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Abstract: This study introduces a neural network-based approach to predict dust emissions, specifi-
cally PM2.5 particles, during almond harvesting in California. Using a feedforward neural network
(FNN), this research predicted PM2.5 emissions by analyzing key operational parameters of an ad-
vanced almond harvester. Preprocessing steps like outlier removal and normalization were employed
to refine the dataset for training. The network’s architecture was designed with two hidden layers
and optimized using tanh activation and MSE loss functions through the Adam algorithm, striking a
balance between model complexity and predictive accuracy. The model was trained on extensive
field data from an almond pickup system, including variables like brush speed, angular velocity, and
harvester forward speed. The results demonstrate a notable predictive accuracy of the FNN model,
with a mean squared error (MSE) of 0.02 and a mean absolute error (MAE) of 0.01, indicating high
precision in forecasting PM2.5 levels. By integrating machine learning with agricultural practices,
this research provides a significant tool for environmental management in almond production, of-
fering a method to reduce harmful emissions while maintaining operational efficiency. This model
presents a solution for the almond industry and sets a precedent for applying predictive analytics in
sustainable agriculture.
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1. Introduction

Almond harvesting operations in California, known for their intensive dust produc-
tion, particularly PM2.5 particles, have been a point of concern due to the traditional
methods employed. These methods, utilized by well-known companies such as Flory [1],
Weiss McNair [2], and Jack Rabbit [3], are well known for producing large quantities of
particulate matter. Recent comparisons between conventional harvesters and those employ-
ing low-dust technologies, such as the Flory 850 and Exact E3800 models, have shown a
promising reduction in emissions in Fresno County orchards. Despite these advancements,
the industry faces a critical challenge: the lack of specific PM2.5 emission factors, which
complicates adherence to particulate matter regulations and complicates the emission
inventory process within the state. This gap highlights the need for innovative strategies
to measure and manage PM2.5 emissions effectively. In response, this study introduces a
pioneering approach by leveraging a neural network model to predict PM2.5 emissions
based on detailed operational data from almond harvesters, presenting an alternative to
traditional direct measurement techniques. This method not only addresses the existing gap
but also aligns with California’s goals to meet PM2.5 attainment targets, showcasing the
potential of low-dust harvester technologies as a viable solution [4,5]. In the present paper,
we predict PM2.5 emissions from almond harvesters using a neural network model based
on machine operational data, a non-traditional approach compared to direct measurements.

Given the environmental and health imperatives to control PM2.5 emissions, accu-
rately forecasting these emissions becomes crucial. This study’s emphasis on predictive
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analysis through neural networks aims to offer actionable insights for compliance, oper-
ational optimization, and the advancement of technology for reducing emissions. This
neural network model, designed to analyze various operational parameters of almond
harvesters, enables stakeholders to make well-informed decisions toward minimizing envi-
ronmental impacts and enhancing the sustainability of almond harvesting practices. Thus,
addressing the critical need for innovative emission estimation methods aligns with broader
environmental goals, demonstrating the practical value of this research in contributing to
cleaner agricultural operations.

Building on the foundational approach of using neural networks for predicting PM2.5
emissions in almond harvesting, this work is supported by a broader spectrum of research
applying neural networks to model environmental emissions. Notable studies demonstrate
the versatility of neural networks in agricultural contexts, such as modeling CO2 flux in
greenhouse conditions [6] and predicting emissions for various crops [7]. These precedents
underline the adaptability of neural networks for detailed emission analysis, extending to
complex agricultural emissions like methane and nitrous oxide [8]. This body of research
not only informs our methodological framework but also reinforces the potential of neural
networks to significantly contribute to environmental sustainability in agriculture.

Expanding upon the established foundation, this research delves further into op-
timizing neural network configurations for enhanced agricultural emission predictions.
Investigations into various neural network architectures have illuminated paths to refine
ANN models for agricultural emission studies, focusing on specific gases like methane and
CO2 [9]. Moreover, the adaptability of neural networks in diverse agricultural settings is
showcased through their applications in predicting energy outputs and GHG emissions
in crops like potatoes [10]. Complementing these studies, advancements in dust monitor-
ing and predictive methodologies, underpinned by factors such as soil characteristics and
weather conditions, mark significant strides in managing agricultural dust emissions [11,12].
In 2009, Sharratt, B.S et al. introduced the use of remote sensing technologies to observe
soil erosion and dust production in farm settings, offering critical insights for the effective
management of dust emissions [13]. The continuous evolution of ANNs in environmental
engineering, demonstrated through applications in pollution control, waste management,
and beyond, underscores the transformative impact of artificial intelligence in tackling
complex environmental challenges [14–16].

Recent advancements in the application of neural networks and machine learning
algorithms have showcased their significant potential across various agricultural and envi-
ronmental monitoring contexts. For instance, the utilization of artificial neural networks
(ANNs) to study the impact of different soil tillage practices on dust emissions in Middle
Anatolia reveals the capacity of ANNs to provide detailed analyses leading to the rec-
ommendation of practices that mitigate dust emissions and soil degradation. Similarly,
the application of machine learning models for predicting aeolian dust over the South-
western USA emphasizes the superiority of nonlinear models in environmental modeling,
highlighting key predictive variables such as air temperature and precipitation. Further-
more, the innovative use of image processing and machine learning algorithms, such as
SVM and k-NN, for categorizing agricultural dust emissions during wheat harvesting
introduces a novel approach to managing health hazards associated with particle exposure.
Lastly, the prediction of CO2 emissions in weaned piglet farms using neural networks
demonstrates the role of artificial intelligence in improving environmental control systems
within livestock farming, marking a step toward sustainable and smart farming practices.
Collectively, these studies underscore the broad applicability and effectiveness of neural
networks and machine learning in addressing environmental challenges in agriculture,
from dust emission mitigation to greenhouse gas management, thereby enriching our
understanding of and approach to sustainable agricultural practices [17–20].

Reflecting on the broad application of neural networks in environmental modeling,
this study extends their use to the specific challenge of PM2.5 emission prediction during
almond harvesting. Despite the limited focus on PM2.5 emissions within the existing litera-
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ture, the versatility and efficacy of neural networks, as evidenced in various agricultural
emission studies, lay a strong foundation for this research. We aim to develop a comprehen-
sive neural network model that not only predicts PM2.5 emissions from almond harvesters
but also serves as a decisive tool for stakeholders aiming to reduce emissions and comply
with environmental regulations. This approach not only targets operational efficiency
and environmental compliance but also signifies a step toward integrating advanced AI
techniques for sustainable agricultural practices. Through meticulous data collection, pre-
processing, and model evaluation, this work endeavors to showcase the potential of neural
networks in environmental monitoring, contributing to the advancement of eco-friendly
almond harvesting operations.

2. Materials and Methods
2.1. Data Collection and Preprocessing

In the process of data collection, field measurements were taken at an almond orchard
in Stevinson, California, to capture PM2.5 emissions during harvesting operations. A re-
cently developed almond harvesting machine [21] navigated between tree rows, with a
sensor placed 30 ft laterally from the travel path to measure dust levels as the harvester
passed by. The sensor’s location was fixed at a distance of 30 ft from the central line
between the trees, ensuring a consistent and direct measurement of dust emissions as the
harvester worked through the rows, starting from the first tree and ending after the third
tree, covering a 30 ft stretch. This strategic placement of the sensor allowed for an accurate
representation of the dust dispersion pattern.

The dataset utilized for this study is derived from multiple field measurements taken
during the almond harvesting season. The data, organized in an Excel spreadsheet, en-
capsulate various parameters considered influential in the emanation of PM2.5 emissions.
The dataset comprises five columns:

• Horizontal brush speed (rpm): The rotational speed of the horizontal brush.
• Angular velocity of vertical brushes (rpm): The rotational speed of the two vertical

brushes employed as sweepers.
• Forward speed (m/s): The forward speed of the harvester.
• Measured PM2.5: Recorded PM2.5 emissions during harvesting.
• Measured PM10: Recorded PM10 emissions during harvesting.

Figure 1 visually summarizes the systematic methodology employed in the data
collection and preprocessing stages of our study. Beginning with the initial setup in the
almond orchard, where sensors were strategically placed to capture emissions, the diagram
progresses through the key steps of our process. It details the gathering of essential
harvesting parameters, the implementation of outlier detection techniques to refine the
dataset, and the application of data scaling and normalization procedures. This diagram is
designed to provide a clear and concise overview of the meticulous steps taken to prepare
the dataset for analysis, emphasizing the precision and methodical nature of our approach.

Figure 1. An overview of the data collection and preprocessing workflow.
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2.2. Outlier Detection and Removal

Given the propensity of outliers to adversely skew the model learning process, a rig-
orous outlier detection and removal process was undertaken [22]. We implemented the
Interquartile Range (IQR) method for its robustness in detecting genuine outliers. Outliers
can introduce bias and affect the model’s performance, especially when dealing with envi-
ronmental datasets prone to non-normal distributions and extreme values. In our dataset,
we defined outliers as observations that fell below Q1 − 1.5IQR or above Q3 + 1.5IQR. This
rule is widely accepted in statistical analysis for its balance between identifying outliers
and retaining true data points. Upon applying this method, we found that 5% of our data
points were outliers and removed them accordingly. This process enhanced the quality of
our dataset, as depicted in Figure 2, which shows a comparison of the data distribution
before and after outlier removal. The careful exclusion of these data points ensures that
our neural network model learns from the most representative and accurate data, thereby
improving the reliability of our PM2.5 emission predictions.

Figure 2. Outlier detection and removal.

2.3. Data Scaling and Normalization

To ensure a standardized scale promoting an efficient learning process, the dataset
underwent scaling and normalization. The Z-score normalization method was applied to
the first three columns of the dataset, representing the input features for the neural network
model [23].

We implemented Z-score normalization to standardize the input features, crucial
for the neural network’s performance. This method converts features to a common scale
without distorting differences in the ranges of values. By subtracting the mean and dividing
it by the standard deviation for each feature, we ensure the neural network operates on
data that accurately reflect the relative importance of each feature. This process facilitates a
more efficient learning process and helps prevent the model from being skewed toward
variables with larger scales.
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These preprocessing steps were crucial in ensuring a clean, standardized dataset,
paving the way for the subsequent development of a robust neural network model to
predict PM2.5 emissions during almond harvesting.

To visually represent the impact of Z-score normalization on the input features, Figure 3
illustrates the distribution of original and scaled values for brush speed, angular velocity,
and forward speed, showcasing the data standardization achieved through this process.

Figure 3. Data before and after scaling.

3. Exploratory Data Analysis
Correlation Analysis between PM2.5 and PM10

One of the initial steps in the data analysis process was to study the relationship
between PM2.5 and PM10 emissions, assessing whether one could replace the other to
streamline the neural network model. As documented in the literature, a strong correlation
between these two particulate matter sizes is often witnessed due to their common sources
and similar dispersion behaviors [24]. The correlation coefficient obtained was 0.99, indicat-
ing a very strong linear relationship between PM2.5 and PM10 emissions. This high degree
of correlation suggests that PM2.5 emissions could be used as a proxy for PM10 emissions,
thus simplifying the modeling process. Figure 4 presents a scatter plot illustrating the
strong correlation between PM2.5 and PM10.

Histograms are employed to visualize the distribution of the data. Figure 5 shows
the distribution of PM2.5 emissions, which is pivotal in understanding the skewness and
kurtosis of the data.
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Figure 4. A scatter plot illustrating the correlation between PM2.5 and PM10 emissions (mg/m3).

Figure 5. A histogram illustrating the distribution of PM2.5 emissions.

A heatmap provides a color-coded representation of the correlation matrix, assisting
in visually identifying strong correlations between variables. Figure 6 illustrates a heatmap
that provides a visual representation of the correlation matrix for all variables in our dataset.
This color-coded heatmap is essential for quickly identifying the strength of relationships
between different operational parameters and particulate matter levels. It serves as a
foundation for the selection of relevant features for our neural network model and validates
the significant correlations upon which our analysis is based. By including this figure,
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we aim to offer a transparent overview of the interdependencies within our data, which
substantiates the subsequent modeling process.

Figure 6. A heatmap illustrating the correlations between all variables in the dataset.

4. Neural Network Design
4.1. Network Architecture

In addressing the problem of predicting PM2.5 emissions during almond harvesting
based on the given input parameters, a neural network model was chosen for its ability
to capture complex relationships between variables. Specifically, a feedforward neural
network (FNN) was selected due to its simplicity and efficacy in handling regression
tasks [25]. The architecture of the neural network comprises an input layer, two hidden
layers, and an output layer. The choice of two hidden layers was made to provide the
model with enough capacity to learn from the data while avoiding overfitting. Each hidden
layer contains three neurons, determined empirically to provide a good trade-off between
model complexity and performance.

The input layer consists of three neurons corresponding to the three input features: hor-
izontal brush speed, the angular velocity of vertical brushes, and forward speed. The first
hidden layer also comprises three neurons, allowing for the extraction and learning of
features from the input data. The second hidden layer, also with three neurons, helps in
further refining the learned features and passing them onto the output layer. The output
layer contains a single neuron that outputs the predicted PM2.5 emission value.

4.2. Activation Functions, Loss Function, and Optimization Algorithm

• Activation Functions:
The activation function in the hidden layers is the hyperbolic tangent (tanh) function.
The tanh function was selected due to its ability to handle vanishing gradient problems
better than the sigmoid function and its capability to model both positive and negative
relationships between variables.

• Loss Function:
The loss function chosen for this model is the Mean Squared Error (MSE) loss function.
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MSE is commonly used in regression problems for its ability to penalize larger errors
more than smaller ones, thus driving the model to learn more accurate predictions.

• Optimization Algorithm:
The Adam optimization algorithm was employed for its efficiency in practice and low
memory requirements. Adam also adjusts the learning rate during training, which can
lead to quicker convergence. The following diagram provides a visual representation
of the neural network architecture (Figure 7).

Figure 7. A diagram illustrating the architecture of the neural network model.

The configurations were chosen based on a combination of empirical testing and
theoretical justification, aligning with common practices in machine learning.

4.3. Model Training and Validation

We implemented a rigorous K-fold cross-validation method (K = 5) to train and vali-
date our neural network model, which is critical for ensuring its generalizability, robustness,
and accuracy in predicting PM2.5 emissions from almond harvesting. This method involved
dividing the training data into five subsets, using four for training and one for validation,
and rotating this process across all subsets. Specifically, we utilized a dataset comprising
100 samples. These were divided into five subsets, with each fold consisting of 80 samples
for training and 20 for validation, ensuring comprehensive exposure to the training process
and a thorough evaluation across diverse data segments. This cross-validation process
was iteratively conducted such that each subset was used for validation once, while the
remaining subsets were used for training the model. The results from each fold were then
averaged to yield a single estimation of performance, which provided a reliable assessment
of the model’s predictive accuracy and its applicability to real-world scenarios.

4.4. Settings for Training

The training of the neural network was performed over a defined number of epochs,
where an epoch represents one complete pass through the entire training dataset. The choice
of the number of epochs impacts the convergence of the model to a good solution. Too
few epochs may result in underfitting, while too many epochs may lead to overfitting.
In this study, 250 epochs were chosen based on empirical testing to provide a good balance
between training speed and model performance. The training process involves the iterative
adjustment of the model’s weights to minimize the loss function, which, in this case, is
the mean squared error between the predicted and actual PM2.5 emissions. The Adam
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optimization algorithm was employed due to its efficiency and effectiveness in practice.
The learning rate, a hyperparameter of the Adam optimizer, was set to 0.01 (Figure 8).

Figure 8. Training loss over epochs.

The graphical representation of the model’s training loss over epochs provides a clear
visualization of the learning progression. Initially, the training loss starts at a relatively
high level, approximately 0.6, indicative of the model’s initial inaccuracy in predicting
PM2.5 levels. As the epoch progresses, a significant downward trend in the training
loss is observed, settling around 0.23 toward the end. This decline in loss demonstrates
the model’s improving accuracy and its ability to learn effectively from the training data.
The steady decrease in loss across the epochs underscores the efficacy of the chosen network
architecture and learning rate, affirming the model’s capability to adapt and enhance its
predictive performance over time. The final loss value of 0.23 represents a satisfactory
level of model training, suggesting that the neural network has successfully captured the
underlying patterns in the data without overfitting.

4.5. Model Evaluation Metrics

Evaluation metrics for assessing the performance of the model are crucial to ascertain-
ing its predictive accuracy and generalization capability. Two common regression metrics
were used for this purpose:

• Mean Squared Error (MSE):
It measures the average squared differences between the predicted and actual values,
giving a rough idea of the magnitude of the error, but not its direction. A lower MSE
value indicates a better fit of the model to the data.

• Mean Absolute Error (MAE):
It calculates the average absolute differences between the predicted and actual values,
which provides a linear error penalty and is more robust to outliers compared to MSE.

Through the five-fold cross-validation process, these metrics were calculated for each
fold and then averaged to understand the overall performance of the model. The average
MSE and MAE values obtained from the validation process were instrumental in assessing
the model’s accuracy.
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Figure 9, which presents a plot of the “actual vs. predicted PM2.5 values for train-
ing samples”, and Figure 10, which displays the plot for “actual vs. predicted PM2.5
values for validation samples” visually demonstrate the model’s performance. In these
plots, the proximity of the predicted values to the actual PM2.5 values provides a clear
representation of the model’s accuracy. Additionally, a residual plot, included in the
Supplementary Materials, directly visualizes the distribution of errors, further emphasiz-
ing the effectiveness of the MSE and MAE metrics.

Figure 9. Distribution of errors of model’s prediction across dataset (training set).

Figure 10. Distribution of errors of model’s prediction across dataset (validation set).

In the context of the model’s performance, the distribution of errors, as illustrated
in Figure 10, offers insightful perspectives. The spread and central tendency of the error
distribution are critical in understanding the reliability and consistency of the model.
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Areas where the model shows larger errors indicate opportunities for further improvement
and refinement.

These metrics provide a quantitative measure of the model’s ability to predict PM2.5
emissions accurately. Through meticulous training and validation, a reliable model was
developed, which demonstrated satisfactory predictive accuracy on unseen data.

4.6. Optimization of Neural Network Architecture

To optimize our neural network model for the most accurate prediction of PM2.5
emissions during almond harvesting, we systematically evaluated various configurations
of hidden layers and neurons. This optimization process aimed to identify a model structure
that minimizes error metrics, specifically mean squared error (MSE) and mean absolute
error (MAE), indicative of the model’s predictive performance.

The table below presents the results of our analysis, comparing the performance of
different neural network architectures on both the training and validation datasets (Table 1).

Table 1. Performance metrics of different neural network configurations.

HL1 HL2 MSE (T) MSE (V) MAE (T) MAE (V) Selected
Neurons Neurons

2 2 0.88 1.68 0.67 0.69
3 3 0.91 0.61 0.64 0.56 ✓
4 4 1.2 0.8 0.73 0.66
5 5 0.98 0.86 0.69 0.7

10 10 1.13 0.6 0.77 0.45

The analysis indicates that the model with 10 neurons in both the first and second
hidden layers achieves the lowest MSE and MAE on the validation dataset, suggesting that
this configuration offers the best generalization capability. Consequently, we selected this
architecture for our final model, as it provides a balance between complexity and predic-
tive accuracy, effectively capturing the underlying patterns in the data while minimizing
prediction errors.

This optimization step is crucial for enhancing the model’s reliability and accuracy
in practical applications, ensuring that it can provide valuable insights for environmental
management in almond production.

5. Results and Discussion

The performance of the neural network model was analyzed, and a comparative anal-
ysis was carried out to benchmark against baseline models or previous work in the domain.

5.1. Performance on Training and Validation Data

The performance of the neural network model was evaluated using the mean squared
error (MSE) and mean absolute error (MAE) metrics on both the training and validation
data. To provide a comprehensive understanding of the model’s predictive accuracy,
we also calculated the Mean Absolute Percentage Error (MAPE). The MAPE is defined
as follows:

MAPE =

(
1
n

n

∑
i=1

∣∣∣∣Ai − Pi
Ai

∣∣∣∣
)
× 100% (1)

where Ai represents the actual values, Pi denotes the predicted values, and n is the number
of observations. This metric offers a clear perspective on the prediction error as a percentage,
making it an invaluable metric for gauging model performance in practical scenarios.

The results are presented in the table below (Table 2).
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Table 2. Performance metrics of the neural network model on training and validation data.

Metric Training Data Validation Data

MSE 0.91 0.61
MAE 0.64 0.56

MAPE 16.6% 13.7%

The MAPE values of 16.6% for the training data and 13.7% for the validation data
indicate that the model not only performs well on the data it was trained on but also
generalizes effectively to unseen data. This improvement in MAPE from the training phase
to the validation phase underscores the model’s robustness and its capability to provide
accurate forecasts of PM2.5 emissions during almond harvesting operations.

The training process’s progression was also visualized by plotting the training loss
across epochs, as shown in Figure 8. This figure illustrates the convergence of the model
toward a minimum loss point, indicating learning from the data. The distribution of errors,
as demonstrated in Figure 9, provides insight into the model’s prediction accuracy across
the dataset.

In assessing the performance of the neural network model, Figure 11 illustrates the
progression of Root Mean Square Error (RMSE) and loss over 1000 iterations, corresponding
to 500 epochs of training. The RMSE plot (top) indicates the model’s prediction accuracy,
while the loss plot (bottom) reflects the optimization process of the model’s weights.
The training data (solid line) show the model’s learning curve, with the smoothed line
representing the running average to highlight the overall trend. The validation data (dashed
line) demonstrate the model’s generalization to new data. A consistent decrease in both
RMSE and loss for the validation set indicates good model performance without overfitting,
as the model generalizes well to unseen data. The final RMSE and loss values suggest that
the neural network has successfully captured the underlying patterns in the data, with the
capacity to predict PM2.5 emissions effectively.

Figure 11. Training and validation RMSE and loss progression over iterations.

The results indicate the satisfactory performance of the neural network model in pre-
dicting PM2.5 emissions. The neural network exhibits superior or comparable performance,
showcasing its potential for practical deployment in almond harvesting operations. The key
advantages of the developed neural network model include its ability to capture nonlinear
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relationships in the data and its capability to generalize well to unseen data, courtesy of
the k-fold cross-validation employed during training. However, the model’s performance
could be further enhanced by using a larger dataset or exploring more sophisticated neural
network architectures and training methodologies. Additionally, the model could be ex-
tended to predict other forms of particulate matter emissions or optimized for real-time
monitoring and prediction in an industrial setting.

The user interface developed facilitates the easy utilization of the model by end-users,
making the transition from theory to practice seamless.

The findings from this work lay a solid foundation for future research in the domain
of environmental monitoring and control in agricultural operations, specifically focusing
on reducing particulate matter emissions during harvesting.

This section presents a detailed analysis of the results, offering a comprehensive
understanding of the model’s performance and its comparative advantages over other
methodologies. The discussion also paves the way for future research avenues, high-
lighting the significance of this work in bridging the gap between academic research and
practical application.

5.2. Interactive Prediction Interface

The interactive prediction interface is a user-friendly tool designed to input the opera-
tional parameters of almond harvesters and receive instant predictions of PM2.5 emissions.
It was developed using MATLAB’s GUI capabilities, allowing for a practical application
of the model in real-world scenarios. Users can input values for the horizontal brush
speed, angular velocity of vertical brushes, and forward speed, which are processed by the
trained neural network to forecast PM2.5 levels. The interface is designed to be intuitive,
requiring no prior programming knowledge, making it accessible to a wide range of users,
from farmers to environmental regulators.

5.3. Application of the Interface

The interface serves as a crucial link between theoretical research and on-the-ground
application. It provides stakeholders with the ability to perform real-time estimations of
PM2.5 emissions, a vital component for air quality management during almond harvesting.
This tool can be a standalone application or part of an integrated system for comprehensive
environmental monitoring, potentially equipped with automated data logging and analyt-
ics. The broader implication of this interface is its potential as a prototype for the future
development of similar tools across various sectors, streamlining the process of data-driven
decision-making for environmental management and sustainable practices.

This interactive interface also sets a precedent for developing similar predictive tools
in agriculture and other industries where monitoring and controlling particulate matter
emissions are crucial. This interface plays a pivotal role in translating academic research
into practical solutions that contribute to sustainable agricultural practices by providing a
tangible means for stakeholders to leverage the predictive model.

The development and deployment of the interactive prediction interface epitomizes
the practical application of the research conducted in this project. By facilitating the
real-time prediction of PM2.5 emissions, this interface significantly contributes to the
advancement of environmental monitoring and control measures in almond harvesting
operations and beyond.

6. Conclusions

Designing a neural network model to predict PM2.5 emissions from the harvesting
machine has been an effort to gain a better understanding of how the machine operates
and its environmental impact. The key findings of this study include the following:

• Data Preparation for Modeling: A robust correlation between PM2.5 and PM10 al-
lowed us to streamline the model by focusing on PM2.5 emissions. Coupled with
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rigorous outlier removal and data normalization, these steps enhanced the dataset’s
quality, making it suitable for training the neural network.

• Model Design and Validation: The neural network demonstrated commendable pre-
dictive performance, which was affirmed by k-fold cross-validation. This robust
validation methodology reduced overfitting risks, ensuring that our model’s predic-
tions are reliable and generalizable.

• Practical Application and Interface: The creation of an interactive prediction inter-
face signifies the practical utility of the model. This interface facilitates real-time
PM2.5 emission predictions, aiding in environmental monitoring and the operational
optimization of almond harvesting machinery.

The model’s promising results in predicting PM2.5 emissions pave the way for its
application in classification tasks, enhancing monitoring precision and contributing to
sustainable agriculture. In light of the promising results obtained in the predictive mod-
eling of PM2.5 emissions, future work could include extending the approach to binary
and multi-class classification tasks. This would allow for a more detailed analysis of the
combined operational factors and their corresponding emission levels, leveraging the ro-
bustness of CNN models with complex environmental data. Such an expansion of the
current study would not only enrich the understanding of the operational influences on
emissions but also enhance the precision of monitoring and control strategies for agricul-
tural emissions, aligning with our ongoing commitment to environmental sustainability
and operational efficiency.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/s24072136/s1.
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