where the controlling module
in AdaMM did not release the DL model due to the constant θm value. Furthermore,
when θm was set to 30 s for AdaMM, as shown in Figure 8b, AdaMM only freed GPU
memory once because of its 30 s waiting setting, whereas our proposed framework, our
proposed framework with CNN, and CogVSM released the DL model three times. However,
the baseline framework could not release the model even once because it always loaded
GPU memory regardless of the object absence setting.

Using the results in Figure 8, we analyzed average GPU memory usage, as illustrated
in Figure 9. Notably, when θm was set to 10 s, our proposed framework and our proposed
framework with CNN demonstrated significantly optimized memory utilization, with rates
of 29.23% and 30.11%, respectively. This is because both of them utilized our novel approach
incorporating both FL-based LSTM and DQN-based intelligent controlling threshold mod-
ules. By utilizing the LSTM model and statistical EWMA technique, CogVSM exhibited
competitive performance, with GPU memory consumption at 31.43%, followed closely by
AdaMM at 34.98%, employing the constant controlling threshold method. Lastly, the base-
line approach exhibited the highest GPU memory usage, at 46.09% because it always loaded
GPU memory regardless of object absence in video frames. Similarly, at θm = 30 seconds,
the GPU memory usage of the AdaMM framework increased by about 5% from 34.98% to
39.98% because AdaMM released three times with θm = 10 and two times with θm = 30.



Sensors 2024, 24, 2158 17 of 19

The GPU memory usage of the remaining frameworks with θm = 30 s remained unchanged.

(a) (b)

Figure 9. Comparison of average GPU memory usage on the second edge node for our proposed
framework, our proposed framework with CNN, CogVSM, AdaMM, and the baseline. (a) θm = 10 s.
(b) θm = 30 s.

6. Conclusions

In this study, we have presented a comprehensive approach for a cost-effective video
surveillance system leveraging edge computing. Our work showcases the potential ad-
vantages of combining multiple advanced technologies, specifically the YOLO algorithm
for object detection, FL for decentralized training of an LSTM model, and a DQN to con-
trol the threshold time value to halt the motion-tracking module in unnecessary cases.
Comparative analysis with prior methods, such as a baseline, AdaMM, CogVSM, and our
proposed framework with the CNN model instead of the LSTM model, has established
the superiority of our proposed framework in terms of GPU memory utilization. Notably,
our DQN model demonstrated improved adaptability in threshold value over conven-
tional methods like EWMA. While our results are promising, future research could delve
deeper into further optimizing the motion-tracking models, integrating more advanced
neural network architectures, or exploring other edge computing paradigms. Additionally,
as the surveillance industry evolves, there is a growing need to incorporate more advanced
features like anomaly detection, which could be integrated into our system.

Author Contributions: D.B.R.U. conceived and authored the concepts outlined in this paper, taking
charge of their development, implementation, and subsequent performance evaluations as the
first author. A.F.Y.M. contributed to enhancing the paper’s overall quality. T.N. supported the
project and reviewed the paper. Furthermore, J.L. oversaw the research and provided support as the
corresponding author. All authors have reviewed and consented to the final version of the manuscript
for submission.

Funding: This work was supported in part by the ICT R&D program of MSICT/IITP. [2022-0-00862,
Development of Intelligent 6G Mobile Core Network Technologies].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2024, 24, 2158 18 of 19

References
1. Gajjar, V.; Gurnani, A.; Khandhediya, Y. Human detection and tracking for video surveillance: A cognitive science ap-

proach. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 2805–2809.

2. Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
3. Neural Network. Neural Network. Available online: https://www.sciencedirect.com/topics/mathematics/neural-network

(accessed on 20 September 2023).
4. Nagrath, P.; Thakur, N.; Jain, R.; Saini, D.; Sharma, N.; Hemanth, J. Understanding new age of intelligent video surveillance

and deeper analysis on deep learning techniques for object tracking. In IoT for Sustainable Smart Cities and Society; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 31–63.

5. Zeng, Q. Design and Implementation of Horse Riding Action Monitoring Platform Based on Deep Learning. In Proceed-
ings of the 2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT), Jilin, China,
28–30 April 2023; pp. 1368–1372. [CrossRef]

6. Cao, Z.; Hidalgo Martinez, G.; Simon, T.; Wei, S.; Sheikh, Y.A. OpenPose: Realtime Multi-Person 2D Pose Estimation using Part
Affinity Fields. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Toulouse, France, 2019.

7. Hu, Q.; Sun, P.; Yan, S.; Wen, Y.; Zhang, T. Characterization and prediction of deep learning workloads in large-scale gpu
datacenters. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
St. Louis, MI, USA, 14–19 November 2021; pp. 1–15.

8. Gao, W.; Hu, Q.; Ye, Z.; Sun, P.; Wang, X.; Luo, Y.; Zhang, T.; Wen, Y. Deep learning workload scheduling in gpu datacenters:
Taxonomy, challenges and vision. arXiv 2022, arXiv:2205.11913.

9. Harichane, I.; Makhlouf, S.A.; Belalem, G. KubeSC-RTP: Smart scheduler for Kubernetes platform on CPU-GPU heterogeneous
systems. Concurr. Comput. Pract. Exp. 2022, 34, e7108. [CrossRef]

10. Berral, J.L.; Wang, C.; Youssef, A. {AI4DL }: Mining Behaviors of Deep Learning Workloads for Resource Management. In
Proceedings of the 12th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 20), Boston, MA, USA, 13 July 2020.

11. Kim, J.; Lee, J.; Kim, T. AdaMM: Adaptive Object Movement and Motion Tracking in Hierarchical Edge Computing System.
Sensors 2021, 21, 4089. [CrossRef] [PubMed]

12. Ugli, D.B.R.; Kim, J.; Mohammed, A.F.; Lee, J. Cognitive Video Surveillance Management in Hierarchical Edge Computing
System with Long Short-Term Memory Model. Sensors 2023, 23, 2869. [CrossRef] [PubMed]

13. Qiu, X.; Parcollet, T.; Fernandez-Marques, J.; de Gusmao, P.P.; Gao, Y.; Beutel, D.J.; Topal, T.; Mathur, A.; Lane, N.D. A first look
into the carbon footprint of federated learning. J. Mach. Learn. Res. 2023, 24, 1–23.

14. Tom, M.; Yun, S.; Wang, H.; Ou, F.; Orkoulas, G.; Christofides, P.D. Machine learning-based run-to-run control of a spatial thermal
atomic layer etching reactor. Comput. Chem. Eng. 2022, 168, 108044. [CrossRef]

15. Asad, M.; Moustafa, A.; Ito, T. Federated learning versus classical machine learning: A convergence comparison. arXiv 2021,
arXiv:2107.10976.

16. Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Ingerman, A.; Ivanov, V.; Kiddon, C.; Konečnỳ, J.; Mazzocchi, S.; McMahan,
B.; et al. Towards federated learning at scale: System design. Proc. Mach. Learn. Syst. 2019, 1, 374–388.

17. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

18. Chang, W.J.; Hsu, C.H.; Chen, L.B. A pose estimation-based fall detection methodology using artificial intelligence edge
computing. IEEE Access 2021, 9, 129965–129976. [CrossRef]

19. Xu, Z.; Li, J.; Zhang, M. A surveillance video real-time analysis system based on edge-cloud and fl-yolo cooperation in coal mine.
IEEE Access 2021, 9, 68482–68497. [CrossRef]

20. Rajavel, R.; Ravichandran, S.K.; Harimoorthy, K.; Nagappan, P.; Gobichettipalayam, K.R. IoT-based smart healthcare video
surveillance system using edge computing. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 3195–3207. [CrossRef]

21. Naveen, S.; Kounte, M.R.; Ahmed, M.R. Low latency deep learning inference model for distributed intelligent IoT edge clusters.
IEEE Access 2021, 9, 160607–160621. [CrossRef]

22. Naveen, S.; Kounte, M.R. Memory optimization at Edge for Distributed Convolution Neural Network. Trans. Emerg. Telecommun.
Technol. 2022, 33, e4648. [CrossRef]

23. Alam, M.S.; Natesha, B.; Ashwin, T.; Guddeti, R.M.R. UAV based cost-effective real-time abnormal event detection using edge
computing. Multimed. Tools Appl. 2019, 78, 35119–35134. [CrossRef]

24. Lee, Y.H.; Ahn, H.; Ahn, H.B.; Lee, S.Y. Visual object detection and tracking using analytical learning approach of validity level.
Intell. Autom. Soft Comput. 2019, 25, 205–215. [CrossRef]

25. Farahdel, A. TinySurveillance: A Low-Power Event-Based Surveillance Method for Unmanned Aerial Vehicles. Ph.D. Thesis,
University of Saskatchewan, Saskatoon, SK, Canada, 2022.

26. Khan, S.W.; Hafeez, Q.; Khalid, M.I.; Alroobaea, R.; Hussain, S.; Iqbal, J.; Almotiri, J.; Ullah, S.S. Anomaly detection in traffic
surveillance videos using deep learning. Sensors 2022, 22, 6563. [CrossRef]

27. Noghre, G.A. Privacy-preserving Real-world Video Anomaly Detection. In Proceedings of the 2023 IEEE International Conference
on Smart Computing (SMARTCOMP), Nashville, TN, USA, 26–30 June 2023; IEEE: Toulouse, France, 2023; pp. 235–254.

http://doi.org/10.1162/neco.2006.18.7.1527
https://www.sciencedirect.com/topics/mathematics/neural-network
http://dx.doi.org/10.1109/ICCECT57938.2023.10140852
http://dx.doi.org/10.1002/cpe.7108
http://dx.doi.org/10.3390/s21124089
http://www.ncbi.nlm.nih.gov/pubmed/34198526
http://dx.doi.org/10.3390/s23052869
http://www.ncbi.nlm.nih.gov/pubmed/36905075
http://dx.doi.org/10.1016/j.compchemeng.2022.108044
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/ACCESS.2021.3113824
http://dx.doi.org/10.1109/ACCESS.2021.3077499
http://dx.doi.org/10.1007/s12652-021-03157-1
http://dx.doi.org/10.1109/ACCESS.2021.3131396
http://dx.doi.org/10.1002/ett.4648
http://dx.doi.org/10.1007/s11042-019-08067-1
http://dx.doi.org/10.31209/2018.100000056
http://dx.doi.org/10.3390/s22176563


Sensors 2024, 24, 2158 19 of 19

28. Hussain, A.; Hussain, T.; Ullah, W.; Baik, S.W. Vision transformer and deep sequence learning for human activity recognition in
surveillance videos. Comput. Intell. Neurosci. 2022, 2022, 3454167. [CrossRef] [PubMed]

29. Noghre, G.A.; Pazho, A.D.; Katariya, V.; Tabkhi, H. Understanding the challenges and opportunities of pose-based anomaly
detection. arXiv 2023, arXiv:2303.05463.

30. Ardabili, B.R.; Pazho, A.D.; Noghre, G.A.; Neff, C.; Bhaskararayuni, S.D.; Ravindran, A.; Reid, S.; Tabkhi, H. Understanding
Policy and Technical Aspects of AI-Enabled Smart Video Surveillance to Address Public Safety. Comput. Urban Sci. 2023, 3, 21.
[CrossRef]

31. Pazho, A.D.; Neff, C.; Noghre, G.A.; Ardabili, B.R.; Yao, S.; Baharani, M.; Tabkhi, H. Ancilia: Scalable intelligent video surveillance
for the artificial intelligence of things. IEEE Internet Things J. 2023, 10, 14940–14951. [CrossRef]

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
33. Yu, Y.; Li, M.; Liu, L.; Li, Y.; Wang, J. Clinical big data and deep learning: Applications, challenges, and future outlooks. Big Data

Min. Anal. 2019, 2, 288–305. [CrossRef]
34. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
35. Ammad-Ud-Din, M.; Ivannikova, E.; Khan, S.A.; Oyomno, W.; Fu, Q.; Tan, K.E.; Flanagan, A. Federated collaborative filtering for

privacy-preserving personalized recommendation system. arXiv 2019, arXiv:1901.09888.
36. Long, G.; Tan, Y.; Jiang, J.; Zhang, C. Federated learning for open banking. In Federated Learning: Privacy and Incentive; Springer:

Berlin/Heidelberg, Germany, 2020; pp. 240–254.
37. Roy, A.G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; Wachinger, C. Braintorrent: A peer-to-peer environment for decentralized federated

learning. arXiv 2019, arXiv:1905.06731.
38. Huang, L.; Shea, A.L.; Qian, H.; Masurkar, A.; Deng, H.; Liu, D. Patient clustering improves efficiency of federated machine

learning to predict mortality and hospital stay time using distributed electronic medical records. J. Biomed. Inform. 2019, 99, 103291.
[CrossRef] [PubMed]

39. Rieke, N.; Hancox, J.; Li, W.; Milletari, F.; Roth, H.R.; Albarqouni, S.; Bakas, S.; Galtier, M.N.; Landman, B.A.; Maier-Hein, K.; et al.
The future of digital health with federated learning. NPJ Digit. Med. 2020, 3, 119. [CrossRef] [PubMed]

40. Hard, A.; Rao, K.; Mathews, R.; Ramaswamy, S.; Beaufays, F.; Augenstein, S.; Eichner, H.; Kiddon, C.; Ramage, D. Federated
learning for mobile keyboard prediction. arXiv 2018, arXiv:1811.03604.

41. Sada, A.B.; Bouras, M.A.; Ma, J.; Runhe, H.; Ning, H. A distributed video analytics architecture based on edge-computing and
federated learning. In Proceedings of the 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), Fukuoka, Japan, 5–8 August 2019; IEEE: Toulouse, France, 2019; pp. 215–220.

42. Escobar-Naranjo, J.; Caiza, G.; Ayala, P.; Jordan, E.; Garcia, C.A.; Garcia, M.V. Autonomous Navigation of Robots: Optimization
with DQN. Appl. Sci. 2023, 13, 7202. [CrossRef]

43. YOLOv8 ultralytics. YOLOv8 ultralytics. Available online: https://github.com/ultralytics/ultralytics (accessed on 1 October 2023).
44. Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022,

15, 5481–5487. [CrossRef]
45. Root-Mean-Squared Error, Keras Metrics. Root-Mean-Squared Error, Keras Metrics. Available online: https://www.tensorflow.

org/api_docs/python/tf/keras/metrics/ (accessed on 1 October 2023).
46. Shi, J.; Jain, M.; Narasimhan, G. Time series forecasting (tsf) using various deep learning models. arXiv 2022, arXiv:2204.11115.
47. Time Series Forecasting. Time Series Forecasting with Tensorflow. Available online: https://www.tensorflow.org/tutorials/

structured_data/time_series (accessed on 1 October 2023).
48. Tokyo—Shinjuku Kabukicho Live Cam. Tokyo—Shinjuku Kabukicho Live Cam. Available online: https://www.youtube.com/

@kabukicho-1 (accessed on 5 August 2023).
49. USA—Downtown Laramie Live cam. Laramie—Downtown Laramie Live Cam. Available online: https://www.youtube.com/

watch?v=gicEyI_T8Hk (accessed on 5 August 2023).
50. Xiao, X.; Feng, X. Multi-object pedestrian tracking using improved YOLOv8 and OC-SORT. Sensors 2023, 23, 8439. [CrossRef]

[PubMed]
51. NVIDIA TensorRT. TensorRT Open Source Software. Available online: https://developer.nvidia.com/tensorrt (accessed on 5

December 2023).
52. Tang, Y.; Qian, Y. High-speed railway track components inspection framework based on YOLOv8 with high-performance model

deployment. High-Speed Railw. 2024, in press. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2022/3454167
http://www.ncbi.nlm.nih.gov/pubmed/35419045
http://dx.doi.org/10.1007/s43762-023-00097-8
http://dx.doi.org/10.1109/JIOT.2023.3263725
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.26599/BDMA.2019.9020007
http://dx.doi.org/10.1016/j.jbi.2019.103291
http://www.ncbi.nlm.nih.gov/pubmed/31560949
http://dx.doi.org/10.1038/s41746-020-00323-1
http://www.ncbi.nlm.nih.gov/pubmed/33015372
http://dx.doi.org/10.3390/app13127202
https://github.com/ultralytics/ultralytics
http://dx.doi.org/10.5194/gmd-15-5481-2022
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/
https://www.tensorflow.org/api_docs/python/tf/keras/metrics/
https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.youtube.com/@kabukicho-1
https://www.youtube.com/@kabukicho-1
https://www.youtube.com/watch?v=gicEyI_T8Hk
https://www.youtube.com/watch?v=gicEyI_T8Hk
http://dx.doi.org/10.3390/s23208439
http://www.ncbi.nlm.nih.gov/pubmed/37896532
https://developer.nvidia.com/tensorrt
http://dx.doi.org/10.1016/j.hspr.2024.02.001

	Introduction
	Related Works
	Cost-Effective Video Surveillance Management System Model
	FL-Based LSTM Prediction Module
	DQN-Based Controlling Threshold Module

	Implementation
	Performance Evaluation
	Evaluation Metrics
	Model Selection
	Evaluation Results of FL-Based LSTM Module
	Evaluation Results of DQN
	Performance Comparison

	Conclusions
	References

