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Abstract: We propose a novel approach to detecting road defects by leveraging smartphones. This
approach presents an automatic data collection mechanism and a deep learning model for road
defect detection on smartphones. The automatic data collection mechanism provides a practical and
reliable way to collect and label data for road defect detection research, significantly facilitating the
execution of investigations in this research field. By leveraging the automatically collected data, we
designed a CNN-based model to classify speed bumps, manholes, and potholes, which outperforms
conventional models in both accuracy and processing speed. The proposed system represents a
highly practical and scalable technology that can be implemented using commercial smartphones,
thereby presenting substantial promise for real-world applications.
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1. Introduction

This paper addresses research on the classification of road defects caused by various
factors, such as weather and heavy vehicle traffic. Increased rainfall during the summer
months can lead to road surface erosion and pothole formation, while the repeated transit
of large vehicles can cause deformation and cracking of the road. Such road defects pose a
serious risk to road safety and can lead to severe accidents, necessitating prompt detection
and proper maintenance [1].

Effective maintenance of road infrastructure plays a crucial role in traffic safety and
socio-economic stability. Prompt detection and appropriate response to road defects are
essential in several key aspects. Road defects can lead to difficulties in vehicle control and
increase the risk of accidents. Driving on roads with defects can cause serious accidents for
both drivers and pedestrians. Additionally, cracks or unevenness on the road can damage
vehicle tires or suspension systems, leading to increased repair costs and overall vehicle
performance degradation [2].

The current method of reporting road defects primarily involves getting out of the
vehicle to take a picture and report the issue. This can be dangerous on highways or heavily
trafficked roads, and it has the disadvantage of taking a long time for repairs. In Canada, it
takes less than 3 months to repair potholes during the winter. However, in the summer,
it can take more than 24 months [3]. According to the Ministry of Land, Infrastructure,
and Transport of Korea, the longest time taken to address a complaint was up to 99 days,
with the duration being 99 days in 2020, 96 days in 2021, and 94 days in 2022, taking more
than three months for three consecutive years [4]. Therefore, research is needed on ways to
easily and safely detect road defects and share accurate defect locations.

Recent research in road defect detection is categorized into three main technologies:
The first is a vision-based approach using cameras, which detects road defects through
image processing and deep learning. The image processing techniques are as follows:
Akagic et al. [5] introduce an efficient vision-based method for pothole detection using
red, green, blue (RGB) color space image segmentation, highlighting the potential of color
analysis in identifying road defects. Pan et al. [6] present a solution to detect potholes using
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disparity transformation and road surface modeling. For detecting multiple potholes, Jeong
et al. [7] propose a real-time image processing method based on watershed techniques,
emphasizing the efficiency of real-time applications. Additionally, a pothole classification
model that uses edge detection techniques, one of the image processing methods, for road
defect classification is proposed [8]. There is research detecting potholes with thermal
cameras, focusing on using deep neural networks to detect and locate depressions in
thermal images, exploring further the application of advanced neural networks in thermal
imaging [9]. Masihullah S. [10] presents an attention-based joint framework for road and
pothole segmentation, showcasing the application of attention mechanisms in road image
analysis. It also comprehensively highlights the use of Convolutional Neural Network
(CNN) for pothole detection and analysis, showing various innovative approaches to
road surface monitoring for safety enhancement [11–14]. These studies demonstrate the
significant potential of CNN for enhancing road safety and maintenance through advanced
image processing and analysis techniques. Each research project provides unique insights
into the application of CNN, from thermal imaging to regional location-aware approaches,
improving the detection and analysis of road potholes.

The second technique is a 3D reconstruction method that generates a three-dimensional
image of the road surface, allowing for precise identification of defects such as type, size,
and depth. Haq et al. [15] introduced a stereo-based 3D reconstruction method using a
hybrid dense matching approach to highlight the use of stereo vision to represent the
depressed areas of the road in detailed 3D. Like stereo vision, they combine deep learning
to propose an automated pixel-level pavement distress detection method, emphasizing
the integration of advanced imaging technology and AI for precise pavement analysis [16].
Du et al. [17] propose a pothole detection method based on 3D point cloud segmentation,
explaining the use of three-dimensional spatial data for accurate pothole identification.
Additionally, they suggest advanced methods for crack detection on paved roads using 3D
data [18,19].

Finally, in road surface monitoring and maintenance, the role of smartphones, sen-
sor technology, and computational methods has become increasingly important, offering
cost-effective, scalable, and innovative solutions for detecting depressions and various
kinds of road defects. Kyriakou et al. [20] propose to use smartphone sensors and onboard
diagnostics (OBD) to detect signs of road pavement abnormalities. This approach combines
Artificial Neural Network (ANN) technology with smartphone sensors to capture the inter-
action between moving vehicles and the road surface, using observed interaction patterns
to detect depressions. This method employs four metrics for analysis and demonstrates
an approximately 90% detection accuracy. Initial results, which include additional road
defects in the analysis and distinguish potholes from other pavement defects, are promising.
This study underscores the value of low-cost pothole detection using smartphone sensors.
Furthermore, Nguyen et al.’s research [21], another smartphone-based pothole approach,
extends smartphone usage beyond road monitoring to general environmental sensing.
It explores how smartphones can detect environmental anomalies and demonstrates the
versatile application of mobile sensors in various aspects of environmental monitoring.
In a study proposed by Chao Wu et al. [22], which incorporates the Global Positioning
System (GPS) into smartphones, an automated pothole detection system is introduced.
They collected road condition data in urban areas using vehicles and smartphones and
tested various machine learning classifiers based on this data. The Random Forest method
proved to be the most effective for pothole classification, achieving a precision of 88.5% and
a recall of 75%. Additionally, the system’s diversity and robustness were validated through
datasets from various road types. Research is also underway to detect not only potholes
but also manhole covers on roads. Zhou et al. [23] introduce a smartphone-based method
for detecting and classifying road manhole covers, expanding the scope of pavement
monitoring using smartphone sensors.

All road defect detection technologies have their own advantages and limitations,
as summarized in Table 1. The vision-based approaches use cameras to extract images,
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detecting road defects through image processing and deep learning. This approach is useful
for identifying the types and quantities of road defects but is heavily affected by lighting,
limiting its use during nighttime or rainy weather. The 3D reconstruction methods have the
advantage of providing detailed insights into the types, sizes, and depths of road defects.
However, this requires the use of detecting equipment, which incurs additional costs for
road defects. The vibration sensor-based road defect detection techniques are less affected
by environmental influences such as weather and time and are a cost-effective solution.
However, these techniques have the disadvantage of requiring a lot of preliminary data
collection to ensure high accuracy.

Table 1. The summary of road defect detection technologies.

Method Strengths Weaknesses

Vision-based method The number and shape of
road defects can be known.

The camera affects light and
shadow.

3D reconstruction method
The shape and depth of road

defects can be accurately
determined.

The price of equipment is
high.

Vibration-based method

It is the cheapest when
compared to a vision-based

method and a 3D
reconstruction method.

It is difficult to determine the
shape or depth of road

defects.

This paper proposes a road defect detection system based on vibration sensors, specifi-
cally accelerometers. The cornerstone of our methodology is an automated system for data
collection specifically designed to facilitate the classification of various road conditions es-
sential for identifying road defects. This system is adept at distinguishing between common
road defects, such as potholes, and exceptional conditions, including speed bumps and
manholes, thereby generating a rich dataset for analysis. For the purposes of clarity and
simplicity within this paper, all aforementioned exceptional road conditions, including but
not limited to speed bumps, manholes, and potholes, will collectively be categorized and
referred to as “road defects”. Leveraging accelerometer data sourced from smartphones
and video footage from dashcams, our system enables the efficient collection of high-
quality, labeled datasets. These datasets are crucial for the training of deep learning models
aimed at road defect detection. The ease of data collection and the quality of the resulting
dataset underscore the system’s utility in generating valuable inputs for deep learning
algorithms. The implications of our collected data and the automated collection system
are significant for the advancement of research in road defect detection using vibration
sensors. Additionally, we present a deep learning model that, utilizing the automatically
collected data, accurately classifies three specific road defects: speed bumps, manholes, and
potholes. The remainder of this paper is organized as follows: In Section 2, we introduce
conventional vibration sensor-based road defect detection technologies and derive the
problems in collecting data. Section 3 explains the proposed road defect detection system,
dividing it into two parts: an automatic data collection part and a road defect classification
part. Section 4 covers the collection of training data using smartphones and vehicles and
evaluates accuracy through a test dataset. Finally, Section 5 discusses the conclusions.

2. Related Work

We study a vibration sensor-based road defect detection method that is cost-effective
and has a low environmental impact. Before introducing the proposed method, this section
introduces conventional work on vibration sensor-based road defect detection methods
and derives related problems.
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2.1. Vibration Sensor-Based Threshold Method

The threshold-based approach utilizes inertial sensor data to detect and classify road
anomalies. This method involves detecting road anomalies when certain threshold values
are exceeded for signal parameters obtained from the sensors, such as amplitude, root mean
square, and wavelet coefficients [24]. It presents new algorithms leveraging the hardware
and software capabilities of Android devices, with a particular focus on detecting pot-
holes in real-time events and using limited resources. The algorithms include Z-THRESH,
Z-DIFF, STDEV(Z), and G-ZERO [25]. It introduces a system that automatically detects
potholes and speed bumps using the Android operating system. This application of stan-
dard smartphones in identifying road anomalies emphasizes easier and more widespread
access to road condition monitoring, addressing device reliability in critical applications
such as road safety [26,27]. Furthermore, it goes beyond previous research by incorpo-
rating crowdsourcing methods. It discusses enhancing road anomaly detection through
crowd detection, which collects data from many users. This approach demonstrates how
leveraging the collective detection capability of the community can improve road condition
monitoring [28–30].

2.2. Vibration Sensor-Based Machine Learning Method

Bustamante-Bello et al. [31] introduce a novel approach for visualizing road pavement
anomalies using fog computing in a vehicle-to-infrastructure (V2I) network and machine
learning. In this research, they propose a method to efficiently process real-time road
condition data and visualize surface anomalies promptly using fog computing, enhancing
the ability to detect and respond to road anomalies. The focus here lies in detecting speed
bumps using features derived from accelerometer data and optimizing this process with
a genetic algorithm. Additionally, they propose a method for detecting road anomalies
by comparing data windows of varying lengths using Dynamic Time Warping (DTW). Ex-
panding on the DTW method, they introduce a system named Quick Filter Based Dynamic
Time Warping (QFB-DTW) that utilizes a series of accelerometer data points to discover
anomalies on the road surface [32]. Wu et al. [22] propose an automated machine learning
system using Random Forest to detect potholes on the road using smartphone sensor
data. The significance of this research lies in the use of widely accessible smartphones
and their built-in sensors to collect data that machine learning algorithms can process
for road anomaly detection. Ferjani et al. [24] explore optimized machine learning tech-
niques for road monitoring. They perform sensitivity analyses of three machine learning
models, including Support Vector Machines (SVM), Decision Trees (DT), and Multilayer
Perceptrons (MLPs), to test the effectiveness of feature selection. This contributes to an
ongoing conversation about selecting and effectively applying algorithms for efficient and
reliable road monitoring systems, which is crucial for assessing road conditions. They also
describe a Smart Pothole Detection System that utilizes a One-class Support Vector Machine
(OCSVM) instead of an SVM. This research explains the integration of sensor technology
for vehicle-based road condition monitoring and advanced computational methods, show-
casing potential directions for intelligent transportation systems [33]. Julio-Rodríguez [34]
develops a classification method to enhance context awareness in autonomous vehicles.
They classify driving environments using IMU sensors and energy consumption data
without relying on computer vision. They evaluated 13 classification algorithms to select
the optimal method. These results demonstrate the applicability of autonomous driving
technology advancements in path planning and safety.

2.3. Vibration Sensor-Based Deep Learning Method

To accurately detect abnormalities on road surfaces, a new approach is proposed,
incorporating various deep learning models, including CNN, Long Short-Term Memory
(LSTM) networks, and reservoir computing models. This method utilizes crowdsourced
data to distinguish potholes from other road instabilities, achieving high accuracy in
real experiments [35]. Three deep learning models—the Deep Feedforward Network
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(DFN), CNN, and Recurrent Neural Network (RNN)—are applied. These models are
trained and evaluated using data from various road anomalies collected from vehicles.
Additionally, three sets of numerical features are proposed to represent road conditions, and
a comparative study of the performance of each deep learning model is conducted [36]. In
contrast, there is a paper that compares machine learning and deep learning approaches for
detecting anomalies on road surfaces. It focuses on classifying three major road conditions:
smooth roads, potholes, and deep transverse cracks. The hypothesis that using features
extracted from all sensor axes provides superior classification results compared to using
a single axis is tested. The performance of machine learning models, including deep
neural networks, is also evaluated, confirming the effective classification of road conditions
without manual feature extraction [37]. They demonstrate road surface anomaly detection
and classification using crowdsourced smartphone sensor data. This research approaches
road condition classification through multi-layered activities that classify road types and
anomalies using a Spiking Neural Network (SNN) learning model [38].

In this paper, the goal is to design an automatic collection system for road defect
training data that is more easily collected to solve the difficulty of collecting training data,
which is a problem with deep learning methods.

3. A Proposed Road Defect Detection System

In this manuscript, we detail two significant contributions stemming from our inno-
vative road defect detection system. Firstly, we introduce a method for the automation
of data collection and labeling geared towards accelerometer-based classification of road
defects. Prior studies in this domain, utilizing machine learning or deep learning for the
identification of road defects, have consistently encountered challenges in amassing sub-
stantial datasets across diverse environments, primarily due to the complexities associated
with data collection and labeling. Our solution, an automated data collection system,
streamlines the acquisition and categorization of data, thereby facilitating the generation of
comprehensive datasets crucial for deep learning applications.

Secondly, we propose a Convolutional Neural Network (CNN) model specifically
designed to leverage this automatically collected dataset. This model is adept at identifying
and distinguishing between three common road defects: speed bumps, manholes, and
potholes. Through these contributions, our system not only addresses the critical challenges
of data collection and labeling in the context of accelerometer-based road defect detection
but also presents the potential of deep learning models to enhance the accuracy and
efficiency of road defect detection.

3.1. An Automatic Data Collection Mechanism for Road Defect Classification

Numerous studies have leveraged deep learning techniques for the classification of
road defects through acceleration data. A critical factor in developing an effective deep
learning model is the acquisition of accurately labeled data. In this section, we introduce a
novel system designed for the automated collection of training datasets tailored for road
defect classification. This system significantly enhances the capacity for gathering extensive
datasets across varied environments, which is instrumental in improving the deep learning
model’s reliability and generalization capabilities.

The proposed system offers a pragmatic and cost-effective solution for data collection,
relying on dashcams and smartphones—devices already prevalent in most vehicles. This
approach not only streamlines the process of dataset accumulation for training and testing
deep learning models but also aligns with the practical constraints of research efficiency
and budget. By simplifying the data collection process, our system facilitates a more robust
and comprehensive exploration of road defect classification through deep learning, setting
a new standard for research in this field.

Figure 1 depicts the architecture of the proposed automatic data collection mechanism
designed for road defect classification. Initially, the system gathers raw data through the
accelerometers integrated into smartphones, along with footage from vehicle-mounted
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dashcams, which serve as the input for the system. Subsequently, in the second phase, both
the collected acceleration and video data are segmented and annotated with relevant labels.
In the final stage, the labels generated during the data labeling process are amalgamated
with the preprocessed acceleration data to formulate a comprehensive dataset suitable for
deep learning analysis. This structured approach ensures the efficient collection and prepa-
ration of data, facilitating the development of a robust model for road defect classification.
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3.1.1. Raw Data Collection

To facilitate the classification of road defects, our methodology employs the accelerom-
eter of smartphones and dashcam video footage as sources of raw data. This approach is
notably practical, allowing for widespread application without the necessity for specialized
equipment. We have developed an Android application specifically for the purpose of
raw data acquisition from smartphones. This application captures data from the three-axis
acceleration sensor, along with time stamps, at a sampling rate of 100 Hz. Given the
variability in smartphone placement and orientation within the vehicle, a challenge arises
in maintaining data consistency.

To address this issue, we compute the root mean square (RMS) value of the accel-
eration sensor’s x, y, and z axes to standardize the data collection process, as delineated
in Equation (1). This methodology ensures that acceleration values are consistent and
comparable, irrespective of the smartphone’s position or orientation within the vehicle, as
illustrated in Figure 2. The equation for calculating the RMS value of the accelerometer
data is as follows:

ACCRMS =

√(
ACCX)

2 + (ACCY)
2 + (ACCZ)

2 (1)

Speed bumps, which rise above the road surface, create a distinct signature in the
accelerometer data, characterized by an initial increase and subsequent decrease in the
accelerometer’s RMS values. This dual-pattern occurrence is due to both the front and
rear wheels of the vehicle passing over the bump, as depicted in Figure 2a. Conversely,
manholes and potholes, which are depressions in the road surface, generate an inverse
pattern in the accelerometer data. This pattern, showcased in Figure 2b,c, is marked by
a decrease followed by an increase in the accelerometer readings, corresponding to the
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vehicle’s wheels dipping into and then emerging from these indentations. Similar to speed
bumps, this pattern repeats twice for each vehicle wheel engaging with the defect.

Despite the clear patterns each type of road feature produces, distinguishing between
manholes and potholes using accelerometer data alone is challenging due to their similar
patterns. Nevertheless, these differences, albeit subtle, can be effectively discerned using
deep learning models that have been trained on comprehensive datasets. Such models
analyze the nuanced variations in acceleration and deceleration patterns caused by the ve-
hicle’s interaction with these road anomalies, enabling the classification and differentiation
of each road feature type based on their unique impact on the vehicle’s accelerometer data.
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3.1.2. Data Preprocessing

The data collected from the raw data collection step are preprocessed to generate
deep learning analyses. The data preprocessing step first extracts the raw data collected to
identify segments indicative of road defects. This is achieved through a threshold-based
classification technique, where significant fluctuations in acceleration sensor readings
suggest potential road defects. The threshold values used for this determination are
established through experimental methods.

If the acceleration value of the raw data exceeds the threshold, both the acceleration
values and dashcam video segments are trimmed to lengths that contain road defect
information. This trimming, or “data slicing”, leverages the temporal data captured by the
acceleration sensors and dashcam footage to ensure precise segmentation. The extent of
each data slice is calculated based on the vehicle’s speed and the estimated length of the
road defect, aiming to cover the entire duration a vehicle traverses a defect. Utilizing the
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maximum known speed bump length of 3.6 m [39] and a minimal vehicle speed of 5 km/h
(or 0.277 m/s), the slicing length is determined to be approximately 3 s to accommodate
the defect passage duration:

Lslice =
Lde f ects

Smin
=

3.6 m
0.277 m/s

= 2.60869 s ∼= 3 s (2)

This procedure ensures a uniform dataset, with each slice containing 300 data points,
given the 100 Hz sampling rate of the sensor. For video data, only the initial second of
footage, prior to encountering a road defect, is utilized for labeling, resulting in 30 video
frames per event for analysis.

Addressing the model training aspect, while unsupervised learning offers the ben-
efit of identifying patterns without labeled data, it often lacks the interpretability and
accuracy of supervised learning models, which rely on high-quality labeled data. The
challenge lies in the labor-intensive and costly process of acquiring accurately labeled
data. To mitigate this, our approach incorporates automatic labeling of sensor data using
dashcam footage, significantly reducing the cost and effort compared to traditional manual
labeling techniques.

For precise defect labeling, we employ the YOLOv5m [40] model, which specializes
in image classification, to analyze dashcam images synchronized with sensor data. The
preliminary step in developing a robust road defect classification model with YOLOv5m
involves the acquisition of accurately labeled images. While obtaining these labeled images
is crucial, it is notably less challenging and resource-intensive compared to the process
of collecting and labeling sensor data. We have successfully developed a YOLOv5m
model that demonstrates over 90% accuracy in identifying specific road conditions such
as speed bumps, manholes, and potholes. To mitigate this risk, we employ a stringent
data validation approach. During a second of video capture, 30 dashcam images are
extracted and individually assessed using the YOLOv5m model. Only when at least 90%
of these images yield consistent classification results is the data considered high-quality
and retained for further processing. This method ensures that only data of the highest
integrity are used for training our model, effectively enhancing the model’s reliability and
performance by excluding low-quality or ambiguous data points. Through this rigorous
label quality verifier, we are able to generate a high-quality dataset for the training of our
deep learning model.

3.1.3. Data Generation

The final step is to combine the 3-s sliced acceleration data with labels derived from
the data preprocessing step. This composite dataset forms the foundational input for
constructing deep learning models aimed at road defect detection. Within the scope of this
study, we have focused on generating labeled data for three specific road defects: speed
bumps, manholes, and potholes. However, the versatility and efficiency of our automated
data collection system facilitate the easy and effective expansion of this dataset to include
a wider array of road defect types. This capability underscores the system’s potential to
significantly contribute to the development of more comprehensive and accurate road
defect detection models, leveraging deep learning to improve the safety and maintenance
of transportation infrastructure.

3.2. A Road Defect Detection with 1D-CNN

Recurrent Neural Networks (RNNs) are especially adept at handling temporal or
sequential data, making them ideal for tasks involving continuous time series or textual
data. These models possess the unique capability to remember and integrate past infor-
mation with incoming data, enabling them to perform effectively in scenarios where the
sequence and context of data points are critical. RNNs are particularly effective in both
classification and prediction tasks. Although these tasks might appear distinct, prediction
plays a crucial role in enabling RNNs to develop a nuanced internal representation of
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the input sequence’s essential characteristics. This capability significantly enhances the
RNN’s training efficiency, accuracy, and generalization to new data. As a result of this
sophisticated processing ability, RNNs demonstrate superior classification performance,
providing users with a reliable means to assess the outcome of classification tasks [41].

Long Short-Term Memory (LSTM) networks, a subtype of Recurrent Neural Networks
(RNNs), are designed to solve the problem of long-term dependencies in sequence data.
Their unique architecture enables the retention of information over long periods, making
them ideal for complex time series analysis. A novel approach combines LSTM with Fully
Convolutional Networks (FCN) for time series sequence classification, resulting in the
LSTM-FCN model. This model outperforms standard FCN models in accuracy while
maintaining a small increase in size and minimal data preprocessing requirements. Further
enhancing this model, the Attention LSTM Fully Convolutional Network (ALSTM-FCN)
incorporates attention mechanisms to improve classification performance and allows for
the visualization of LSTM decision processes, making it a sophisticated tool for time series
analysis with enhanced interpretability [42].

The One-Dimensional Convolutional Neural Network (1D-CNN) proves to be a pow-
erful tool for identifying patterns within time series data, making it particularly useful in
fields like signal processing and audio analysis. In the context of time series classification,
the selection of an appropriate kernel size is pivotal, as it significantly influences the model’s
performance. To address the challenge of determining the optimal kernel size, this paper
introduces a novel architecture, the Omni-Scale 1D-CNN (OS-CNN). This architecture is
designed to dynamically identify and adapt the kernel size during the training process,
thereby enhancing the model’s ability to extract relevant features from time series data
across different scales. The OS-CNN represents a significant advancement in the utilization
of 1D-CNNs for time series analysis, offering a flexible and efficient approach to capturing
the complexities of temporal data [43].

In this paper, we propose road defect detection with a 1D-CNN (RDD-CNN) model.
As Figure 3 presents the one-dimensional convolutional layer extracts spatial features from
time-series data, while 1D Max Pooling reduces data dimensions, and Dropout prevents
overfitting. The flattened layer transforms multi-dimensional feature maps into a one-
dimensional vector, and the dense layer performs final classification or prediction. The
Swish function is used in the one-dimensional convolutional layer, with filter sizes of
100 and 50, a kernel size of 4, and strides of 1. The final dense layer employs a SoftMax
activation function, a categorical cross-entropy loss function, and an Adam optimizer. The
training dataset for the RDD-CNN model uses generated data from the Automatic Data
Collection System.

The continuous acceleration sensor data collected while driving the vehicle is tested
using our proposed RDD-CNN model. To classify three distinct road defects (i.e., speed
bumps, manholes, and potholes) from the continuous data, we propose a sliding window
algorithm as in Algorithm 1. This algorithm is designed to capture and analyze sequential
patterns in the data, recognizing the inherent connectivity between each data point and
its predecessors. The sliding window, set to a duration of 3 s, advances in increments of
0.1 s across the dataset. Within each window, the acceleration data are processed by the
RDD-CNN to determine if it corresponds to one of the three targeted road defects. Upon
successful classification, the algorithm adjusts such that the ending point of the current
window becomes the starting point for the subsequent window. This approach allows for
the continuous and dynamic analysis of sensor data, enabling the RDD-CNN to effectively
distinguish between different road defects based on the characteristics of the recorded
acceleration patterns.



Sensors 2024, 24, 2099 10 of 21Sensors 2024, 24, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 3. Structure of RDD-CNN model. 

The continuous acceleration sensor data collected while driving the vehicle is tested 
using our proposed RDD-CNN model. To classify three distinct road defects (i.e., speed 
bumps, manholes, and potholes) from the continuous data, we propose a sliding window 
algorithm as in Algorithm 1. This algorithm is designed to capture and analyze sequential 
patterns in the data, recognizing the inherent connectivity between each data point and 
its predecessors. The sliding window, set to a duration of 3 s, advances in increments of 
0.1 s across the dataset. Within each window, the acceleration data are processed by the 
RDD-CNN to determine if it corresponds to one of the three targeted road defects. Upon 
successful classification, the algorithm adjusts such that the ending point of the current 
window becomes the starting point for the subsequent window. This approach allows for 
the continuous and dynamic analysis of sensor data, enabling the RDD-CNN to effectively 
distinguish between different road defects based on the characteristics of the recorded 
acceleration patterns. 

Algorithm 1. Sliding window algorithm. 
Sliding Window Algorithm 

procedure SLIDINGWINDOW (Accelerometer RMS Data, window size, overlap) 
start ← 0 
end ← window size 
while end ≤ length(Accelerometer RMS Data) do 

current window ← extract window(Accelerometer RMS Data, start, end) 
detection result ← apply detection algorithm(current window) 
if detection result then 

process detection(current window) 
start ← end 
end ← start + window size 

else 
start ← start + window size − overlap 
end ← end + window size − overlap 
end if 

end while 
end procedure 

Figure 3. Structure of RDD-CNN model.

Algorithm 1. Sliding window algorithm.

Sliding Window Algorithm

procedure SLIDINGWINDOW (Accelerometer RMS Data, window size, overlap)
start← 0
end← window size
while end ≤ length(Accelerometer RMS Data) do

current window← extract window(Accelerometer RMS Data, start, end)
detection result← apply detection algorithm(current window)
if detection result then

process detection(current window)
start← end
end← start + window size

else
start← start + window size − overlap
end← end + window size − overlap
end if

end while
end procedure

To operate the RDD-CNN model on smartphones, the model should be lightweight
and suitable for the computational constraints of mobile devices. To this end, among various
strategies for model optimization, we employ bit quantization as a method to reduce the
model’s computational footprint. Specifically, we convert 32-bit floating-point numbers
to 16-bit integers, a process known as quantization. Quantization significantly enhances
the computational efficiency of CNN by accelerating processing speed and diminishing
memory requirements [44]. This method is applied to the weight matrices of both the
convolution layer filters and the fully connected layers, aiming to retain the model’s
accuracy by minimizing the response error associated with the reduction in numerical
precision. The implementation of this quantization technique enables the operation of
the RDD-CNN model on smartphones, thereby facilitating real-time road defect detection
directly from a user’s mobile device.
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4. Experimental Results
4.1. Experiment Setup

In this study, three Android smartphones—the Samsung Galaxy Note8, Xiaomi Redmi
Note 10 Pro, and LG Q7—were used to collect raw accelerometer data. The accelerom-
eter data are saved in an Excel file comprising multiple columns, including timestamp,
accelerometer X-axis, accelerometer Y-axis, accelerometer Z-axis, and calculated RMS of
the accelerometer. Samsung Galaxy Note 8 CPU is Octa-core (4 × 2.3 GHz Mongoose M2
and 4 × 1.7 GHz Cortex-A53)—EMEA, GPU uses Adreno 504. The CPU of the Xiaomi
Redmi Note 10 Pro uses Octa-core (2 × 2.3 GHz Kryo 470 Gold and 6 × 1.8 GHz Kryo
470 Silver), and the GPU uses Adreno 618. The LG Q7 CPU uses an ARM Cortex-A53
Octa-Core 1.8 GHz CPU, and the GPU uses an Adreno 506 400 MHz GPU. To collect raw
video data, an INAVI QHD5000 dashcam equipped with a 5.14 M Pixels, 1/2.8” (CMOS)
sensor on both front and rear cameras is utilized, enabling the storage of video at a reso-
lution of 2560 × 1440 and a frame rate of 30 frames per second. The video files are saved
as mp4 files, incorporating the recording timestamp. We collect these raw data using two
vehicles equipped with these devices: a YF Sonata and a Kia All New Sportage. The YF
Sonata is a sedan, and the Kia All-New Sportage is an SUV. The criteria for choosing a data
collection site were based on a high number of road defects and the safety of experiments.
In Cheongju, South Korea, near Chungbuk National University, we conducted a total of
20 h of driving covering 300 km to collect raw data for training deep learning models, as
illustrated in Figure 4a. Moreover, for model testing purposes, we gathered additional raw
data through 8 h of driving, covering 120 km in the vicinity of Gakyung Middle School and
Seonghwa-dong, Cheongju, South Korea, as depicted in Figure 4b,c.

In the data preprocessing step, we utilized a Linux environment and Python version
3.8.10. The threshold is set to 12 m/s2 for the threshold-based data classification. The
slicing length is set to 3 s for the data slicing. To develop the YOLOv5m model used for
data labeling, we utilized an open data source [45] and directly collected images, including
3000 for speed bumps, 3500 for manholes, and 4000 for potholes. The size of the YOLOv5m
model is 882 MB. Through the data preprocessing step, we achieved 576 speed bumps,
290 manholes, and 271 pothole datasets with 100% accurate labels. However, 13 speed
bumps, 68 manholes, and 69 pothole datasets were discarded as they could not pass the
label quality verifier.

The RDD-CNN model was constructed using TensorFlow 2.9.1. For model training, a
total of 696 datasets were utilized, while 300 datasets were employed for testing purposes.
In the input layer of the model, data consisting of 300 rows and a single column repre-
senting the RMS value of the accelerometer sensor data, forming a (300,1) dimension, was
processed through a 1D convolution layer. In the output layer, the model was trained using
the SoftMax activation function, the categorical cross-entropy loss function, and the Adam
optimizer. The training process spanned over 30 epochs, with a batch size set to 15. Finally,
the TFLite Converter from the Android TensorFlow Lite library was employed to generate
a lightweight version of the RDD-CNN model. The optimized model is designed for execu-
tion on smartphones, including the Samsung Galaxy Note8, Xiaomi Redmi Note 10 Pro,
and LG Q7, ensuring broad accessibility and practical deployment in mobile applications.
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4.2. Evaluation Results of the Automatic Data Collection System

The raw data undergo a process of threshold-based data classification and data slicing
to isolate data segments containing road defects. In the threshold-based data classification,
the acceleration threshold was set to 11 m/s2 through iterative experiments to maximize
the detection of road defects. Table 2 shows the discarded data ratio by the threshold-based
data classification. Despite the presence of actual road defects, the results of undetected
road defects by the threshold-based data classification are as follows: out of 604 speed
bumps, 15 were not detected; out of 376 manholes, 18 were not detected; and out of 361
potholes, 21 were not detected. The 15 undetected speed bumps were all cases where the
bump was simply painted on the road without any physical undulation. The undetected
18 manholes and 21 potholes were cases where the defects were not severe enough to
cause significant vehicle vibrations. This highlights the limitation of threshold-based data
classification, which relies on accelerometers and cannot classify defects with relatively
mild undulations that do not cause noticeable changes in road surface level.
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Table 2. The ratio of discarded data by the threshold-based data classification.

Speed Bump Manhole Pothole

Ratio of discarded
data 2.483% 4.787% 5.817%

Data exceeding the threshold value are subject to a data-slicing phase. Each sliced data
segment comprises 300 acceleration data and 30 video images. To automatically generate
labels for each sliced data segment, the 30 video images are analyzed using the YOLOv5m
model. In an initial evaluation, the YOLOv5m model was applied to a comprehensive
dataset consisting of 522 images, each collected by the front and rear dashcams during
the day, and 356 images collected by the front dashcam during the night, for a total of
1400 images. The experiment was conducted during the day when there was no snow or
rain, the sun was shining, or there were some clouds. The reason is that it is dangerous to
collect data when it is snowing or raining, so it was conducted during the day when the
weather was good. Table 3 shows significant performance gaps between day and night
conditions, as well as between front and rear dashcams. The rear dashcam demonstrated
significantly low performance in detecting road defects at night, warranting its exclusion
from the table, while the front dashcam at night showed considerably low quality, as seen
in Figure 5. The blue square represents the speed bump, the gray square represents the
manhole, and the red square represents the pothole. These findings indicate that vision-
based road defect detection techniques are highly sensitive to environmental conditions,
rendering them unsuitable for reliable detection. The accuracy of road defect classification
from data collected by the front dashcam during the day is, on average, 24.27% higher than
that of the rear dashcam. This decline is primarily due to the lower image quality of the rear
dashcam and the obstruction caused by the defroster lines on the vehicle’s rear window.
Therefore, the proposed automatic data collection mechanism limits the collection of raw
data to daytime conditions using video from front dashcams. This approach is adopted to
enhance the reliability and quality of the generation data.
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Table 3. Performance comparison of YOLOv5m-based road defect classification in various environments.

Experiment Environment Speed Bump Manhole Pothole

Front Dashcam (Day) 98.4% 94.8% 92.3%
Rear Dashcam (Day) 82.6% 68.3% 61.8%

Front Dashcam (Night) 78.3% 52.5% 43.8%

In the data labeling phase, testing a single video image with the YOLOv5m model
yields an average accuracy of 95.17%. Although this accuracy rate is relatively high,
it is still considered insufficient for use as a label in training data. To overcome this
limitation, we implemented the label quality verifier technique, which assigns a single label
based on aggregated results from multiple video image analyses. This method ensures
that a label is adopted only if the consensus among the results surpasses a classification
threshold. Any dataset not meeting this threshold is subsequently discarded. Table 4
presents the experimental results on the proportion of data discarded and the accuracy of
labels according to classification thresholds. As the classification threshold increases, the
amount of discarded data also increases, but this leads to higher label accuracy, thereby
generating more reliable data. To maximize the collection of accurate data, we utilize data
defined with a 90% classification threshold for training the deep learning model.

Table 4. The ratio of discarded data and the label accuracy according to classification thresholds by
the label quality verifier.

Classification Thresholds Ratio of Discarded Data Label Accuracy

100% 14.60% 100%
90% 11.65% 100%
80% 9.86% 98%
70% 4.21% 96%
60% 3.03% 95%

Upon analyzing the images of discarded data, it was discovered that a significant num-
ber of instances failed to be classified by the YOLOv5m model for environmental reasons
depicted in Figure 6. In the case of speed bumps, their extensive coverage area resulted
in fewer instances being obscured by light effects or obstacles. Conversely, manholes and
potholes, characterized by smaller areas of defect, were more frequently affected by light
and obstacles, leading to an increased rate of data exclusion. Beyond environmental factors,
the YOLOv5m model exhibited lower classification accuracy for manholes and potholes
compared to speed bumps, contributing to a higher proportion of data being discarded due
to the label quality verifier’s criteria. Due to these reasons, as indicated in Table 5, with a
90% classification threshold set by the label quality verifier, 13 out of 589 data points for
speed bumps, 68 out of 358 data points for manholes, and 69 out of 340 data points for
potholes were discarded.

Table 5. The ratio of discarded data by the label quality verifier.

Speed Bump Manhole Pothole

Ratio of discarded
data 2.207% 18.99% 20.29%
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4.3. Evaluation Results of the RDD-CNN

In this subsection, we evaluate the performance of road defect detection models. The
performance of the RDD-CNN model trained on manually generated data by humans
versus data produced by automatic data collection is evaluated. As shown in Table 6,
the performance evaluation revealed a negligible error rate of 1%. The model trained on
automatically generated data showed slightly lower accuracy due to a reduced number
of data points, resulting from the system discarding certain data. The manually collected
dataset comprised a total of 1287 data, while the automatically generated dataset contained
1137 data. As the volume of collected data increases, this disparity is expected to decrease.

Table 6. Performance of RDD-CNN model according to types of training datasets.

Types of Training Datasets Speed Bump Manhole Pothole

Manually generated data 99.00% 88.46% 87.29%
Automatically generated data 99.00% 87.54% 86.77%

Table 7 illustrates the impact of a smartphone’s placement within a vehicle on its
accuracy in detecting road defects. The results indicate that there was no discernible
difference in accuracy when the smartphone was positioned either on the dashboard or
the passenger seat, likely due to the stability provided in these locations. However, the
accuracy diminished when the smartphone was placed in less stable locations, such as
the cup holder, the door pocket, or the clothes pocket. In these positions, the smartphone
experienced more movement, especially when the vehicle traversed road imperfections,
leading to increased errors in data collection and, consequently, a reduction in accuracy.
This variation in data accuracy based on the smartphone’s location within the vehicle
underscores the importance of a stable mounting position for optimal data collection,
particularly when utilizing smartphones for detecting road defects. Future research is
needed to ensure consistent accuracy regardless of smartphone placement.
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Table 7. Average accuracy according to the placement of the smartphone in the vehicle.

Dashboard Passenger Seat Cup Holder Door Pocket Clothes Pocket

Accuracy 91.10% 90.76% 84.61% 83.07% 82.85%

Figure 7 presents a confusion matrix that provides a detailed view of the performance
of the SVM model, Random Forest model, LSTM model, and RDD-CNN model when uti-
lizing automatically generated. The results indicate that RDD-CNN is exceptionally adept
at distinguishing between speed bumps and no-defect scenarios, achieving an accuracy
of 99%. This precise discrimination is largely due to the significant variance in vehicle
motion induced by speed bumps as opposed to other defect types. On the other hand,
potholes and manholes, which are generally characterized by their recessed shapes, offer a
more subtle challenge for distinction, hinging on the depth and shape of the depression.
Manholes usually feature a relatively even surface, whereas potholes are characterized
by more pronounced irregularities and indentations, as shown in Figure 2. The similarity
in the physical characteristics of potholes and manholes leads to a comparatively lower
performance in the classification of these two types of road defects.
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The models of road defect detection under comparison include SVM, Random For-
est [46], Long Short-Term Memory (LSTM), and our proposed RDD-CNN, each utilized
for estimating road defect conditions. SVM is a supervised learning algorithm widely
employed for both classification and regression challenges. It aims to identify a hyper-
plane that maximizes the margin between different classes, with the margin defined as the
distance between the nearest data points of any class (known as support vectors) and the
hyperplane itself. The training process for SVM involves solving a quadratic optimization
problem subject to boundary constraints and a linear equation constraint. However, tradi-
tional optimization methods for such problems are often deemed impractical due to the
extensive memory and time they require [47].

Random Forest, on the other hand, is an ensemble learning technique applicable
to both classification and regression tasks. It operates by constructing multiple decision
trees during the training process and merging their outcomes to produce more accurate
and robust predictions. This method effectively mitigates the risk of overfitting and is
suitable for diverse datasets. The strategy of integrating predictions from several decision
trees, particularly when the number of variables significantly surpasses the number of
observations, has been acknowledged for its efficacy. Random Forest is also scalable,
making it appropriate for large-scale problem-solving scenarios [48].

These established methods, along with LSTM—a neural network designed for pro-
cessing sequences and temporal patterns—provide a comprehensive backdrop against
which the performance of the proposed RDD-CNN model is assessed. The comparison
aims to highlight the strengths and potential of RDD-CNN in accurately detecting road
defects using data derived from the Automatic Data Collection System. Table 8 presents
the specific parameter values utilized for each model in the detection of road defects.

Table 8. Hyperparameters of testing models.

Models Hyperparameters

SVM [46] Kernel = linear, C = 1.0, shrinking = true, tol = 0.001, random state = 0
Random Forest [46] N estimators = 10, max depth = none, min samples split = 1, random state = 0

LSTM [49] Input shape = (300,1), learning rate = 0.001, activation = SoftMax
Optimizer = Adam, loss function = categorical cross entropy, dropout = 0.5

RDD-CNN Input shape = (300,1), activation = Swish, kernel size = 4,
loss function = categorical cross entropy, optimizer = Adam

Figure 8 illustrates the accuracy of artificial intelligence models utilized in research
for detecting road defects. Deep learning models such as LSTM and CNN demonstrated
relatively higher accuracy compared to traditional machine learning models like SVM
and RF. This superiority of deep learning models can be attributed to their ability to learn
high-level abstract features from data, enabling them to understand complex patterns
and relationships. In contrast, traditional machine learning methods rely on predefined
features, mostly designed manually, which may not capture the complexity present in large
datasets as effectively as the features learned automatically by deep learning models. Most
existing studies on road defect detection classify accelerometer data to identify road defects.
While LSTM is adept at modeling temporal sequences and dependencies in time-series
data, CNNs can be more efficient when the data length is short or the patterns are relatively
simple. Therefore, in classifying defects through accelerometer data input, CNNs offer
advantages, which is why RDD-CNN shows higher accuracy.

This paper aims to detect road defects using smartphones, making it crucial to maintain
high detection accuracy while reducing the load on smartphones. To achieve this, we
performed quantization to lighten the model, reducing its size by an average of 59.11%.
Figure 9 presents the average time required by each model to evaluate 1-min test data using
the sliding window algorithm and the size of each model. The proposed sliding window
algorithm reduces the number of tests when road defects are present in the test data and
increases the number of tests when there are no road defects. Through experiments with
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various data inputs, it was found that each model performed an average of 533.75 tests per
minute. SVM can implement more accurate models with smaller tol values but requires
significantly longer processing time compared to deep learning approaches. Random Forest
also shows improved accuracy with an increased number of decision trees, but at the cost
of longer computation times. LSTM and RDD-CNN exhibited relatively short processing
times compared to traditional machine learning techniques. Quantization did not lead
to differences in accuracy but allowed for a reduction in processing time, enhancing the
feasibility of using these models on smartphones.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 8. Accuracy of various testing models. 

This paper aims to detect road defects using smartphones, making it crucial to main-
tain high detection accuracy while reducing the load on smartphones. To achieve this, we 
performed quantization to lighten the model, reducing its size by an average of 59.11%. 
Figure 9 presents the average time required by each model to evaluate 1-min test data 
using the sliding window algorithm and the size of each model. The proposed sliding 
window algorithm reduces the number of tests when road defects are present in the test 
data and increases the number of tests when there are no road defects. Through experi-
ments with various data inputs, it was found that each model performed an average of 
533.75 tests per minute. SVM can implement more accurate models with smaller tol values 
but requires significantly longer processing time compared to deep learning approaches. 
Random Forest also shows improved accuracy with an increased number of decision trees, 
but at the cost of longer computation times. LSTM and RDD-CNN exhibited relatively 
short processing times compared to traditional machine learning techniques. Quantiza-
tion did not lead to differences in accuracy but allowed for a reduction in processing time, 
enhancing the feasibility of using these models on smartphones. 

 
Figure 9. Comparison of lightweight size and processing time for each model. 

Figure 8. Accuracy of various testing models.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 8. Accuracy of various testing models. 

This paper aims to detect road defects using smartphones, making it crucial to main-
tain high detection accuracy while reducing the load on smartphones. To achieve this, we 
performed quantization to lighten the model, reducing its size by an average of 59.11%. 
Figure 9 presents the average time required by each model to evaluate 1-min test data 
using the sliding window algorithm and the size of each model. The proposed sliding 
window algorithm reduces the number of tests when road defects are present in the test 
data and increases the number of tests when there are no road defects. Through experi-
ments with various data inputs, it was found that each model performed an average of 
533.75 tests per minute. SVM can implement more accurate models with smaller tol values 
but requires significantly longer processing time compared to deep learning approaches. 
Random Forest also shows improved accuracy with an increased number of decision trees, 
but at the cost of longer computation times. LSTM and RDD-CNN exhibited relatively 
short processing times compared to traditional machine learning techniques. Quantiza-
tion did not lead to differences in accuracy but allowed for a reduction in processing time, 
enhancing the feasibility of using these models on smartphones. 

 
Figure 9. Comparison of lightweight size and processing time for each model. Figure 9. Comparison of lightweight size and processing time for each model.

5. Conclusions

This paper introduces a system that leverages smartphones to identify road defects,
featuring an innovative automatic data collection mechanism and the RDD-CNN model,
proficient in real-time road defect detection. This mechanism greatly facilitates the data
acquisition process, enabling the automatic collection of data and label information solely
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from road driving videos and sensor data, thereby enhancing convenience in data collection.
The experimental results, conducted with three smartphones in two vehicles, revealed that
the automatic data collection method missed only 15.21% of the data while achieving 100%
label accuracy.

The testing of the RDD-CNN model, our proposed road defect classification model,
with automatically collected data exhibited a negligible error margin, only 0.4% lower
than that with manually collected data. The evaluation showcases the feasibility and
effectiveness of employing automatically gathered data for training various AI models.
Notably, the RDD-CNN model demonstrated superior classification accuracy, exceeding
86.77% compared to other models, and is optimized for smartphone use, maintaining a
low processing time of approximately 0.1 s per minute of driving, confirming its real-time
operational capability.

The scope of this research is currently limited to classifying road defects in real-time
on local smartphones. For future developments, we aim to utilize the technology to update
a cloud server with real-time locations of road defects, creating a live defect map. By using
crowdsourced data from the cloud server, we plan to achieve more precise road defect
classifications, thus improving the overall accuracy and reliability of road defect detection
and mapping, with considerations for the server’s storage and bandwidth capacities.
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