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Abstract: There is a growing body of literature investigating the relationship between the frequency
domain analysis of heart rate variability (HRV) and cognitive Stroop task performance. We proposed
a combined assessment integrating trunk mobility in 72 healthy women to investigate the relationship
between cognitive, cardiac, and motor variables using principal component analysis (PCA). Addition-
ally, we assessed changes in the relationships among these variables after a two-month intervention
aimed at improving the perception–action link. At baseline, PCA correctly identified three compo-
nents: one related to cardiac variables, one to trunk motion, and one to Stroop task performance.
After the intervention, only two components were found, with trunk symmetry and range of motion,
accuracy, time to complete the Stroop task, and low-frequency heart rate variability aggregated into a
single component using PCA. Artificial neural network analysis confirmed the effects of both HRV
and motor behavior on cognitive Stroop task performance. This analysis suggested that this protocol
was effective in investigating embodied cognition, and we defined this approach as “embodimetrics”.

Keywords: embodiment; heart rate variability; Stroop task; artificial intelligence; motor control

1. Introduction

Any comprehensive model of wellness should account for a complex mix of cognitive,
affective, behavioral, and physiological factors that contribute to individual differences in
health and disease [1]. These individual differences related to blood and pulse pressures
are often associated with autonomic balance and may influence cognitive performance [1].
In fact, there is a growing body of literature that highlights the relationship between vagally
mediated heart rate variability (HRV) and good performance in cognitive tasks that require
the use of mental functions [1,2]. HRV is a widely used measure due to its convenience
and noninvasive features. It is also associated with the activation of the sympathetic
nervous system (SNS), resulting in a decrease in its high-frequency components (and a
relevant increase in low-frequency components) when the sympathetic nervous system is
activated [3,4].

Heart rate variability was also found to be associated with Stroop task performance [5],
which is frequently used to assess the ability to manage interfering information at a cogni-
tive level [6]. As part of the Stroop task, the subject is asked to verbally read a word that
represents the name of a color, which may be written in the same color semantically repre-
sented by that word (congruent condition) or in a different color (incongruent condition).
It is a widely used cognitive test that assesses the ability to regulate thoughts and actions in
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accordance with internally maintained behavioral goals, achieved through the activation of
cognitive control mechanisms [7].

In recent decades, there has been an increasing proliferation of wearable devices capa-
ble of measuring cardiac functions, electrodermal activity, skin temperature, electromyo-
graphic activity, and kinematic parameters of trunk movements, thanks to embedded
inertial sensors [8,9]. More recently, researchers have attempted to utilize these wearable
devices to investigate the complex relationships between cardiac functions, cognitive as-
pects, and movement control [10]. Indeed, movement control necessitates the integration
of sensorial feedback with an internal body representation and often involves higher-order
cognitive processes. For instance, it has been observed that the faster individuals walk, the
more closely their cardiac rhythm is coupled with cognitive performance [10].

According to the concept of a comprehensive model, the relationship between physi-
ological factors related to the autonomic system and cognitive performance should also
consider motor and behavioral aspects. Despite the growing body of literature on this
topic, there have been no protocols for testing whether motor control may play a role in the
coupling between HRV and Stroop task performance. However, there are numerous direct
and indirect pathways linking the frontal cortex to autonomic motor circuits responsible for
both the sympatho-excitatory and parasympatho-inhibitory effects on the heart [1]. On the
other hand, a wide range of inhibitory processes across cognitive, motor, and affective tasks
are associated with the same brain region, known as the right prefrontal cortex [1]. This
may explain why motor awareness can be reduced in the presence of cognitive load [11].

Previous studies have investigated the relationship between cognitive load and heart
rate variability [5,12], spanning from analyses of this relationship in individuals with
neurodegenerative diseases [13] to those with a high level of physical fitness [14].

Studying the complex system that includes cognitive, motor, and cardiac functions
is essential for identifying the principal components that are transversally involved in all
three systems.

The aim of this study was to investigate, using a simple protocol, the relationship
between the heart, motor control, and cognitive functions by analyzing the principal
components of this complex system. Based on the existing literature, the protocol focused
on analyzing HRV and its relationship to Stroop task results, while also incorporating the
analysis of trunk rotations. It has been reported that an increase in trunk mobility may alter
the sympathovagal balance, thereby modifying HRV [15]. Trunk rotations were measured
using a wearable inertial unit containing a triaxial accelerometer, a triaxial gyroscope, and
a magnetometer (used for measuring the range of motion) [8,9]. From a bioengineering
perspective, a device embedding inertial sensors for analyzing trunk movements and
electrodes for recording cardiac signals to compute heart rate variability was proposed.
Subsequently, we tested whether this protocol utilizing sensors could sensitively detect
changes induced by a specific physical intervention aimed at enhancing the perception–
action link, which is fundamental to embodied cognition [16]. Given previous findings
indicating gender differences in autonomic cardiac control [17], trunk accelerations [18],
and Stroop task performance [19], we enrolled only women in this study to simplify the
variables to be controlled. Furthermore, due to the recent emergence of artificial neural
networks as a frontier in data analysis [20], including those used for assessing heart rate
variability [21,22], we utilized an artificial neural network (ANN) to verify the relationship
between principal components and cognitive outcomes.

2. Materials and Methods
2.1. Participants

We enrolled a sample of 72 healthy women in this study (mean age: 49.4 ± 7.7). All of
them were free from orthopedic, neurological, or psychological diseases. Signed informed
consent was obtained from all participants prior to their involvement in the study.
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2.2. Protocol

Participants underwent two assessments. They sat on a comfortable table wearing a
sensorized trunk band (Beyond Inertial, Motustech, Rome, Italy), as depicted in Figure 1.
The device embedded an inertial measurement unit with a triaxial accelerometer, a triaxial
gyroscope, and a magnetometer, as well as electrodes for assessing the heart signal. The
assessment protocol involved measuring heart rate variability at baseline for 5 min. Subse-
quently, participants were asked to perform trunk rotations with their arms flexed on the
trunk on the left and right side.
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Figure 1. Percentages of heart rate variability (HRV) in low frequencies (LF, x-axis) and high fre-
quencies (HF, y-axis); before (black dots) and after (grey dots) intervention are also shown with the
relevant regression lines.

The device enabled the measurement of intervals between successive R waves (RR
intervals). From these data, heart rate variability (HRV) was assessed by examining the
temporal variations within these intervals. HRV analysis was conducted in both the time
and frequency domains. In the frequency domain, the analysis involved decomposing
the signal into distinct frequency components. The designated frequency bands included
high frequencies (HRV-HF: 0.15–0.4 Hz), low frequencies (HRV-LF: 0.04–0.15 Hz), and very
low frequencies (HRV-VLF: 0.01–0.04 Hz). The percentage of the signal in each one of
these frequency domains was analyzed according to the literature, indicating that HF is
mediated by the vagal nerve of the parasympathetic nervous system (PNS), whereas LF
mainly reflects the activity of the sympathetic nervous system. The balance between these
two systems is reflected in their respective contributions [23].
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The inertial measurement unit (IMU) was utilized to quantify accelerations, angular
velocities, and magnetic field orientations within a given reference system. The acquisition
of these measurements served as a precursor for subsequent analyses. By employing a
sensor fusion algorithm, the IMU enables the estimation of the sensor’s orientation within
the inertial reference system [24]. The algorithmic integration facilitated the determination
of rotation angles corresponding to left and right rotations. We computed the trunk range
of motion (ROM) as the sum of left and right rotations, taking the absolute values into
account. Additionally, the symmetry index (SI) was calculated as the ratio between the
lower and the higher angle, multiplied by 100, resulting in a value of 100% for two equal
(symmetric) rotations of the trunk in both direction [25]. Then, participants were asked
to perform a classical version of the Stroop task with 15 words, and the time to complete
the task (TCT) was recorded along with the number of errors made (ne). From these two
parameters, we computed the percentage accuracy (ACC) of the subject using the formula
(15 − ne)/15 × 100 and the normalized time to complete the Stroop task (NTCT) was
calculated by combining time and ne as follows: TTC × 15/(15 − ne). After the initial
assessment, subjects were re-assessed following a two-month intervention. During this
intervention, participants received a pamphlet outlining a protocol to follow. This protocol
required them to engage in outdoor walking for at least 20 min per day whilst breathing
through the nose. Additionally, participants were instructed to improve their perception
and body control by moving their bare feet on a soft small ball while maintaining an upright
posture maintained with slightly flexed knees for 5 min per day. They alternated between
using both feet and paid attention to the perception–action link during these activities. All
subjects verbally reported the adherence to the protocol.

2.3. Statistical Analysis

The data were reported in terms of means and standard deviations. Pearson’s co-
efficient (R) was utilized to assess the correlation between variables, with the relevant
regression equations as y = a × x + b. The main analysis of this study aimed to identify
the basic components among the three assessments (cardiac variables: HRV-VLF, HRV-LF,
and HRV-HF; motor variables: ROM and SI; and cognitive variables: ACC and NTCT)
was principal component analysis (PCA). This analysis was performed on the variables
assessed at baseline and after the intervention to determine how the data could be aggre-
gated. The number of the components was not predetermined, but was based on a parallel
analysis conducted on the scree plot. The varimax method was employed as the rotational
algorithm. Paired t-tests were conducted to compare the measured variables before and
after the intervention.

The percentage changes between after and before intervention were computed as the
difference between the post- and pre-intervention score, divided by the pre-intervention
score and multiplied by 100.

The effects of changes in HRV and the effects of changes in embodied motor behavior
on cognitive performance were evaluated using ARIANNA, an artificial intelligent assistant
for neural network analysis. ARIANNA was used to predict modifications in cognitive
performance in the Stroop test after intervention (output layer). ARIANNA is a multilayer
perceptron, formed by the input layer and 2 hidden layers (with 5 nodes in each one) [19].
The architecture of ARIANNA was that of a feed-forward neural network (FFNN), with
data moving in only one direction, from the input nodes through the two hidden layers to
the output nodes. The activation function for all the units in the hidden layers and for the
output layer was a hyperbolic tangent. The chosen computational procedure was based on
online training.

The input layers (corresponding to independent variables) were as follows: trunk
ROM, trunk symmetry index, HRV-VLF, HRV-LF, and HRV-HF, whereas the two output
layers (dependent variables) were predicted to be Stroop accuracy and Stroop NTCT.
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The alpha level of statistical significance was set at 5% for rejecting the null hypothesis
for all the performed analyses. The pieces of software used for all the above analyses were
Jamovi (version 2.3.21) and IBM SPSS Statistics (version 23).

3. Results
3.1. Baseline to Post Intervention Parameters

Table 1 shows the parameters measured at baseline and post-intervention. Firstly, it
is notable that HRV-LF did not significantly change, whereas the change in HRV-HF was
significant and mainly related to a variation in HRV-VLF, although this modification also did
not achieve the threshold for rejecting the null hypothesis. To delve deeper into this aspect,
we analyzed HF with respect to LF, as depicted in Figure 1. Pre-intervention, the regression
equation was HRV-HF = −0.64 × HRV-LF + 62, with a Pearson correlation coefficient of
R = −0.43 (p < 0.001). After intervention, this relationship remained statistically significant,
but weaker (R = −0.32 (p = 0.006)), with a regression equation of HRV-HF = −0.43 ×
HRV-LF + 51.

Table 1. Mean ± standard deviation of measured variables pre- and post-intervention with the
p-value obtained by Wilcoxon rank test (in bold if p < 0.05). HRV: heart rate variability, VLF: very
low frequency, LF: low frequency, HF: high frequency, ACC: Stroop task accuracy, NTCT: normalized
time to complete the Stroop task, ROM: range of motion, SI: symmetry index.

Variable Pre Post p-Value

HRV-VLF (%) 26.3 ± 10.2 29.2 ± 10.7 0.096

HRV-LF (%) 33.1 ± 7.5 34.2 ± 7.9 0.522

HRV-HF (%) 40.8 ± 11.1 36.2 ± 10.5 0.002

HF/LF 1.3 ± 0.6 1.0 ± 0.5 0.001

Stroop task NTCT (s) 18.8 ± 5.2 16.4 ± 3.9 <0.001

Stroop task ACC 96.6 ± 5.2 98.9 ± 2.7 <0.001

Trunk ROM (deg) 110.0 ± 21.5 127.0 ± 28.0 <0.001

Trunk SI (%) 87.4 ± 9.1 87.9 ± 10.0 0.743

Cognitive performance improved both in terms of accuracy and normalized time to
complete the task. From a motor point of view, trunk ROM significantly improved by about
17 degrees, whereas the symmetry index did not change.

3.2. Principal Component Analysis

The baseline PCA correctly identified three main domains (Table 2): the first com-
ponent, mainly contributed to by Stroop task variables (ACC and NTCT); the second
component comprising the three frequency domains of HRV; and the third component, con-
sisting of trunk kinematic variables (ROM and SI). Despite this clear subdivision, HRV-LF
emerged as a transversal parameter, contributing to all three components.

Table 2. The effects of variables assessed at baseline (pre-intervention) on the components obtained
with principal component analysis (in bold if their absolute value is >0.25).

Variable Component 1 Component 2 Component 3

HRV-VLF −0.20 0.84 −0.19

HRV-LF 0.34 0.36 0.43

HRV-HF −0.03 −0.99 −0.06

Stroop task NTCT 0.87 −0.11 −0.07

Stroop task ACC −0.83 0.04 −0.02

Trunk ROM 0.12 −0.09 0.72

Trunk SI −0.13 −0.02 0.77
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The protocol and subsequent PCA successfully assessed the changes after the in-
tervention, leading to a re-arrangement of the parameters. As shown in Table 3, only
two components were identified, one for cognitive and one for motor control, and an-
other one related to cardiac parameters (HRV-HF and HRV-VLF). HRV-LF was associated
with cognitive and motor control, aligning with the aim of intervention based on these
three systems.

Table 3. The effects of variables assessed post-intervention on the components obtained with principal
component analysis (in bold if their absolute value is >0.25).

Variable Component 1 Component 2

HRV-VLF −0.24 0.92

HRV-LF 0.62 −0.01

HRV-HF −0.19 −0.94

Stroop task NTCT 0.80 0.03

Stroop task ACC −0.53 0.05

Trunk ROM −0.27 0.14

Trunk SI 0.35 0.04

3.3. Artificial Neural Network Analysis

Figure 2 illustrates the architecture of the artificial neural network ARIANNA. The
computed importance assigned to each of the input layers is reported in Table 4. The
change in Stroop performance was mainly predicted by changes in HRV-LF (21.4%) and
those in trunk movement parameters (∆ROM (23.3%) and ∆SI (19.6%)). The accuracy of
the ANN in making predictions was high, as shown in Figure 3, for both outputs.
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Figure 2. Architecture of artificial intelligence assistance for neural network analysis (ARIANNA).
∆: change in parameters post vs. pre, HRV: heart rate variability, VLF: very low frequency, LF:
low frequency, HF: high frequency, ROM: range of motion of the trunk, SI: symmetry index, NTCT:
normalized time to complete the Stroop task.
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Table 4. Results of artificial neural network analysis in predicting the normalized time to complete
the Stroop task and determine accuracy. ∆: change in the parameters post vs. pre, HRV: heart rate
variability, VLF: very low frequency, LF: low frequency, HF: high frequency, ROM: range of motion of
the trunk, SI: symmetry index, NTCT: normalized time to complete the Stroop task.

Input Layer
Parameters

Importance of the Input Layer in Output Prediction

Raw Weight Relative Normalized

∆HRV-VLF 0.191 19.1% 81.9%

∆HRV-LF 0.214 21.4% 91.8%

∆HRV-HF 0.166 16.6% 71.4%

∆Trunk ROM 0.233 23.3% 100%

∆Trunk SI 0.196 19.6% 84.4%
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4. Discussion

A sensor-based quantitative assessment of heart rate variability has often been linked
to cognitive performance, particularly in tasks like the Stroop task (e.g., in athletes [26],
individuals with post-traumatic stress syndrome [27], and healthy subjects managing daily
stress [28]), as well as to motor control (including measures such as range of motion and
interoceptive accuracy [29]). However, a protocol considering these three domains together
was still lacking. Therefore, the primary aim of this study was to establish a simple protocol
for identifying the components integrating heart rate variability, trunk motion variability,
and cognitive parameters obtained from the Stroop task.

The protocol proposed in our study utilized a sensorized band worn at the trunk level,
measuring the temporal distance between R waves and left and right trunk rotations using
an embedded inertial device. This protocol included PCA that accurately identified three
components related to the aforementioned domains: cardio, cognition, and motion. As a
form of confirmatory analysis, we employed an approach based on assessing proficiency in
predicting changes in cognitive performance using an artificial neural network, a method
previously utilized in the literature [20].

According to previous literature studies [30], the balance between HRV-LF and HRV-
HF was found to be not only associated with cardiac parameters but also cognitive ones [5],
and, as we suggested, also with kinematic parameters. In healthy subjects, the ability to
perform wide symmetric rotations not only depends on kinematic functions but also the
perception of the trunk mid-line [25], afferent feedback, and the perception–action link [16].

The second aim was to verify if and how it was possible to measure the alteration in
these relationships after a specific intervention focused on the embodiment of sensations
and cognition. After this intervention, only two components were identified (one related to
high and very low frequencies of heart rate variability, and another one combining HRV-LF,
parameters related to Stroop task performance, and those related to the execution of wide
symmetric trunk rotations.

This result is not surprising. After many years of cognition and motor control being
investigated separately, with a distinct separation between mind and body, numerous
authors have began to criticize this perspective. Damasio talked about Descartes’ error of
dividing mind and body [31]; Clark argued for the necessity of putting brain, body, and
world together again in neuroscience [32]; and Berthoz defined the so-called brain’s sense
of movement [33].

More recently, the 4E theory of cognition has proposed that the body is a constituent of
the mind, and cognition is closely related to physiological parameters and performed motor
actions [34]. The theory of embodied cognition and, further, the “4E” approach suggested
that cognition does not solely occur in the brain, but is also embodied, embedded, enacted,
or extended through body structures, functions, and processes [34,35].

According to these recent theories, a recent research reported that the cognitive per-
formance of executive function tasks, which evoke attentional control, partially depends
on the responsiveness of autonomic control parameters that can be assessed by heart rate
variability [30].

The results of our PCA were further confirmed by the analysis conducted using
artificial neural networks to assess the effect of changes in HRV and trunk movements
on changes in Stroop task performance. We employed an artificial intelligence tool that
has been utilized in various studies [20,36]. The input parameters associated with a
higher relative importance were changes in the trunk range of motion, changes in trunk
movement symmetry, and changes in HRV-LF. These results corroborated those found by
PCA and demonstrated the high predictability of observed outcomes (as shown in Figure 3).
Furthermore, artificial neural networks represent an emerging approach that can be used to
identify more complex relationship among variables, especially when they are not simply
linear, as in this case. For these purposes, the artificial neural network analyses appeared
particularly suitable for investigating the parameters extracted by inertial magnetic units,
such as those used in this study, as has been carried out in clinical contexts previously [36].
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De Bartolo and colleagues have advocated for the development of evaluation methods
for the quantitative assessment of cardiac, cognitive, and motor interactions, which could
be beneficial in physiological research, athlete training, and specifically for rehabilitation
purposes [10]. Indeed, neurorehabilitation could benefit from an integrated approach that
does not solely aim for the separate recovery of specific functions, but rather focuses on the
holistic care and treatment of the patient as a whole person.

The utilization of a multimodal assessment based on principal component analysis
on heart rate variability and brain data is nothing new [37,38]. However, in this study, we
proposed a combined approach to quantify the level of overlapping of cognitive, motor,
and cardiac functions. We could define this approach as “embodimetrics” because they
focused on the assessment of embodiment, akin to how psychometrics is the discipline
concerning the quantitative measurement of psychological aspects [39].

The results of this study should be read in light of its limits. Only female participants
were involved, adherence to the intervention was verbally reported by participants but not
quantitatively assessed, and environmental factors were not taken into account despite evi-
dence suggesting they may influence from cognitive and motor coupling strategies [40–43].
Then, some variables were only qualitatively assessed. Further research on this topic should
be conducted in controlled environments via the quantitative monitoring of participants’
adherence to the protocol, for example using smartwatches to record the frequency and
intensity of physical activity. Additionally, future studies should include participants of
both genders and incorporate other tests assessing cognitive functions. Furthermore, while
artificial neural network analysis provided good results in terms of accuracy, it often lacks
high reliability [36]. However, the trustworthiness of our findings was bolstered by principal
component analysis, which does not suffer from these reliability issues and yielded similar
findings to the ANN.

In conclusion, our study utilizing a combined assessment of HRV and trunk mobility
identified the level of connection with cognitive aspects measured by the Stroop task, pro-
viding a useful approach for measuring the strength of the relationship between cognitive
functions, autonomic cardiac functions, and body movements. It is important to emphasize
the necessity of collecting and analyzing data using a scientific, validated, and reliable
approach. The study of embodiment is a new interesting field of psychometrics [44–47].
Furthermore, in line with the emerging literature on embodied cognition [16] and the
theory of 4E [34], we proposed the introduction of a new term to define the field of research
within psychometrics concerning the techniques and properties of objective measurements,
assessments, and analyses related to the latent construct of embodied cognition and all the
aspects related to the 4E theory that we named embodimetrics.
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