
Citation: Song, W.; Zhang, X.; Yang,

G.; Chen, Y.; Wang, L.; Xu, H. A Study

on Dimensionality Reduction and

Parameters for Hyperspectral Imagery

Based on Manifold Learning. Sensors

2024, 24, 2089. https://doi.org/

10.3390/s24072089

Academic Editor: Seung-Chul Yoon

Received: 20 February 2024

Revised: 9 March 2024

Accepted: 23 March 2024

Published: 25 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Study on Dimensionality Reduction and Parameters for
Hyperspectral Imagery Based on Manifold Learning
Wenhui Song 1, Xin Zhang 2, Guozhu Yang 3, Yijin Chen 1,*, Lianchao Wang 1 and Hanghang Xu 1

1 College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing),
Beijing 100083, China; bqt1800205061@student.cumtb.edu.cn (W.S.);
bqt1900205063@student.cumtb.edu.cn (L.W.); bqt2000205068@student.cumtb.edu.cn (H.X.)

2 Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
zhangxin000181@aircas.ac.cn

3 State Grid General Aviation Co., Ltd., Beijing 102209, China; gzyang3912@163.com
* Correspondence: y.j.chen@cumtb.edu.cn

Abstract: With the rapid advancement of remote-sensing technology, the spectral information ob-
tained from hyperspectral remote-sensing imagery has become increasingly rich, facilitating detailed
spectral analysis of Earth’s surface objects. However, the abundance of spectral information presents
certain challenges for data processing, such as the “curse of dimensionality” leading to the “Hughes
phenomenon”, “strong correlation” due to high resolution, and “nonlinear characteristics” caused by
varying surface reflectances. Consequently, dimensionality reduction of hyperspectral data emerges
as a critical task. This paper begins by elucidating the principles and processes of hyperspectral image
dimensionality reduction based on manifold theory and learning methods, in light of the nonlinear
structures and features present in hyperspectral remote-sensing data, and formulates a dimensionality
reduction process based on manifold learning. Subsequently, this study explores the capabilities of
feature extraction and low-dimensional embedding for hyperspectral imagery using manifold learn-
ing approaches, including principal components analysis (PCA), multidimensional scaling (MDS),
and linear discriminant analysis (LDA) for linear methods; and isometric mapping (Isomap), locally
linear embedding (LLE), Laplacian eigenmaps (LE), Hessian locally linear embedding (HLLE), local
tangent space alignment (LTSA), and maximum variance unfolding (MVU) for nonlinear methods,
based on the Indian Pines hyperspectral dataset and Pavia University dataset. Furthermore, the
paper investigates the optimal neighborhood computation time and overall algorithm runtime for
feature extraction in hyperspectral imagery, varying by the choice of neighborhood k and intrinsic
dimensionality d values across different manifold learning methods. Based on the outcomes of feature
extraction, the study examines the classification experiments of various manifold learning methods,
comparing and analyzing the variations in classification accuracy and Kappa coefficient with different
selections of neighborhood k and intrinsic dimensionality d values. Building on this, the impact of
selecting different bandwidths t for the Gaussian kernel in the LE method and different Lagrange
multipliers λ for the MVU method on classification accuracy, given varying choices of neighborhood
k and intrinsic dimensionality d, is explored. Through these experiments, the paper investigates
the capability and effectiveness of different manifold learning methods in feature extraction and
dimensionality reduction within hyperspectral imagery, as influenced by the selection of neighbor-
hood k and intrinsic dimensionality d values, identifying the optimal neighborhood k and intrinsic
dimensionality d value for each method. A comparison of classification accuracies reveals that the
LTSA method yields superior classification results compared to other manifold learning approaches.
The study demonstrates the advantages of manifold learning methods in processing hyperspectral
image data, providing an experimental reference for subsequent research on hyperspectral image
dimensionality reduction using manifold learning methods.

Keywords: hyperspectral imagery; manifold learning; dimensionality reduction; feature extraction;
optimal neighborhood; intrinsic dimensionality
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1. Introduction
1.1. Characteristics and Challenges of Hyperspectral Remote-Sensing Images

Remote sensing employs modern vehicles and sensors to acquire the electromagnetic
characteristics of target objects from a distance, analyzing the shape, location, properties,
and status changes of the targets through the transmission, storage, correction, and inter-
pretation of information [1–3]. Among these, hyperspectral remote-sensing technology,
characterized by high spectral resolution, high feature dimensionality, precise quantitative
analysis, rich spectral information, and integrated imaging and mapping, is one of the
emerging directions in remote-sensing science [4]. Hyperspectral remote-sensing technol-
ogy significantly enriches the informational content of Earth observation. The reflectance
of surface materials at different bands represents their spectral characteristics. Different
land covers possess unique spectral features. Through steps such as spectral feature ex-
traction, data analysis, and application, accurate identification and monitoring of surface
features are achieved, enhancing the breadth and depth of applications in the surveying
and mapping field. Unlike multispectral remote sensing, hyperspectral remote sensing
can capture information across hundreds of continuous spectral bands on the Earth’s
surface, providing rich spectral information to enhance the discriminative capability for
different materials [5].

The core advantage of hyperspectral remote sensing lies in its ability to reflect subtle
differences in spectral characteristics, but the vast number of bands presents significant
challenges for data processing. The presence of many bands (or channels) within each
pixel poses challenges for traditional land cover classification methods, which makes it
difficult to apply learning algorithms directly [6]. Therefore, the “big data” characteristic
leads to the “curse of dimensionality” issue, prone to the “Hughes” phenomenon; the
strong correlation among bands causes high “information redundancy”; and the nonlinear
structural features increase computational complexity.

(1) Curse of Dimensionality

The concept of the curse of dimensionality was first introduced by Richard E. Bellman
in 1961, used to describe the problems faced in data analysis and organization within high-
dimensional spaces. In hyperspectral imagery, this leads to data analysis and classification
tasks becoming extremely challenging, with the algorithm’s classification performance
exhibiting a “first increase then decrease” phenomenon as the feature dimensionality
increases, a phenomenon known as the “curse of dimensionality” [7–10], also referred to as
the “Hughes” phenomenon [11]. Although the impact of the “Hughes phenomenon” on
classification accuracy gradually diminishes with the continued increase in the number of
training samples, it faces the challenges of acquiring a large number of training samples
and the cost of high computational complexity [12,13].

(2) Strong Inter-band Correlation

Similarity in spectral characteristics results in high correlation among adjacent bands
due to their close wavelengths, reflecting very similar terrestrial spectral properties. This
high correlation is further compounded by the continuous spectral response of materials,
making the spectral information captured by neighboring bands in hyperspectral imagery
often very similar, leading to high correlation. To enhance spectral coverage and sensitivity,
the spectral response ranges of various bands might overlap, causing the information
captured by adjacent bands to partially coincide, thus increasing inter-band correlation.
A pixel covering a surface area on Earth might contain multiple materials, resulting in
similar reflection properties among different bands. The acquisition of hyperspectral data
is influenced by atmospheric conditions, such as the absorption and scattering effects
of water vapor, carbon dioxide, and other components in the atmosphere on specific
wavelengths, creating correlations among these bands. Factors like solar elevation and
cloud cover also have a uniform effect on all bands of the hyperspectral imagery, fur-
ther enhancing inter-band correlation. The strong correlation among bands leads to low
algorithmic efficiency [14–16].
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(3) Nonlinear Data Structures

The data within hyperspectral imagery are not distributed in a linear Euclidean space
but rather in some form of nonlinear feature space. This includes nonlinear relationships
in spectral reflectance, spectral mixing and interaction effects, nonlinear characteristics
of land cover boundaries, nonlinear spatial correlations, and noise along with nonlinear
variations, among others. It is essential to consider these nonlinearities in hyperspectral
data. The collection process of hyperspectral remote-sensing data exhibits these nonlinear
issues due to various environmental factors, such as different atmospheric components,
differences in electromagnetic wave reflection angles, and the state of imaging system
firmware, leading to nonlinear ground scattering. These are represented by models such
as the Bidirectional Reflectance Distribution Function (BRDF) [17,18], noticeable nonlin-
ear changes in the wavelength of minimum reflectance [18], attenuation effects of water
body changes within a pixel [19], and the heterogeneity of multiple scattering and sub-
pixel components within a pixel [20,21], rendering the spectral data of hyperspectral
imagery nonlinear [22].

In summary, the “curse of dimensionality” within hyperspectral imagery presents a
challenge related to data analysis and processing, especially in the fields of remote sensing
and image recognition. The foundational issue is how to perform feature extraction on
hyperspectral imagery, with dimensionality reduction being a necessary processing step.
This paper will explore the capability and effectiveness of feature extraction in hyperspectral
imagery based on manifold learning.

Building on this foundation, this paper further delves into the issue of parameter
selection in manifold learning for feature extraction in hyperspectral imagery: one aspect is
the estimation of the intrinsic dimensionality d, where values that are either too high or too
low are detrimental to uncovering the nature of the data and important data characteristics.
The second issue pertains to constructing the optimal neighborhood: it is critical to control
the extent of the neighborhood graph, as overly extensive neighborhoods can lead to
“short-circuiting” phenomena, and neighborhoods that are too restrictive may result in
“disconnection” issues. Therefore, selecting an appropriate neighborhood size k and
intrinsic dimensionality d is essential to unearth the latent structures of hyperspectral
images and facilitate applications such as land cover classification.

There has been some research on determining the dimensionality of low-dimensional
embedding space in manifold learning [23–31], but the question of how to more accurately
determine the dimensionality of the low-dimensional space for hyperspectral imagery
remains a topic worthy of in-depth study. Furthermore, the effects of different manifold
learning methods on hyperspectral image feature extraction and the impact of manifold
learning parameters on the feature extraction outcomes remain largely unexplored, as
does the pattern of how manifold learning method parameter choices affect neighborhood
computation and overall algorithm runtime. Based on these issues, the primary objectives
of this study are: 1. to investigate and compare the applicability of various manifold
learning algorithms in the dimensionality reduction of hyperspectral images; 2. to explore
the impact patterns of parameters such as neighborhood size k and intrinsic dimensionality
d on the feature extraction results of hyperspectral images using Isomap, LLE, LE, HLLE,
LTSA, and MVU algorithms, as well as the effects of Gaussian kernel function bandwidth
t and local structure weight λ on the feature extraction outcomes of the LE and MVU
algorithms, respectively; 3. to study the influence of parameter neighborhood size k and
intrinsic dimensionality d on the neighborhood computation time and overall runtime
of the Isomap, LLE, LE, HLLE, LTSA, and MVU algorithms. This research significantly
contributes to the use of manifold learning for feature extraction from hyperspectral images,
offering substantial guidance and reference value.
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1.2. Hyperspectral Manifold Learning Dimensionality Reduction and Related Parameter
Mathematical Expression

In mathematics, it is common to establish a homeomorphism between manifolds
and Euclidean spaces, allowing the combination of local Euclidean coordinate charts to
substitute for the manifold, using the coordinates of the local Euclidean charts to identify
elements on the manifold. For a given high-dimensional observational dataset in practi-
cal applications, variations among data can be represented by a few influencing factors.
Statistically, the correlations between these factors are geometrically manifested as being
scattered on a low-dimensional smooth manifold, where the number of influencing factors
corresponds to the dimensionality of the smooth manifold. Here, we first present several
mathematical definitions as follows:

Definition 1. Assuming the hyperspectral image data are X ∈ Rn×p, the goal of manifold
learning methods is to find a mapping: f : X → Y , where Y ∈ Rn×d(d ≪ p) represents the
data’s representation on a low-dimensional manifold. The objective is to minimize some distance
measure between points in the original data space and the low-dimensional embedding space. Here,
n represents the number of pixels, and p represents the number of bands.

Definition 2. Let M be a Hausdorff space. If for any point x ∈ M, there exists a U neigh-
borhood x in M that is homeomorphic to an open set in Rd, then M is called a d-dimensional
manifold, denoted as dim(M) = d.

Definition 3. Given a dataset X = {x1, x2, · · · , xn}, where each xi is a point in the original
high-dimensional space, for each point xi in the dataset, it holds that:

Nk(xi) =
{

xj : dist
(
xi, xj

)
≤ dist

(
xi, x(k)

)}
(1)

where neighborhood Nk(xi) refers to the set of k nearest points to xi, dist
(

xi, xj
)

is the distance
between points xi and xj, and x(k) is the distance to the kth nearest neighbor from xi.

Thus, estimating the dimensionality of the smooth manifold embedding space and
selecting neighborhoods are key issues in studying meaningful low-dimensional mani-
fold structures in high-dimensional data. Based on these two issues, this article primarily
investigates the feature extraction capabilities and effects of different manifold learning
methods on hyperspectral images. It explores the patterns of choosing different neighbor-
hoods k and intrinsic dimensions d and their roles in hyperspectral image feature extrac-
tion. This provides a reference for future researchers using manifold learning for optimal
neighborhood construction and determining potential dimensions in hyperspectral image
feature extraction.

1.3. Manifold Expression in Hyperspectral Imagery Dimensionality Reduction

This section will formalize and express the feature extraction process of hyperspectral
imagery data using manifold learning through the theories of manifold and differential
geometry. The objective of manifold learning is to maintain the manifold structure of the
data as much as possible while reducing its dimensionality. This method can discover
the local linear relationships among samples in high-dimensional space and map these
relationships to a low-dimensional space. Thus, the principle of manifold learning feature
extraction for hyperspectral imagery is to map the data from a high-dimensional space to a
low-dimensional space, obtaining a compact low-dimensional representation of the original
dataset. Hyperspectral imagery contains a large number of bands, each corresponding to
spectral information at different wavelengths. These bands together constitute a multi-
dimensional data space. Due to physical and geographical constraints, even though the
data itself are high-dimensional, there exists dependency among the pixels, implying that
the data may be confined within a low-dimensional manifold. Therefore, hyperspectral
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imagery data can be considered a high-dimensional representation of a low-dimensional
manifold space, with each pixel representing a point within the manifold space. Similarly,
similar land cover types (such as water bodies, vegetation, soil, etc.) will form clusters in the
spectral feature space, which can be viewed as neighborhoods of points on the manifold.

The manifold learning dimensionality reduction process in hyperspectral imagery
reduction involves the following:

First, a formal definition of a coordinate chart (U, φ) is given for the hyperspectral
imagery spectral feature dataset.

Then, based on the definitions of differential manifold tangent vectors and tangent
spaces, a formal definition is provided for the local neighborhood corresponding to tangent
spaces of the hyperspectral imagery spectral feature manifold space dataset.

Finally, based on the definition of the differential manifold’s tangent bundle, we
present the derivation of global low-dimensional manifold coordinates from local tangent
coordinates in the hyperspectral image manifold space, achieving the extraction of spectral
features and dimensionality reduction in hyperspectral images.

Definition 4 (Local Coordinate Neighborhood of a Hyperspectral Data Sample Point). If a
sample point xi in the hyperspectral dataset is considered as a point within coordinate chart U,
then U is the open set of the neighborhood where sample point xi is located, with the set U consisting
of elements {x1, x2, x3 · · · xi}, where xi represents the data sample points in the local neighbor-
hood, then the set U is referred to as the local coordinate neighborhood of the hyperspectral data
sample point.

From the manifold learning dimensionality reduction process, it is understood that
in practical research, all pixels within a certain range of a pixel in hyperspectral remote-
sensing data are considered as the optimal neighborhood of that point in the manifold
space; by calculating the minimum reconstruction error function, the corresponding local
tangent space coordinates are obtained. In the manifold space of the original hyperspectral
remote-sensing data, multiple sets of local tangent space coordinates representing each pixel
point’s coordinate neighborhood are calculated; finally, by calculating the global optimal
reconstruction error, the overlapping local tangent space coordinate sets are arranged to
obtain the global manifold coordinates of the dimensionality-reduced hyperspectral remote-
sensing imagery, achieving dimensionality reduction of hyperspectral remote-sensing data.
The manifold learning expression is as follows:

Definition 5. Let the manifold space in which the hyperspectral imagery dataset resides be
denoted as MHSI , and let the dataset of sample points within a certain neighborhood centered on a
particular pixel be an open covering {UHSI} of MHSI , with a corresponding family of continuous
mappings φHSI : UHSI → Rd .

wherein {UHSI} represents the local coordinate neighborhood, indicating the optimal
neighborhood of a certain pixel in hyperspectral remote-sensing imagery; φHSI denotes
the local coordinate mapping, representing the Euclidean linear expression of the local
nonlinear structure in hyperspectral remote-sensing imagery, achieving dimensionality
reduction of hyperspectral imagery data; {UHSI} is the local coordinate covering of MHSI ,
indicating the calculated optimal neighborhood collection of hyperspectral remote-sensing
imagery; {UHSI , φHSI} is a local coordinate system, representing the local coordinates of
hyperspectral remote-sensing imagery obtained through the calculation of the optimal
neighborhood; Rd calculates the local tangent space obtained from the optimal neighbor-
hood, representing the sub-feature space after dimensionality reduction of hyperspectral
remote-sensing imagery (as shown in Figure 1).
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Figure 1. Dimensionality reduction and classification process of hyperspectral images based on
manifold learning.

2. Materials and Methods
2.1. Study Area

This paper selects the Indian Pines and Pavia University datasets as the experimental
data foundation (as shown in Figure 2). The Indian Pines landscape contains 16 land
cover categories, with a total of 10,249 pixels containing land cover. However, due to the
non-reflectance of water in bands 104–108, 150–163, and 220, we typically use the remaining
200 bands, excluding these 20 bands, for research purposes. The Pavia University dataset
encompasses 9 land cover classes with a total of 42,776 pixels containing land cover. Twelve
bands are excluded due to noise interference, leaving 103 spectral bands for research. The
dataset can be accessed through the following URL: https://ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes (accessed on 9 January 2024).
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Figure 2. False color image and ground truth: (a) Indian Pines data; (b) Pavia University data.

This article evaluates the inter-band relationships within hyperspectral data based
on correlation coefficients, calculated between the bands of hyperspectral imagery. For
the Indian Pines dataset, the three bands with the lowest correlation, specifically bands 1,
88, and 188, exhibit a correlation coefficient of 0.0069. In the case of the Pavia University
dataset, the three least correlated bands are 1, 62, and 103, with a correlation coefficient
of 0.2243. These three bands are utilized to represent the red (R), green (G), and blue (B)
channels, respectively, forming an RGB pseudocolor image (as shown in Figure 3).
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Table 1. Ground truth classes and sample numbers of Indian Pines.

Category Classification Color Samples

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-tree 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Tress-Drives 386

16 Stone-Steel-Towers 93

The dataset consists of a total of 207,400 pixels, of which only 42,776 pixels are land
cover pixels, whereas the remaining 164,624 pixels are background pixels. In practical
classification tasks, these background pixels need to be excluded. The distribution of pixels
across different land cover classes is presented in Table 2.

Table 2. Ground truth classes and sample numbers of Pavia University.

Category Classification Color Samples

1 Asphalt 6631

2 Meadows 18,649

3 Gravel 2099

4 Trees 3064

5 Painted metal sheets 1345

6 Bare Soil 5029

7 Bitumen 1330

8 Self-Blocking Bricks 3682

9 Stone-Steel-Towers 947

2.2. Data Description

In this study, we have selected 30% of each of the seven land cover types from the
Indian Pines dataset and 10% of each of the eight land cover types from the Pavia University
dataset (as shown in Table 3) for investigating manifold learning feature extraction and
land cover classification experiments.
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Table 3. The total number of samples for both datasets and the division of data samples selected for
study in this paper.

Indian Pines Dataset Pavia University Dataset

Category Classification
Total

Number of
Samples

Number of
Samples
Selected

Category Classification
Total

Number of
Samples

Number of
Samples
Selected

2 Corn-notill 1428 428 1 Asphalt 6631 663
3 Corn-mintill 830 249 2 Meadows 18,649 1865
5 Grass-pasture 483 145 3 Gravel 2099 210
6 Grass-tree 730 219 4 Trees 3064 306

10 Soybean-notill 972 292 5 Painted metal
sheets 1345 135

11 Soybean-mintill 2455 737 6 Bare Soil 5029 503
14 Woods 1265 380 7 Bitumen 1330 133

—— —— —— —— 8 Self-Blocking
Bricks 3682 368

Total —— 8163 2449 Total —— 41,829 4183

In this study, the division of the dataset for the land cover classification experiments
is as follows: 80% for the training set and 20% for the validation set (as shown in Table 4).
The classifier chosen for this task is Random Forest (RF), selected due to its excellent
performance in handling high-dimensional data and its proven effectiveness in existing
related research.

Table 4. Division of training and validation sets for classification experiments using the Indian Pines
and Pavia University datasets.

Indian Pines Dataset Pavia University Dataset

Category Classification Training Set Validation Set Category Classification Training Set Validation Set

2 Corn-notill 342 86 1 Asphalt 530 133
3 Corn-mintill 199 50 2 Meadows 1492 373
5 Grass-pasture 116 29 3 Gravel 168 42
6 Grass-tree 175 44 4 Trees 245 61

10 Soybean-notill 234 58 5 Painted metal
sheets 108 27

11 Soybean-mintill 590 147 6 Bare Soil 402 101
14 Woods 304 76 7 Bitumen 106 27

—— —— —— —— 8 Self-Blocking
Bricks 295 74

Total —— 1959 490 Total —— 3346 837

2.3. Methods
2.3.1. Linear Manifold Learning Methods

(1) Principal Components Analysis (PCA)

PCA is a commonly used data dimensionality reduction technique [32,33]. It employs a
linear transformation to map high-dimensional data to a lower-dimensional space, reducing
the dimensionality of the data while retaining as much information as possible. The
algorithm steps are shown in Algorithm 1 as follows:
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Algorithm 1 Principal Component Analysis (PCA)

Input: A dataset X, intrinsic dimensionality d
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)

Step 1. Standardize the original dataset: Xstd = X−µ
δ

Step 2. Calculate the covariance matrix: Cov(Xstd) =
1

n−1 XT
stdXstd

Step 3. Compute the eigenvalues and eigenvectors of the covariance matrix: Cov(Xstd)v = λv
Step 4. Order the eigenvalues, select the principal components, construct the projection matrix,
and transform into the new space: Xpca = XstdW

(2) Multidimensional Scaling (MDS)

MDS is a nonlinear technique used to embed high-dimensional data into a low-
dimensional space. The basic idea is to project points from a high-dimensional coordinate
system into a low-dimensional space, maintaining the similarity between points as much
as possible. For this reason, in the low-dimensional space, the pairwise distances between
points are very close to their actual distances. The algorithm steps are shown in Algorithm 2
as follows:

Algorithm 2 Multidimensional Scaling (MDS)

Input: A dataset X, intrinsic dimensionality d
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. Calculate a distance matrix D based on the original high-dimensional data
Step 2. Perform double centering on the distance matrix: B = − 1

2 JD2J
Step 3. Conduct eigenvalue decomposition on the double-centered matrix: Bvi = λivi
Step 4. Select the principal components and compute the configuration: X = VkΛ1/2

k

(3) Linear Discriminant Analysis (LDA)

LDA is a commonly used dimensionality reduction technique that considers the
impact of categories during the reduction process, ensuring that samples from different
classes have the maximum separation after dimensionality reduction. LDA aims to find an
optimal linear projection where the variance within classes is minimized while the variance
between classes is maximized. The algorithm steps are shown in Algorithm 3 as follows:

Algorithm 3 Linear Discriminant Analysis (LDA)

Input: A dataset X, intrinsic dimensionality d,data labels label
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. Calculate the within-class mean and the overall mean: µi =

1
ni

∑x∈class i x and
µ = 1

n ∑n
i=1 xi

Step 2. Compute the within-class scatter matrix and the between-class scatter matrix:
SW = ∑k

i=1 Si and SB = ∑k
i=1 ni(µi − µ)(µi − µ)T

Step 3. Calculate the projection vector: SBv = λSW v
Step 4. Select the eigenvector corresponding to the largest eigenvalue and transform into the new
space: X′ = XW

2.3.2. Nonlinear Manifold Learning Methods

(1) Isometric Mapping (Isomap)

The core algorithm employed by the Isomap algorithm is consistent with MDS, with
the distinction lying in the calculation of the distance matrix in the original space. As
a significant improvement over the traditional MDS algorithm, Tenenbaum et al. [34]
introduced the concept of “geodesic distance” in the Isomap, achieving the discovery of the
low-dimensional manifold structure embedded in high-dimensional space by maintaining
the geodesic distance unchanged between every two points in the high-dimensional dataset.
The algorithm implementation steps are shown in Algorithm 4 as follows:



Sensors 2024, 24, 2089 10 of 40

Algorithm 4 Isometric Mapping (Isomap)

Input: A dataset X, intrinsic dimensionality d, the neighborhood k
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. Calculate the double-centered distance matrix: B = − 1

2 JD2J
Step 2. Perform eigenvalue decomposition on the double-centered matrix B, obtaining
eigenvalues and their corresponding eigenvectors
Step 3. Select the eigenvectors corresponding to the largest k eigenvalues, which form the basis of
the low-dimensional space
Step 4. Use the selected eigenvectors and the square roots of their corresponding eigenvalues to
compute the coordinates of the data points in the low-dimensional space

(2) Locally Linear Embedding (LLE)

LLE, proposed by Sam Roweis and others [35] from University College London, is
based on the core idea that the low-dimensional manifold to be solved is locally linear, with
each data point being representable as a linear combination of its neighbors. The process
of manifold dimensionality reduction involves reconstructing the original data points by
keeping the linear coefficients within each neighborhood constant, thereby minimizing
the reconstruction error. The algorithm implementation steps are shown in Algorithm 5
as follows:

Algorithm 5 Locally linear embedding (LLE)

Input: A dataset X, intrinsic dimensionality d, the neighborhood k
Output: Return low-dimensional coordinates matrix Y = (y1, y2, · · · yd)
Step 1. Given dataset X = {x1, x2, · · · , xN}, for each point xi, find its k nearest neighbors
{xi1, xi2, · · · , xik}
Step 2. Calculate weights Wij based on the linear relationship ∑k

j=1 Wij

(
xi − xij

)
= 0

Step 3. Find the low-dimensional representation

Y = (y1, y2, · · · yd) by minimizing Φ(Y) = ∑N
i=1

∣∣∣yi − ∑N
j=1 Wijyj

∣∣∣2
(3) Laplacian Eigenmaps (LE)

LE, proposed by Belkin et al. [36], is based on the fundamental idea of preserving
the local neighborhood relationships of data. It operates on the principle of eigenvalue
decomposition of the graph Laplacian matrix, aiming to maintain the local proximity
relations. This is achieved by constructing a graph representing the dataset, where the edge
weights reflect the local distances between nodes (data points). The goal is to preserve the
graph’s local adjacency relationships while re-drawing this graph in a lower-dimensional
space from its high-dimensional origin. The algorithm implementation steps are shown in
Algorithm 6 as follows:

Algorithm 6 Laplacian Eigenmaps (LE)

Input: A dataset X, intrinsic dimensionality d, the neighborhood k, the Gaussian kernel function
bandwidth t
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. Based on the given dataset, construct an adjacency graph G
Step 2. Compute the Laplacian matrix: L = D − W
Step 3. Solve for the eigenvalues: Lv = λDv
Step 4. Select the eigenvectors corresponding to the smallest non-zero eigenvalues of L as the
coordinates of the data points in the low-dimensional space

(4) Hessian Locally Linear Embedding (HLLE)

Professor Donoho and colleagues from the Department of Statistics at Stanford Univer-
sity introduced HLLE [37]. The method involves finding neighboring points for each data
point, then estimating the Hessian matrix within the neighborhood of each point. These
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local Hessian matrices are combined to form a global Hessian matrix. The essence of HLLE
lies in preserving the local curvature of the data manifold, thereby better maintaining the
data structure in a lower-dimensional space. By minimizing the second-order derivatives
of the global Hessian matrix, HLLE finds a low-dimensional representation of the data. The
algorithm implementation steps are shown in Algorithm 7 as follows:

Algorithm 7 Hessian locally linear embedding (HLLE)

Input: A dataset X, intrinsic dimensionality d, the neighborhood k
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. First, for each point in the dataset, find its K nearest neighbors and construct a K nearest
neighbor graph
Step 2. For each data point and its K nearest neighbors, estimate the Hessian matrix to reflect the
curvature of the local geometric structure
Step 3. By combining the local Hessian estimates of each point, construct a global Hessian
matrix H
Step 4. The space embedding involves eigenvalue decomposition and selection of the
eigenvectors corresponding to the smallest non-zero eigenvalues: minYDTY=I trace(YHTY)

(5) Local Tangent Space Alignment (LTSA)

LTSA was proposed by Zhang et al. in 2004 [38]. The fundamental principle of LTSA
is the assumption that data locally reside within the tangent space of a low-dimensional
manifold. It estimates the local tangent spaces around each point and seeks a global low-
dimensional embedding to optimally align these local tangent spaces. The algorithm aims
to minimize the global reconstruction error of local tangent spaces, which is achieved by

optimizing the following objective function: min ∑N
i=1

∣∣∣∣∣∣Xi − ∑j∈K(i) ωijXj

∣∣∣∣∣∣2. The steps for
implementing the Algorithm 8 are:

Algorithm 8 Local Tangent Space Alignment (LTSA)

Input: A dataset X, intrinsic dimensionality d, the neighborhood k
Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. For each point Xi in the dataset, find its K nearest neighbors and construct a K nearest
neighbor graph
Step 2. For each point and its K nearest neighbors, calculate the basis of the local tangent space
through PCA of the local neighborhood
Step 3. By rotating and translating each local tangent space, find a global reference frame that
aligns all local tangent spaces within this frame as closely as possible
Step 4. On the basis of the aligned local tangent spaces, reconstruct the global low-dimensional
coordinates to preserve the geometric structure of local neighborhoods

(6) Maximum Variance Unfolding (MVU)

MVU, also known as Semi-definite Embedding (SDE), was proposed by Weinberger
and Saul [39,40]. The fundamental idea is that the variance on the points is maximized when
the manifold is correctly unfolded, aiming to keep the data points as far apart from each
other as possible in a low-dimensional representation, thereby maximizing the variance of
the data. The algorithm implementation steps are shown in Algorithm 9 as follows:
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Algorithm 9 Maximum Variance Unfolding (MVU)

Input: A dataset X, intrinsic dimensionality d, the neighborhood k, the lambda λ

Output: Return low-dimensional coordinate matrix Y = (y1, y2, · · · yd)
Step 1. For each point Xi in the dataset, identify its nearest neighbors and construct a K nearest
neighbor graph
Step 2. Calculate and store the Euclidean distances between the data point and its K
nearest neighbors
Step 3. Maximize the variance in the low-dimensional space through semidefinite programming
(SDP): maxY Tr(YTY)
Step 4. Use a semidefinite programming (SDP) solver to solve this optimization problem and
extract the low-dimensional embedding from the solution of SDP, selecting the eigenvectors
corresponding to the largest few eigenvalues as the coordinates in the low-dimensional space

3. Results
3.1. Visualization of Low-Dimensional Embedding of Hyperspectral Images

To validate the performance of manifold learning algorithms in feature extraction
within hyperspectral imagery, the dataset from Table 3 was visualized by selecting 30% of
the total sample points from each of the seven land cover types and projecting them into
three-dimensional space (first characteristic, second characteristic, and third characteristic).
The scatter plot after dimensionality reduction is shown in Figure 4. The LDA algorithm
demonstrates good inter-class and intra-class separability due to its use of class labels to
guide dimensionality reduction, hence exhibiting better performance in classification and
recognition tasks. However, it fails to reveal the intrinsic nonlinearity of hyperspectral
features, merely showcasing the linear relationships of data separability, leaving gaps in
the extraction and understanding of hyperspectral spectral features. The PCA and MDS
algorithms have poorer inter-class separability, with clear separation between corn and
forest in the boundary areas, but other categories almost entirely overlap, due to these
algorithms not adequately considering local features. The Isomap algorithm shows good
separability for some categories but poor separability for others, and through visualization,
it is clear that the Isomap results reflect the global properties of hyperspectral features well,
determined by the algorithm’s acquisition of global coordinates, and the use of geodesic
distance to calculate the optimal neighborhood also reflects the fact that locally close data
points can adhere better. The LLE algorithm exhibits good intra-class and inter-class
separability, achieving better classification to a certain extent. The LE algorithm shows
poor separability, even featuring a loss of characteristics, related to the setting of the σ

value when constructing distance weights using the Gaussian kernel function. The LTSA
and HLLE algorithms demonstrate certain inter-class separability, with poorer intra-class
separability, but clearly show the nonlinear relationships between high spectral features,
determined by the algorithm’s maintenance of local features and local curvature. MVU
results are similar to those from PCA and MDS, and although MVU is a nonlinear manifold
learning method, it employs the PCA method in constructing local coordinates before
generalizing to the global; hence, MVU can essentially be considered a locally linear, glob-
ally nonlinear manifold learning method, which is why its results are similar to those of
PCA and MDS. Therefore, it can be concluded that nonlinear manifold learning methods
surpass linear manifold learning methods in uncovering the intrinsic nonlinear relation-
ships of hyperspectral imagery spectral features, with LTSA, LLE, and HLLE specifically
demonstrating the nonlinear relationships of hyperspectral imagery spectral features more
effectively. The subsequent sections will delve deeper and more comprehensively into the
study of different manifold learning methods for feature extraction and dimensionality
reduction in hyperspectral imagery.
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Figure 4. Low-dimensional embedding performance of Indian Pines dataset using different manifold
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(i) MVU.

3.2. Experimental Results and Comparative Analysis Based on the Indian Pines Dataset

Based on the selected Indian Pines dataset, this study investigates the feature extrac-
tion of hyperspectral imagery using linear and nonlinear manifold learning methods. The
spectral features extracted after dimensionality reduction are used for land cover classifica-
tion experiments and analysis. Through overall accuracy, Kappa coefficient, neighborhood
computation time, and overall algorithm runtime, the study analyzes and compares the
dimensionality reduction capabilities and feature extraction effectiveness of different man-
ifold learning methods when selecting various neighborhoods and intrinsic dimensions.
Additionally, the study examines the quality of hyperspectral imagery feature extraction
and the effects of dimensionality reduction for the LE and MVU algorithms when different
values of t and λ are chosen.

3.2.1. Linear Manifold Learning Dimensionality Reduction in Hyperspectral Imagery

As the intrinsic dimension d increases, the classification accuracy and Kappa coeffi-
cient for PCA, MDS, and LDA change. From Figure 5, it can be observed that with the
continuous increase in the reduced dimension d, the classification accuracy and Kappa
coefficient of the three methods also increase. However, when d = 10, the classification
accuracy and Kappa coefficient remain essentially unchanged, indicating that the potential
dimensions of spectral features mined using the PCA, MDS, and LDA linear manifold
learning methods for this dataset are basically consistent. Through classification accuracy, it
can be intuitively seen that the accuracy from low to high is sequentially PCA, MDS, LDA,
which suggests that using LDA for hyperspectral imagery feature extraction can achieve
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better dimensionality reduction effects. On the other hand, the algorithm execution time
consumption indicates that the MDS algorithm consumes the most time, whereas LDA
consumes the least. Therefore, combining classification accuracy and time consumption,
it is clear that the LDA algorithm outperforms the other two methods in hyperspectral
imagery feature extraction. However, linear manifold learning algorithms cannot intervene
in the processing through parameterization or other means, requiring users to have some
prior knowledge of the observation object and grasp some characteristics of the data; the
importance of each dimension is the same, unable to distinguish the importance of different
dimensions, and this is not suitable for nonlinear dimensionality reduction problems.
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Compared to unsupervised dimensionality reduction methods like PCA and MDS,
LDA uses labeled sample information to train and obtain the optimal projection direction,
making the projected samples of the same class as compact as possible. Therefore, it exhibits
better performance in classification and recognition tasks. However, like PCA and other
linear dimensionality reduction methods, it also seeks the projection direction through
finding the linear projection of the original data; thus, it is equally ineffective for data with
nonlinear structures.

3.2.2. Nonlinear Manifold Learning Dimensionality Reduction in Hyperspectral Imagery

Traditionally, dimensionality reduction has been performed using linear techniques
such as PCA. In recent years, a plethora of nonlinear techniques for dimensionality reduc-
tion has been proposed [41–43]. This section will investigate and evaluate the performance
of the Isomap, LLE, LTSA, HLLE, LTSA, and MVU nonlinear manifold learning methods
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in hyperspectral imagery feature extraction and dimensionality reduction through the
selection of neighborhood k, intrinsic dimension d, Gaussian kernel function parameter t,
and Lagrange multiplier λ, using land cover classification accuracy (overall accuracy, OA)
and Kappa coefficient values and their patterns of variation.

1. Comparison of classification accuracy in nonlinear manifold learning

(1) Comparison of classification accuracy across manifold learning methods with
different selections of k and d.

As shown in Figure 6a–d, selecting different neighborhoods k = 10, 30, 50, 80, 120, and
150, and with the continuous increase in intrinsic dimension d, the patterns of change in
land cover classification accuracy and Kappa coefficient after dimensionality reduction of
hyperspectral imagery using the Isomap, LLE, HLLE, and LTSA methods are observed.
With the continuous increase in k and d, the land cover classification accuracy after feature
extraction using nonlinear manifold learning methods keeps increasing. For the Isomap,
LLE, and HLLE methods, when d = 20, the classification accuracy and Kappa coefficient
change slowly, and different k values have a minor impact on classification accuracy with
the continued increase in d, indicating the optimal intrinsic dimension d = 20 for these three
methods across different k values; for the LTSA method, when d = 30, the classification
accuracy and Kappa coefficient change slowly, and different k values have a minor impact
on classification accuracy with the continued increase in d, indicating that the optimal
intrinsic dimension for the LTSA method is d = 30 across different k values. It can also
be seen that the land cover classification accuracy after feature extraction using LTSA is
superior to Isomap, LLE, and HLLE. In summary, the Isomap, LLE, HLLE, and LTSA
methods can all achieve feature extraction from hyperspectral imagery, but in terms of
classification accuracy, the LTSA method outperforms the other three nonlinear manifold
learning methods.

In the LE algorithm, when k is set to different values, the classification accuracy and
Kappa coefficient change with the continuous increase in intrinsic dimension d for t = 1, 50,
100, 150, 200, and 300 (as shown in Figure 7). Regardless of the value of k, when t = 1, the
land cover classification accuracy after feature extraction by the LE method remains almost
unchanged; with a certain k value, as t continuously increases, so does the classification
accuracy; with certain values of k and t, as d increases, the classification accuracy also
increases, and after d = 10, the classification accuracy maintains an equilibrium; with a
fixed d, as t increases, classification accuracy continues to increase, but when t = 120, the
classification accuracy no longer continues to increase; hence, it can be seen that when
d = 10, with the increase in d and k, the classification accuracy almost does not change, but
it continuously increases with the increase in t.

This is due to the fact that in the LE algorithm, the parameter t is used to control
the scaling of the distances in the Gaussian kernel, which affects the computation of the
inter-sample weights. When the value of t is small, neighbors very close to the centroid
have a significant effect on the centroid, thus emphasizing the local structure of the data.
When the t value is large, the Gaussian kernel decays more slowly, thus emphasizing
the global structure of the data. Therefore, the size of the t value needs to be set flexibly
according to the research needs.

In the MVU algorithm, a key role is played by λ, which represents the importance of
the distance invariance constraint between each nearest neighbor pair (i.e., pairs of points
that are close together in the high-dimensional space). If λ is too large, it may lead to a low-
dimensional representation that is too dependent on the local neighborhood structure of
the original data, and λ is too small to emphasize the global neighborhood structure. Thus,
inappropriate values may cause the algorithm to have difficulty converging or converging
to a local optimum.

In the MVU algorithm, when k is set to different values, the classification accuracy
and Kappa coefficient change with the continuous increase in intrinsic dimension d for
λ = 0.5, 1, 5, and 10 (as shown in Figure 8). With a certain λ value, as k continuously
increases, so does the classification accuracy, which then changes slowly when k = 80; with
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certain k and λ values, as d increases, the classification accuracy also increases, and after
d = 10, the classification accuracy maintains equilibrium; with a fixed d, as λ increases, the
classification accuracy also slowly increases, but with negligible difference.
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(2) Comprehensive analysis of classification accuracy across manifold learning meth-
ods with different selections of k and d.

As illustrated in Figure 9a–f, selecting different neighborhoods k = 10, 30, 50, 80, 120,
and 150, and with the continuous increase in intrinsic dimension d, the study compares and
contrasts the changing patterns of land cover classification accuracy and Kappa coefficient
using the Isomap, LLE, LTSA, HLLE, LTSA, and MVU nonlinear manifold learning methods
in hyperspectral imagery. With a certain k value, as the intrinsic dimension d continuously
increases, the land cover classification accuracy of the Isomap, LLE, LTSA, HLLE, LTSA,
and MVU nonlinear manifold learning methods also continuously increases and eventually
reaches a balance. However, it is observable that the intrinsic dimension d at which each
nonlinear manifold learning method’s classification accuracy reaches its equilibrium value
differs, indicating that the intrinsic dimensions of hyperspectral imagery features derived
from different manifold learning methods are not consistent. Moreover, it is seen that the
classification accuracy obtained by the LTSA method is slightly higher than that of the other
five nonlinear manifold learning methods; as the k value continuously increases, the land
cover classification accuracy and Kappa coefficient of each nonlinear manifold learning
method also continuously increase, which also indicates the impact of neighborhood
selection on the results of manifold learning feature extraction. Therefore, to achieve ideal
feature extraction results with any nonlinear manifold learning method, it is necessary to
select appropriate neighborhood k and intrinsic dimension d values.
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From the confusion matrices of each algorithm, as shown in Figure 10, it is evident
that the LTSA algorithm surpasses other manifold learning methods in terms of overall
classification accuracy as well as the classification accuracy for each type of land cover. This
indicates that the LTSA algorithm outperforms other manifold learning methods in both
overall and individual land cover classification accuracies.

2. Comparison of neighborhood computation time in nonlinear manifold learning

As shown in Figure 11, selecting different neighborhoods k = 50, 120, and 150, and
with the continuous increase in intrinsic dimension d, the study investigates and compares
the neighborhood computation time for dimensionality reduction in hyperspectral imagery
using the Isomap, LLE, LTSA, HLLE, LTSA, and MVU manifold learning methods. When
a certain k value is chosen, the neighborhood computation time for Isomap, HLLE, and
MVU increases with the increase in dimension d, indicating that dimension d affects
their neighborhood computation. Conversely, for LLE, LE, and LTSA, the neighborhood
computation time remains balanced with the increase in dimension d, suggesting that
dimension d does not affect their neighborhood computation. With a certain d value,
the neighborhood computation time for the Isomap, LLE, LTSA, HLLE, LTSA, and MVU
manifold learning methods also increases with the increase in k, indicating that k influences
computation. It can also be found that regardless of the continuous increase and changes
in neighborhood k and intrinsic dimension d, the neighborhood computation time for LE
remains almost unchanged, indicating that the LE method has the lowest time complexity
among all nonlinear manifold learning methods. However, it can also be observed that the
neighborhood computation time for HLLE increases the most with the continuous increase
and changes in neighborhood k and intrinsic dimension d, indicating that it has the highest
computational complexity among all manifold learning methods.

3. Comparison of algorithm runtime in nonlinear manifold learning

As illustrated in Figure 12, selecting different neighborhoods k = 50, 120, and 150, and
with the continuous increase in intrinsic dimension d, the study investigates and compares
the algorithm runtime for dimensionality reduction in hyperspectral imagery using the
Isomap, LLE, LTSA, HLLE, LTSA, and MVU nonlinear manifold learning methods. When
a certain k value is chosen, the runtime of the Isomap, HLLE, LTSA, and MVU methods
continuously increases with the increase in intrinsic dimension d, and both the Isomap and
MVU methods experience a significant increase in time consumption with the increase in d,
whereas the LLE, LE, HLLE, and LTSA methods show a smaller increase; with a certain d
value, as the neighborhood k continuously increases, the runtime of the Isomap and HLLE
methods increases more rapidly, the LLE, LTSA, and MVU methods increase more slowly,
and the LE method’s runtime remains almost unchanged. It can also be seen that regardless
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of different selections of k and d, the overall runtime of the HLLE method is significantly
higher than that of the other five nonlinear manifold learning methods, indicating that
HLLE has the highest algorithmic complexity.
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4. Comparison of neighborhood and algorithm runtime in nonlinear manifold learning

As shown in Figure 13a–f, selecting different neighborhoods k = 10, 50, 80, 120, and
150, and with the continuous increase in intrinsic dimension d, the study investigates
and compares the neighborhood and algorithm runtime for dimensionality reduction in
hyperspectral imagery using the Isomap, LE, LLE, HLLE, LTSA, and MVU nonlinear
manifold learning methods.

Figure 13a,b reveal that with a fixed d value, as k increases, both neighborhood compu-
tation and algorithm runtime for the Isomap and LE methods increase, and the runtime is
consistently greater than the neighborhood computation time, indicating that neighborhood
computation time has a relatively small impact on the overall algorithm runtime during
dimensionality reduction; with a fixed k value, as dimension d continuously increases,
both neighborhood computation and algorithm runtime increase slowly, suggesting that
dimension d has a minor impact on algorithm time cost.

Figure 13c shows that with a fixed d value, as k increases, both neighborhood compu-
tation and algorithm runtime increase, and the difference between them is small, indicating
that the LLE method’s neighborhood computation significantly impacts the overall algo-
rithm runtime cost during dimensionality reduction; with a fixed k value, as dimension d
continuously increases, both neighborhood computation and algorithm runtime increase
slowly, suggesting that dimension d has a minor impact on algorithm time cost.

Figure 13d illustrates that with a fixed d value, as k increases, both neighborhood
computation and algorithm runtime increase, and the difference between them is significant,
indicating that the HLLE method’s neighborhood computation time is far less than the
overall algorithm runtime cost; with a fixed k value, as dimension d continuously increases,
both neighborhood computation and algorithm runtime increase slowly, suggesting that
dimension d has a minor impact on algorithm time cost.



Sensors 2024, 24, 2089 23 of 40

Sensors 2024, 24, x FOR PEER REVIEW 23 of 43 
 

 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 10. Confusion matrices for land cover classification using various manifold learning meth-
ods: (a) Isomap; (b) LLE; (c) LE; (d) HLLE; (e) LTSA; (f) MVU. 

2. Comparison of neighborhood computation time in nonlinear manifold learning 
As shown in Figure 11, selecting different neighborhoods k = 50, 120, and 150, and 

with the continuous increase in intrinsic dimension d, the study investigates and com-
pares the neighborhood computation time for dimensionality reduction in hyperspectral 
imagery using the Isomap, LLE, LTSA, HLLE, LTSA, and MVU manifold learning meth-
ods. When a certain k value is chosen, the neighborhood computation time for Isomap, 
HLLE, and MVU increases with the increase in dimension d, indicating that dimension d 
affects their neighborhood computation. Conversely, for LLE, LE, and LTSA, the neigh-
borhood computation time remains balanced with the increase in dimension d, suggesting 
that dimension d does not affect their neighborhood computation. With a certain d value, 
the neighborhood computation time for the Isomap, LLE, LTSA, HLLE, LTSA, and MVU 
manifold learning methods also increases with the increase in k, indicating that k 

Figure 10. Confusion matrices for land cover classification using various manifold learning methods:
(a) Isomap; (b) LLE; (c) LE; (d) HLLE; (e) LTSA; (f) MVU.



Sensors 2024, 24, 2089 24 of 40

Sensors 2024, 24, x FOR PEER REVIEW 24 of 43 
 

 

influences computation. It can also be found that regardless of the continuous increase 
and changes in neighborhood k and intrinsic dimension d, the neighborhood computation 
time for LE remains almost unchanged, indicating that the LE method has the lowest time 
complexity among all nonlinear manifold learning methods. However, it can also be ob-
served that the neighborhood computation time for HLLE increases the most with the 
continuous increase and changes in neighborhood k and intrinsic dimension d, indicating 
that it has the highest computational complexity among all manifold learning methods. 

 
Figure 11. Based on the Indian Pines dataset, take a certain value of k and compare the computation 
time of the best neighborhood of manifold learning algorithms as the dimension d increases.. 

3. Comparison of algorithm runtime in nonlinear manifold learning 
As illustrated in Figure 12, selecting different neighborhoods k = 50, 120, and 150, and 

with the continuous increase in intrinsic dimension d, the study investigates and com-
pares the algorithm runtime for dimensionality reduction in hyperspectral imagery using 
the Isomap, LLE, LTSA, HLLE, LTSA, and MVU nonlinear manifold learning methods. 
When a certain k value is chosen, the runtime of the Isomap, HLLE, LTSA, and MVU 
methods continuously increases with the increase in intrinsic dimension d, and both the 
Isomap and MVU methods experience a significant increase in time consumption with the 
increase in d, whereas the LLE, LE, HLLE, and LTSA methods show a smaller increase; 
with a certain d value, as the neighborhood k continuously increases, the runtime of the 
Isomap and HLLE methods increases more rapidly, the LLE, LTSA, and MVU methods 
increase more slowly, and the LE method’s runtime remains almost unchanged. It can also 
be seen that regardless of different selections of k and d, the overall runtime of the HLLE 
method is significantly higher than that of the other five nonlinear manifold learning 
methods, indicating that HLLE has the highest algorithmic complexity. 

Figure 11. Based on the Indian Pines dataset, take a certain value of k and compare the computation
time of the best neighborhood of manifold learning algorithms as the dimension d increases..

Sensors 2024, 24, x FOR PEER REVIEW 25 of 43 
 

 

 
Figure 12. Based on the Indian Pines dataset, take a certain value of k and compare the running time 
of manifold learning algorithms as the dimension d increases. 

4. Comparison of neighborhood and algorithm runtime in nonlinear manifold learning 
As shown in Figure 13a–f, selecting different neighborhoods k = 10, 50, 80, 120, and 

150, and with the continuous increase in intrinsic dimension d, the study investigates and 
compares the neighborhood and algorithm runtime for dimensionality reduction in hy-
perspectral imagery using the Isomap, LE, LLE, HLLE, LTSA, and MVU nonlinear mani-
fold learning methods. 

Figure 13a,b reveal that with a fixed d value, as k increases, both neighborhood com-
putation and algorithm runtime for the Isomap and LE methods increase, and the runtime 
is consistently greater than the neighborhood computation time, indicating that neighbor-
hood computation time has a relatively small impact on the overall algorithm runtime 
during dimensionality reduction; with a fixed k value, as dimension d continuously in-
creases, both neighborhood computation and algorithm runtime increase slowly, suggest-
ing that dimension d has a minor impact on algorithm time cost. 

Figure 13c shows that with a fixed d value, as k increases, both neighborhood com-
putation and algorithm runtime increase, and the difference between them is small, indi-
cating that the LLE method’s neighborhood computation significantly impacts the overall 
algorithm runtime cost during dimensionality reduction; with a fixed k value, as dimen-
sion d continuously increases, both neighborhood computation and algorithm runtime 
increase slowly, suggesting that dimension d has a minor impact on algorithm time cost. 

Figure 13d illustrates that with a fixed d value, as k increases, both neighborhood 
computation and algorithm runtime increase, and the difference between them is signifi-
cant, indicating that the HLLE method’s neighborhood computation time is far less than 
the overall algorithm runtime cost; with a fixed k value, as dimension d continuously in-
creases, both neighborhood computation and algorithm runtime increase slowly, suggest-
ing that dimension d has a minor impact on algorithm time cost. 

Figure 13e indicates that with a fixed d value, as k increases, both neighborhood com-
putation and algorithm runtime increase, and the difference between them is stable, indi-
cating that the LTSA method’s neighborhood computation time and overall algorithm 
runtime cost are comparable; with a fixed k value, as dimension d continuously increases, 
both neighborhood computation and algorithm runtime increase slowly, suggesting that 
dimension d has a minor impact on algorithm time cost. 

Figure 13f demonstrates that with a fixed d value, as k increases, both neighborhood 
computation and algorithm runtime increase, and the difference between them continu-
ously grows, indicating that the MVU method’s neighborhood computation time has an 

Figure 12. Based on the Indian Pines dataset, take a certain value of k and compare the running time
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Figure 13e indicates that with a fixed d value, as k increases, both neighborhood
computation and algorithm runtime increase, and the difference between them is stable,
indicating that the LTSA method’s neighborhood computation time and overall algorithm
runtime cost are comparable; with a fixed k value, as dimension d continuously increases,
both neighborhood computation and algorithm runtime increase slowly, suggesting that
dimension d has a minor impact on algorithm time cost.

Figure 13f demonstrates that with a fixed d value, as k increases, both neighborhood
computation and algorithm runtime increase, and the difference between them contin-
uously grows, indicating that the MVU method’s neighborhood computation time has
an increasingly significant impact on the overall algorithm with the continuous increase
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in k; with a fixed k value, as dimension d continuously increases, both neighborhood
computation and algorithm runtime increase slowly, and the difference between them is
significant and tends to stabilize, suggesting that only when dimension d is large does it
impact the algorithm runtime.

The aforementioned research content compares the performance of six nonlinear
manifold learning methods, Isomap, LE, LLE, HLLE, LTSA, and MVU, in dimensionality
reduction of hyperspectral imagery, which can be summarized as follows:

The neighborhood computation time for the Isomap, LE, and HLLE methods is less
than the total algorithm runtime, indicating that the impact of neighborhood computation
time on the overall algorithm runtime is relatively minor. In contrast, for the LLE algorithm,
the neighborhood computation time occupies a significant proportion of the total algorithm
runtime, thus having a considerable impact on the overall algorithm performance. The
LTSA algorithm shows a stable difference between neighborhood computation time and
total runtime, suggesting that the expenses for neighborhood computation and overall
algorithm runtime are approximately equal. For the MVU algorithm, the discrepancy
between neighborhood computation time and total runtime is pronounced, indicating an
increasingly significant impact of neighborhood computation time on the total algorithm
runtime. Comparing these nonlinear manifold learning methods reveals that both neigh-
borhood computation time and algorithm runtime are significantly influenced by the size of
the neighborhood, whereas the increase in intrinsic dimensionality has a relatively smaller
effect on the time expenditure.
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3.3. Experimental Results and Comparative Analysis Based on the Pavia University Dataset

This section of the experiment is conducted based on the selected Pavia University
dataset, following the same research approach and process as that based on the Indian Pines
dataset. This part focuses on studying feature extraction using various manifold learning
methods applied to land cover classification experiments based on the Pavia University
dataset. It also investigates the impact of neighborhood size k and intrinsic dimensionality
d on the neighborhood computation time and overall runtime of each manifold learning
algorithm. The purpose is to compare these results with the experimental results from the
Indian Pines dataset to validate the universality and generalizability of the conclusions
drawn in this paper.

3.3.1. Linear Manifold Learning Dimensionality Reduction in Hyperspectral Imagery

As indicated in Figure 14, the land cover classification results based on the Pavia
University dataset are consistent with the experimental outcomes from the Indian Pines
dataset. However, a notable difference is that feature extraction using the MDS algorithm
on the Pavia University dataset required the least amount of time, whereas the time ex-
penditures for LDA and PCA were virtually indistinguishable. This suggests that the
time cost of feature extraction using linear manifold learning methods varies when facing
different datasets. Given that PCA, MDS, and LDA are all linear methods, and consider-
ing the inherent non-linear relationships within hyperspectral data, this also highlights
the limitations of linear methods in processing non-linear data. Furthermore, it demon-
strates that the non-linear relationships in hyperspectral data have a significant impact on
linear methods.

Sensors 2024, 24, x FOR PEER REVIEW 28 of 43 
 

 

Pines dataset. This part focuses on studying feature extraction using various manifold 
learning methods applied to land cover classification experiments based on the Pavia Uni-
versity dataset. It also investigates the impact of neighborhood size k and intrinsic dimen-
sionality d on the neighborhood computation time and overall runtime of each manifold 
learning algorithm. The purpose is to compare these results with the experimental results 
from the Indian Pines dataset to validate the universality and generalizability of the con-
clusions drawn in this paper. 

3.3.1. Linear Manifold Learning Dimensionality Reduction in Hyperspectral Imagery 
As indicated in Figure 14, the land cover classification results based on the Pavia Uni-

versity dataset are consistent with the experimental outcomes from the Indian Pines da-
taset. However, a notable difference is that feature extraction using the MDS algorithm on 
the Pavia University dataset required the least amount of time, whereas the time expend-
itures for LDA and PCA were virtually indistinguishable. This suggests that the time cost 
of feature extraction using linear manifold learning methods varies when facing different 
datasets. Given that PCA, MDS, and LDA are all linear methods, and considering the in-
herent non-linear relationships within hyperspectral data, this also highlights the limita-
tions of linear methods in processing non-linear data. Furthermore, it demonstrates that 
the non-linear relationships in hyperspectral data have a significant impact on linear 
methods. 

  
(a) (b) 

 
(c) 

Figure 14. Comparison of dimensionality reduction of Pavia University datasets using different 
manifold learning methods as the intrinsic dimension d increases: (a) overall accuracy; (b) Kappa 
coefficient; (c) algorithm runtime. 

3.3.2. Nonlinear Manifold Learning Dimensionality Reduction in Hyperspectral Imagery 
1. Comparison of classification accuracy in nonlinear manifold learning 

(1) Comparison of classification accuracy across manifold learning methods with dif-
ferent selections of k and d. 

For this part of the experiment, neighborhood sizes of k = 10, 30, 50, 80, and 100 were 
selected. As illustrated in Figure 15, the classification results after dimensionality 

Figure 14. Comparison of dimensionality reduction of Pavia University datasets using different
manifold learning methods as the intrinsic dimension d increases: (a) overall accuracy; (b) Kappa
coefficient; (c) algorithm runtime.

3.3.2. Nonlinear Manifold Learning Dimensionality Reduction in Hyperspectral Imagery

1. Comparison of classification accuracy in nonlinear manifold learning

(1) Comparison of classification accuracy across manifold learning methods with
different selections of k and d.

For this part of the experiment, neighborhood sizes of k = 10, 30, 50, 80, and 100 were
selected. As illustrated in Figure 15, the classification results after dimensionality reduction
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using the Isomap, LLE, HLLE, and LTSA methods follow the same pattern of variation with
neighborhood size and intrinsic dimensionality as that observed with the results based on
the Indian Pines dataset.
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In this part of the experiment, the same value of t as that used in the Indian Pines
dataset was selected. As shown in Figure 16, the land cover classification experiment
after dimensionality reduction through the LE algorithm revealed that the LE algorithm’s
sensitivity to the local weight t follows a consistent pattern with the Indian Pines dataset.
This indicates that the influence of the t value on the LE algorithm during hyperspectral
data dimensionality reduction is definite.

In this segment of the experiment, the same λ value as that used in the Indian Pines
dataset was selected. As depicted in Figure 17, land cover classification experiments con-
ducted with post-dimensionality reduction via the MVU algorithm demonstrated that the
classification results after dimensionality reduction are inconsistently affected by the neigh-
borhood size k and λ value across different hyperspectral datasets. Specifically, results from
the Pavia University dataset indicated that when λ exceeds 5, an increase in neighborhood
size k leads to a significant decrease in classification accuracy. This implies that the selection
of neighborhood size k and λ significantly impacts the classification outcomes after dimen-
sionality reduction when processing various datasets. Therefore, careful consideration of
the values of neighborhood size k and λ is essential when employing the MVU algorithm
for feature extraction from hyperspectral images for land cover classification experiments.
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(2) Comprehensive analysis of classification accuracy across manifold learning meth-
ods with different selections of k and d.

As depicted in Figure 18, by selecting neighborhood sizes k = 10, 30, 50, 80, and 100 and
varying the intrinsic dimensionality d, this study investigates and compares the changing
patterns of land cover classification accuracy and the Kappa coefficient for hyperspectral
images using the nonlinear manifold learning methods of Isomap, LLE, LTSA, HLLE, LTSA,
and MVU. Experimental results indicate that, consistent with outcomes derived from the
Indian Pines dataset, the classification accuracy of manifold learning algorithms based
on the Pavia University dataset adheres to the same pattern of variation with respect to
neighborhood size k and intrinsic dimensionality d, with the LTSA algorithm consistently
outperforming other manifold learning methods in terms of classification accuracy.
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The confusion matrices of each algorithm, as shown in Figure 19, clearly demonstrate
that the experimental results are consistent with those obtained from the Indian Pines
dataset. Validation with two datasets confirmed that the classification accuracy of the
local tangent space alignment (LTSA) algorithm surpasses that of other manifold learning
methods. This also verifies that the research findings of this paper are entirely correct.

2. Comparison of neighborhood computation time in nonlinear manifold learning

As revealed in Figure 20, compared to the Indian Pines dataset, the pattern of time
consumption for neighborhood calculations by various manifold learning methods with
changes in neighborhood size k and intrinsic dimensionality remains fundamentally con-
sistent. However, a distinct observation is that the neighborhood computation time for the
MVU algorithm on the Pavia University dataset shows minimal variation with an increase
in the k value. This indicates that the impact of different hyperspectral image datasets on
the feature extraction process using the MVU algorithm is significant.

3. Comparison of algorithm runtime in nonlinear manifold learning

As demonstrated in Figure 21, the runtime of various manifold learning methods based
on the Pavia University dataset, when compared with the Indian Pines dataset, follows
a fundamentally consistent pattern with changes in neighborhood size k and intrinsic
dimensionality d.
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4. Discussion

This study primarily investigates the performance of various manifold learning tech-
niques in the dimensionality reduction of hyperspectral images and examines the patterns
of how changes in the neighborhood size and intrinsic dimensionality affect the outcomes of
dimensionality reduction. Below, we discuss and analyze the experimental results obtained
in this study.

4.1. Discussion on the Visualization of Hyperspectral Image Dimensionality Reduction Using
Manifold Learning Methods

Through the comparative visualization of dimensionality reduction by various man-
ifold learning methods, the linear discriminant analysis (LDA) algorithm demonstrates
superior intra-class and inter-class separability. In contrast, the principal component
analysis (PCA) and multidimensional scaling (MDS) algorithms exhibit poorer inter-class
separability, with clear separation between the edge regions of corn and forest, but almost
all other categories overlap due to these algorithms’ insufficient consideration of local
features. The Isomap algorithm shows better separability; however, the separability of
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other categories is poorer, which is determined by the algorithm’s acquisition of global co-
ordinates. The locally linear embedding (LLE) algorithm effectively reflects both intra-class
and inter-class separability. The separability of the Laplacian eigenmaps (LE) algorithm
is poor, indicating that the construction of distance weights using the Gaussian kernel
function significantly affects the classification results. The local tangent space alignment
(LTSA) and Hessian locally linear embedding (HLLE) algorithms exhibit certain degrees
of inter-class separability and poorer intra-class separability but clearly demonstrate the
nonlinear relationships between high-dimensional features, determined by the algorithms’
maintenance of local properties and curvature. The maximum variance unfolding (MVU)
algorithm’s results are similar to those of PCA and MDS. It can be concluded that when
exploring the intrinsic nonlinear relationships of spectral features in hyperspectral images,
nonlinear manifold learning methods outperform linear ones, with LTSA, LLE, and HLLE
showcasing a better representation of the nonlinear relationships among spectral features
of hyperspectral images.

4.2. Impact of Different Parameters on the Results of Feature Extraction from Hyperspectral Images
Using Manifold Learning

Through comparative analysis of the feature extraction results from hyperspectral
images using various manifold learning methods, this article illustrates that different
parameters significantly impact the outcomes.

Since linear manifold learning methods do not incorporate a neighborhood construc-
tion phase, the classification outcomes solely depend on the determination of intrinsic
dimensionality. By setting different intrinsic dimensions, it was found that the classification
performance of LDA surpasses that of MDS and PCA. This superiority is attributed to
LDA’s requirement for labeled sample information during the dimensionality reduction
process, hence its enhanced performance, although it struggles with data possessing non-
linear structures. In the context of dimensionality reduction of hyperspectral datasets using
nonlinear manifold learning, optimal neighborhood sizes k and intrinsic dimensions d
exist, yet the optimal parameters differ across methods, dictated by whether the nonlinear
manifold learning method bases its dimensionality reduction on global or local relational
principles. Specifically for the LE and MVU algorithms, due to their unique characteristics,
the outcomes of dimensionality reduction are significantly influenced by parameters t
and λ. Therefore, in practical research, it is crucial to set appropriate values for t and
λ based on research needs to either preserve global or local relationships. Comparative
analysis of classification outcomes indicates that the LTSA algorithm outperforms other
manifold learning methods, making it a preferred choice for studies on feature extraction
from hyperspectral images.

4.3. The Impact of Intrinsic Dimension d and Neighborhood k on Neighborhood Computation and
Overall Algorithm Runtime

Based on the analysis of neighborhood computation time and overall algorithm run-
time as functions of neighborhood size and intrinsic dimensionality, it is observed that the
Isomap and LE methods have a lower neighborhood computation time impact on the total
runtime of the algorithm compared to the LLE method. Additionally, the dimension d has
a minor effect on the neighborhood computation and runtime expenses for the LE, HLLE,
and LTSA methods. However, the HLLE method incurs a significant total runtime cost due
to the construction of quadratic terms required for dimensionality reduction, resulting from
its higher computational complexity. The neighborhood computation time and overall run-
time cost for the LTSA method are comparable, indicating a minor impact of neighborhood
computation on the total runtime of the LTSA algorithm. The neighborhood computation
time cost for the MVU method varies with k and d and is dependent on the dataset used;
different datasets show significant variations in the neighborhood computation time for the
MVU algorithm. Therefore, our study on the neighborhood computation time and overall
runtime of various manifold learning algorithms will provide a reference and basis for
future researchers investigating related issues.
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4.4. Discussion on Other Widely Researched Hyperspectral Image Feature Extraction Methods

Currently, several other methods for feature extraction from hyperspectral imagery are
widely used: feature extraction based on spatial domain algorithms, deep-learning-based
feature extraction, band combination-based feature extraction, and index parameter-based
feature extraction. However, feature extraction methods based on spatial domain algo-
rithms suffer from large computational requirements for statistical models and difficulties in
selecting model parameters. Deep-learning-based feature extraction possesses strong fitting
capabilities, but with the complexity of network structures, it can lead to overfitting and is
highly susceptible to falling into local minima. Band combination-based feature extraction
can only group consecutive bands as one, limiting the improvement of its discriminative
performance. Index parameter-based feature extraction requires domain-specific expert
knowledge. Manifold learning methods can effectively express low-dimensional mani-
fold structures embedded in high-dimensional spaces, but these methods are significantly
influenced by parameters. Thus, this forms the purpose and significance of our study.

4.5. Uncertainties, Limitations, and Future Direction
4.5.1. Uncertainties

(1) Model assumption uncertainty: Due to the influence of equipment and external
environmental factors on hyperspectral data acquisition, the distribution of data points
may not be entirely situated within a single manifold space; instead, there may exist two or
more manifold spaces. Consequently, the fundamental assumptions of the model might
introduce uncertainty, affecting the effectiveness of dimensionality reduction.

(2) Uncertainty in parameter selection:
Choice of neighborhood k: The size of k directly impacts the representation of the

manifold’s local structure. A k value that is too small might fail to capture sufficient
local information, whereas k value that is too large could introduce noise or irrelevant
features, leading to poorer dimensionality reduction outcomes. Different datasets and
manifold learning algorithms have varying optimal values for k, lacking a unified standard
for selection.

Selection of intrinsic dimension d: The choice of intrinsic dimension relates to the
richness of data representation in a low-dimensional space. Setting d too low could result
in the loss of crucial information; conversely, setting d too high might introduce noise or
meaningless dimensions.

(3) Uncertainty of the algorithms themselves: Different manifold learning algorithms
may produce varying dimensionality reduction outcomes when processing the same data.
This uncertainty stems from the internal mathematical mechanisms and optimization
strategies of the algorithms. For instance, LLE focuses on preserving the distances between
local neighboring points, whereas Isomap aims to maintain global geodesic distances.

(4) Data uncertainty: The complexity and diversity of hyperspectral data also introduce
uncertainty into manifold learning. For instance, the spectral similarity between different
ground objects, noise and outliers in the data, as well as the unevenness of sampling
density, can all affect the quality of dimensionality reduction and the optimization of
parameter selection.

(5) Uncertainty in computational complexity and scalability: As the volume of data
increases, the computational complexity of manifold learning algorithms also significantly
rises. For large-scale hyperspectral datasets, the scalability and efficiency of algorithms
become crucial considerations, which may limit the application scope of some computa-
tionally intensive algorithms.

4.5.2. Limitations

(1) Research scope of manifold learning methods: Although this study has attempted
to include as many existing manifold learning methods as possible, it has not encompassed
all available methods due to certain reasons. Therefore, a comprehensive study and
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comparative analysis of all manifold learning methods for hyperspectral feature extraction,
such as t-SNE and UMAP, have not been conducted.

(2) Limitations of model assumptions: The manifold learning methods are based on
the assumption that hyperspectral data are distributed on a low-dimensional manifold.
Although this assumption is reasonable in many cases, it may not apply universally to all
hyperspectral data. The intrinsic structure of complex data might be more complicated
than a low-dimensional manifold, potentially limiting the applicability and performance of
the model.

(3) Difficulty in parameter selection: In this paper, parameters are selected primarily
based on existing research literature, through cross-validation, or by repeated adjustment
according to the classification results in the experimental phase until final determination,
rather than achieving adaptive parameter selection.

(4) Computational complexity: Though some manifold learning methods have shown
excellent performance on small datasets, their computational complexity becomes signifi-
cantly high when applied to large-scale hyperspectral data, demanding extensive computa-
tional resources. This limits their practical applicability on a large scale.

(5) Robustness issues: Manifold learning methods are sensitive to noise and outliers,
which can degrade the quality of dimensionality reduction. Especially in hyperspectral
imagery, the uncertainty in data quality due to sensor noise, atmospheric interference, etc.
may increase instability in the dimensionality reduction process.

(6) Limitations in cross-domain applications: Current research and applications of
manifold learning methods are mainly focused on specific data types or domains. These
methods may require targeted adjustments or optimizations for different types of data or
cross-domain applications, limiting their widespread use.

4.5.3. Future Direction

The experimental results have demonstrated the effectiveness of the algorithms. Al-
though manifold learning-based feature extraction applications for hyperspectral imaging
have achieved substantial results in the past few years, the complexity of the mathematical
theoretical foundation, along with the influence of acquiring hyperspectral images from
multiple platforms and sensors under highly complex external environmental conditions
and the intersection and integration across related disciplines, remain issues worthy of
further exploration.

(1) Development of improved manifold learning algorithms: In response to the uncer-
tainties of existing algorithms, such as uncertainties in model assumptions and parameter
selection, future research can focus on developing new or improved manifold learning al-
gorithms. These algorithms should more accurately capture the intrinsic structure of hyper-
spectral data while providing more flexible and adaptive parameter setting mechanisms.

(2) Big data and computational efficiency: As the volume of hyperspectral data in-
creases, future manifold learning algorithms need to pay close attention to computational
efficiency and scalability. The development of distributed computing and parallel pro-
cessing methods and the utilization of modern hardware architectures (such as GPU
acceleration) to handle large-scale hyperspectral datasets are essential.

(3) Robustness and noise handling: Given the complexity of hyperspectral data, new
manifold learning algorithms should improve robustness to noise and outliers. Research
on effectively identifying and handling these data can enhance the accuracy and reliability
of dimensionality reduction results.

(4) Integration of manifold learning algorithms with various technologies and fusion
with multi-source data: It is noteworthy that in the past two years, with the introduction and
successful application of more novel and effective machine-learning and pattern analysis
algorithms, several manifold learning methods that are more closely integrated with
machine-learning techniques have been published. Some examples include neighborhood
feature preservation methods based on local discriminant analysis [44], multi-feature
manifold learning methods [45], and tensor manifold learning methods in high-order
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feature spaces [46], among others. Future research could leverage GeoAI technology,
combining machine learning and deep learning to enhance the efficiency and accuracy of
feature extraction in manifold learning models. Effectively integrating the strengths of deep
learning, with its powerful learning capabilities and efficient feature representation, could
further improve algorithm performance and foster the development of novel manifold
learning algorithms. Additionally, future studies might consider fusing hyperspectral data
with other multi-source remote-sensing data to enrich information acquisition, potentially
augmenting the performance of nonlinear manifold learning algorithms in tasks such as
land cover classification and object recognition.

5. Conclusions

(1) This article is grounded in the theory of differential manifolds and the relevant
definitions of differential geometry, providing a formalized definition of dimensional-
ity reduction and feature extraction for hyperspectral images, as well as the process of
feature extraction through manifold learning. By employing manifold learning for the
three-dimensional visualization of hyperspectral images, it has been determined that non-
linear manifold learning methods possess certain advantages in capturing the intrinsic
nonlinear structural relationships within hyperspectral imagery. The classification results
indicate that the parameters, neighborhood k and intrinsic dimension d, have a significant
impact on feature extraction using nonlinear manifold learning methods, with the LTSA
algorithm exhibiting higher classification accuracy. This section’s research contributes
valuable insights into the principles of dimensionality reduction for hyperspectral data
through manifold learning and offers significant guidance for the selection of manifold
learning algorithms in hyperspectral feature extraction.

(2) Comparing the neighborhood computation time and total runtime for feature
extraction and dimensionality reduction using different manifold learning methods in
hyperspectral imaging, it was found that the HLLE algorithm has both a neighborhood
computation time and a total runtime that are greater than those of other manifold methods,
indicating a higher computational complexity for HLLE. In contrast, the LE algorithm’s
neighborhood computation time and total runtime are significantly lower than those of
other manifold methods, suggesting that LE has a very low computational complexity. The
computational complexities of other nonlinear manifold learning methods fall between
these two algorithms. This section’s findings are of significant reference value when
considering the time expenditure for dimensionality reduction.

(3) Under the influence of local structure weight λ and Gaussian kernel bandwidth
t, analysis of the MVU and LE algorithms demonstrates that smaller t values emphasize
the local structure of the data, whereas smaller λ values highlight the global structure.
Conversely, larger t values give precedence to global structures, whereas larger λ values
emphasize local structures. Specifically, the MVU algorithm’s classification results after
dimensionality reduction are greatly influenced by λ and neighborhood size k when facing
different datasets. This section provides theoretical guidance for studying high-dimensional
data dimensionality reduction using the MVU and LE algorithms.
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