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Abstract: Existing point-to-point registration methods often suffer from inaccuracies caused by erro-
neous matches and noisy correspondences, leading to significant decreases in registration accuracy
and efficiency. To address these challenges, this paper presents a new coarse registration method
based on a geometric constraint and a matrix evaluation. Compared to traditional registration meth-
ods that require a minimum of three correspondences to complete the registration, the proposed
method only requires two correspondences to generate a transformation matrix. Additionally, by
using geometric constraints to select out high-quality correspondences and evaluating the matrix,
we greatly increase the likelihood of finding the optimal result. In the proposed method, we first
employ a combination of descriptors and keypoint detection techniques to generate initial corre-
spondences. Next, we utilize the nearest neighbor similarity ratio (NNSR) to select high-quality
correspondences. Subsequently, we evaluate the quality of these correspondences using rigidity
constraints and salient points’ distance constraints, favoring higher-scoring correspondences. For
each selected correspondence pair, we compute the rotation and translation matrix based on their
centroids and local reference frames. With the transformation matrices of the source and target point
clouds known, we deduce the transformation matrix of the source point cloud in reverse. To identify
the best-transformed point cloud, we propose an evaluation method based on the overlap ratio and
inliers points. Through parameter experiments, we investigate the performance of the proposed
method under various parameter settings. By conducting comparative experiments, we verified
that the proposed method’s geometric constraints, evaluation methods, and transformation matrix
computation consistently outperformed other methods in terms of root mean square error (RMSE)
values. Additionally, we validated that our chosen combination for generating initial correspon-
dences outperforms other descriptor and keypoint detection combinations in terms of the registration
result accuracy. Furthermore, we compared our method with several feature-matching registration
methods, and the results demonstrate the superior accuracy of our approach. Ultimately, by testing
the proposed method on various types of point cloud datasets, we convincingly established its
effectiveness. Based on the evaluation and selection of correspondences and the registration result’s
quality, our proposed method offers a solution with fewer iterations and higher accuracy.

Keywords: geometric constraint; point cloud registration; transformation estimation; evaluation
of registration

1. Introduction

Laser sensors utilize the principle of laser ranging to record the three-dimensional
coordinates, reflectivity, and texture information from the object being scanned. In practical
applications, data are typically acquired from different angles due to limitations imposed
by lines of sight, measurement methods, and the geometry of the objects that are being
scanned. Each point cloud has its own local reference frames, and the goal of point cloud
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registration is to unify the multiple angle point cloud data into a common coordinate
system [1].

Point cloud registration can be divided into two methods: coarse registration and
fine registration [2]. In the context of fine registration methods, the iterative closest point
(ICP) algorithm [3] is most commonly used. This algorithm utilizes the least squares
method to compute the matching point sets and achieves convergence through iterative
optimization, resulting in satisfactory matching results. There were also variants of ICP.
The point-to-plane ICP registration algorithm proposed by Low, Kok-Lim et al. [4] demon-
strated that using the point-to-plane approach to calculate the transformation matrix is
faster and achieves higher registration accuracy compared to the point-to-point approach.
S. Rusinkiewicz [5] proposed a symmetric version of the iterative point-to-plane ICP algo-
rithm, which also introduces an alternative method called rotation linearization to simplify
the optimization process into a linear least squares problem. ICP is characterized by its
straightforward approach and showed its effectiveness, particularly when registering data
with a solid initial alignment [6]. Therefore, the challenge of obtaining accurate initial
correspondences still persists.

A coarse registration method based on the selection of matching point pairs can be
implemented through five steps: keypoint detection, local feature description of keypoints,
correspondences selecting, and computation of the optimal transformation matrix [7].
Keypoint detection aims to identify a small set of distinct points from a point cloud to
expedite registration, as raw point clouds often contain a large number of points. Local
feature description involves using rotation-invariant feature vectors to capture geometric
and spatial information within a local surface. By comparing these local geometric features
using distance metrics, point-to-point correspondences can be established. However, there
are still significant outliers in the initial correspondences. This is due to issues such
as keypoint localization, the challenge of distinguishing repeatable patterns using local
geometric features, and limited overlap between the point cloud views being aligned. Some
of these methods are proposed in order to select out high-quality correspondences [8]. For
example, Mian et al. proposed a similarity score based on point cloud descriptors [9]. This
method determines correspondences based on the differences between feature elements
in point cloud descriptors. However, issues such as data noise, occluded regions, and
repeated features, can lead to misjudgment, so this method can only serve as a baseline
for evaluation. Another approach is to select high-quality correspondences based on
geometric constraints between correspondences. For instance, a base line algorithm is
Lowe’s ratio rule [10], which determines whether to accept a pair of matching points
based on the ratio of the nearest distance to the second-nearest distance. A significant
distance difference indicates that the point has better discriminability in the feature space.
H. Chen et al. [11] proposed geometric consistency, which imposes constraints based on the
geometric distance differences between the source and target points of the two matching
points. This approach aims to select correspondences that meet a threshold. Abdullah
Lakhan et al. [12] proposed a DAPWTS algorithm framework, which utilizes a secure
minimum cut algorithm to partition applications between local nodes and edge nodes.
After the application partitioning, an optimal search is performed using a node search
algorithm, which also optimizes the structure of point cloud data. However, these methods
mostly only utilize a single constraint, leaving room for improvement in the quality of
matching point pairs. Moreover, there is the potential of finding the optimal result based
on these constraints.

In the field of 3D point cloud registration, there are various algorithms available to
solve the outliers’ issue. At present, many coarse registration methods were proposed.
For example, the compatibility-guided sampling consensus (GC-SAC) registration method
proposed by S. Quan and J. Yang [13] utilizes rigidity constraints and salient points’ dis-
tance constraints for correspondences selection, and determines the optimal transformation
matrix based on the maximum number of inliers. Guo et al. [14] proposed a method
for point cloud registration using rotation projection statistics (RoPS) features for corre-
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spondences feature matching, followed by transformation estimation methods and the
ICP algorithm. However, this method relies solely on the initial correspondences gen-
erated from descriptors and does not eliminate low-quality correspondences. Another
method, proposed by Yang et al. [15], is the consistency voting method, which ranks the
correspondences based on constraints such as rigidity and local reference frames. This
approach provides a means to prioritize and assess correspondences for improved accuracy
and efficiency. Buch et al. [8] proposed a method for confirming inlier points by using
Lowe’s ratio and the minimum ratio of geometric distances between target points and
source points. Sun et al. [16] presented a solution called inlier searching using compatible
structures (ICOS), which constructs a compatible structure to facilitate subsequent outlier
removal and inlier searching. They designed three efficient frameworks for estimating rota-
tion matrices, known-scale registration, and unknown-scale registration. Rodolà et al. [17]
proposed a sparse point matching approach based on game theory; Tombari et al. [18]
introduced a method called 3D Hough voting (3DHV), which involves voting based on the
positional information of correspondences in the Hough space; Sahloul et al. [19] presented
a two-stage voting scheme that uses dense evaluation and ranking of local and global
geometric consistency to distinguish inliers. Quan, S. et al. [20] proposed a robust method,
progressive consistency voting (PCV), for feature matching in 3D point clouds. It assigns
confidence scores to correspondences based on geometric consistency and utilizes a voting-
based scheme. Xu, G. et al. [21] proposed a method that combines RANSAC, intrinsic shape
signatures (ISS), and 3D shape context descriptor (3DSC) to improve the ICP registration of
large point clouds. It uses voxel grid filter for down-sampling, extracts keypoints with ISS,
describes them with 3DSC, performs coarse registration with RANSAC using ISS-3DSC
features, and achieves accurate registration with ICP. In the subsequent experiments, we
will refer to this method as IRIS (improved registration using ISS, RANSAC, and ICP with
3DSC). Yan, L. et al. [22] proposes a graph reliability outlier removal (GROR) method,
which is a strategy based on the reliability of the correspondence graph to address the issue
of outliers in point cloud registration.

Some methods utilize other characteristics of point clouds for registration,
Liang, L. et al. [23] introduce an innovative affine iterative closest point algorithm incor-
porating color information and correntropy. By integrating color features into traditional
affine algorithms, the method established more accurate and reliable correspondences.
Liu, J et al. [24] proposed point cloud registration with multilayer perceptrons (PCRMLP),
a novel model for urban scene point cloud registration that achieves comparable registra-
tion performance to prior learning-based methods. PCRMLP estimates transformations
implicitly from concrete instances using semantic segmentation and density-based spatial
clustering of applications with noise (DBSCAN) to generate instance descriptors, enabling
robust feature extraction, dynamic object filtering, and logical transformation estimation.

In the context of computing the optimal transformation matrix, a commonly used method
is the random sample consensus (RANSAC) algorithm proposed by Fischler et al. [25]. This
algorithm randomly selects three correspondences from the point sets, generates a rotation
and translation matrix, and then counts the inlier points that are within a distance threshold
under this transformation matrix. This step is repeated multiple times, and the transforma-
tion matrix with the maximum number of inlier points is selected as the final result, while
outlier points are discarded. However, the RANSAC method still necessitates a minimum
of three correspondences for generating a transformation matrix, and the randomness in
selecting these correspondences introduces inaccuracy to its registration result. In contrast,
our proposed registration algorithm based on two-point correspondences enhances the
precision of the final registration result since these correspondences are filtered through
geometric constraints. This approach also saves time compared to the RANSAC, which
involves traversing to generate various transformation matrices. Additionally, the sam-
pling process only selects transformation matrix results based on a single criterion, such
as a distance threshold, which can potentially miss the optimal transformation matrix.
Quan et al. [26] extended the RANSAC algorithm by establishing local reference frames
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on key points, enabling the inference of transformation matrices with only one correspon-
dence. They also proposed a “maximum overlapping point set” criterion to evaluate the
registration results. Another improved variant of the RANSAC algorithm is the optimized
sample consensus (OASC) algorithm proposed by Yang et al. [27], which introduces a
new error metric. However, these methods only employ a single evaluation criterion
for assessing the registration results. One of the research directions of this paper is to
explore whether combining multiple evaluation factors would yield improved registration
results. By considering various evaluation factors simultaneously, such as alignment ac-
curacy, robustness to outliers, and computational efficiency, it is possible to gain a more
comprehensive understanding of the registration performance.

To address the aforementioned issues, this paper proposes a method based on the
rigidity and salient points’ distance constraints to select out two-by-two correspondences
that fit the standard. Then, based on the centroid of two points, we can calculate their
translation matrix. Based on the vector of the two points and their salient points, we can
construct their two-point rotation pose (reference frame). By combining the two matrices
mentioned earlier, we obtain a transformation matrix. With the transformation matrix of the
source and target point clouds known, we obtain the transformation matrix of the source
point cloud by reverse deduction. Finally, we proposed a transformation evaluation method
combined with overlap ratio and inlier points to select the best transformation matrix. The
overall experimental architecture of the paper is shown in Figure 1. In summary, the main
contributions of this paper are:
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Figure 1. The architecture of the experiment in our article.

(1) We propose an evaluation system based on rigidity constraints and distance of salient
point constraints to filter out outliers in the initial correspondences. The rigidity con-
straint focuses on the geometric relationship between points, while the DSP constraint
leverages the context information within the local surface. By combining them, we
can better select the top N candidates from the correspondences.

(2) We propose a method to compute the transformation matrix of the source point
cloud in reverse by computing the rotation and translation matrices between the
source and target points based on the correspondences. Considering two high-quality
correspondences from the samples for calculating the transformation matrix allows
us to generate matrix with few iterations and also increases the probability of finding
the optimal matrix.
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(3) To further refine the registration process, we propose an evaluation method based on
the overlap ratio and inlier points. This evaluation method allows us to search for the
best registration result among the top N candidates in a more comprehensive manner.

2. The Principle of Proposed Registration

First, this paper adopts a keypoint detection method and feature descriptor to generate
initial correspondences. Then, we apply the nearest neighbor similarity ratio to filter these
initial correspondences and select higher quality ones. Next, within each correspondence,
we compute salient points for the source and target points, and combine them pairwise.
Based on rigidity and salient points’ distance constraint, we select higher quality ones.
Next, within each point pair, we compute salient points for the source and target points,
and combine them pairwise. Based on rigidity and salient points’ distance constraint, we
select out correspondences with higher scores. Finally, using the local reference frames
between the two points and their centroid positions, we compute the transformation matrix.
The best matrix is selected based on the overlap ratio and the number of inlier points. The
technical flow of the entire method is shown in Figure 2.
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Figure 2. The workflow of the coarse point cloud registration method based on geometric constraints
and the two-factors evaluation. The red object represents the target point cloud and the blue one
represents the source point cloud. The green points represents keypoins that are detected from the
object. In Grouping correspondences, the yellow dotted line represents the correspondences, and the
purple line represents the combination of two correspondences.
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2.1. Generate Correspondences

First, keypoints are extracted from the source and target point clouds, using key-
points extraction methods such as Harris 3D (H3D) [28] and intrinsic shape signatures
(ISS) [29]. Then we combine them with descriptors such as fast point feature histogram
(FPFH) [30], 3D shape context descriptor (3DSC) [31], signature of histograms of orienta-
tions (SHOT) [32], and spin image (SI) [33] for comparative experiments. These descrip-
tors are used to generate initial correspondences using the similarity score algorithm [6].
Based on the comparative results mentioned in the subsequent experiments, we choose
to use the combination of Harris 3D keypoint detection and the local image descriptors
obtained from the triplet orthogonal views based on the newly proposed local reference
frame (LRF), known as triple orthogonal local depth images (TODLI) [34], for generating
initial correspondences.

After obtaining the keypoints using Harris 3D, we generate histograms based on the
TOLDI descriptors for both the keypoints in the source point cloud, denoted as ps, and
the keypoints in the target point cloud, denoted as pt. We calculate the correspondences’
differences between the feature values of the histograms and select the keypoint pairs with
the smallest differences as the initial correspondences, as defined in (1).

c = argmin
∥∥fs − ft∥∥

L2
(1)

In this step, we calculate the feature distance between feature fs in the source point
cloud and feature ft in the target point cloud. We select the correspondence c with the
smallest feature distance as the initial correspondences. Next, we use the NNSR [10] to
improve the quality of the correspondences. The NNSR is defined as the ratio of the feature
distances between the source point cloud and the target point cloud in each correspondence,
as shown in (2). All correspondences are sorted based on this ratio. The ratio can be used to
measure the uniqueness and accuracy of the correspondences. Generally, correspondences
with a larger feature distance ratio (greater difference between the closest and second closest
distances) tend to have higher uniqueness and are assigned higher scores. By applying the
NNSR filter, we can further reduce the influence of incorrect matches and noise point pairs,
and select higher quality correspondences as the final set of initial correspondences.

sRatio (c) = 1−
d
(
fs, ft

1
)

d
(
fs, ft

2
) (2)

The features fs
1 and ft

2 represent the closest and second closest features, respectively,
to the feature fs in the source point cloud ps. In practical applications, the choice of the
appropriate number of correspondences can be based on specific requirements and tasks.
Selecting an appropriate number of point pairs helps balance the registration accuracy, com-
putational complexity, and robustness. We will conduct this experiment in the following
part to find the appropriate parameter.

2.2. Selecting Correspondences Based on Geometric Constraint

By incorporating various geometric constraints, additional information and constraints
can be provided in the point cloud registration process, assisting in the selection of matching
point pairs and further enhancing their quality. In this section, we introduce three constraint
methods that primarily rely on these two correspondences, c1 and c2.

The rigidity constraint [8] is based on the invariance property and determines whether
the two points from the source point cloud and the two points from the target point cloud
should be considered as the same correspondence based on the difference in their distances.
This constraint is represented by (3) and illustrated in Figure 3.
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Srigidity =
∣∣d(ps

1, ps
2)− d

(
pt

1, pt
2
)∣∣ (3)
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The distributions of d
(
ps

1, ps
2
)

and d
(
pt

1, pt
2
)

represent the Euclidean distances between
the points ps

1 and ps
2 within the source correspondences, as well as between the points pt

1
and pt

2 within the target correspondences. In the process of point cloud registration, the
rigidity constraint serves as a fundamental constraint that provides an initial estimation for
subsequent optimization and refinement steps. However, the estimation based on the rigid-
ity constraint is typically coarse and can lead to multiple rigid transformations that satisfy
the constraint. Therefore, it is necessary to combine other constraints to reduce ambiguity.

The normal constraint [35] is another type of constraint used in point cloud registration.
It utilizes the normal vectors associated with the points in the point clouds. After obtaining
the normal, the normal constraint compares the angles between the normal vectors of two
corresponding points in the source and target point clouds. This is achieved by calculating
the cosine values of the angles (using the dot product of the unit normal vectors). The
degree of the normal constraint is quantified by computing the absolute difference between
the angles, as shown in (4).

Snormal =
∣∣acos(ns

1 · ns
2)− acos

(
nt

1 · nt
2
)∣∣ (4)

where n is the normal vector of point p. Both n1 and n2 are treated as unit normal vectors.
So when the dot product is performed on these vectors, the resulting value is the cosine of
the angle between the two vectors. The normal vectors are important features that describe
the geometric properties of surfaces. The different normal angles between the source and
target point clouds reflect the degree of disparity in surface curvature. Compared to the
rigidity constraint, the normal constraint exhibits better robustness when dealing with
noise and local variations. Even in the presence of noise or local non-rigid deformations,
the normal constraint can still provide useful constraint information. However, the normal
constraint only considers the normal angles between local correspondences, and it may
not accurately capture the geometric information for cases involving large-scale shape
variations or complex geometric structures. Moreover, the uncertainty in normal directions
should also be taken into account. Selecting inconsistent normal directions as references can
lead to erroneous angle calculations, resulting in misleading constraint results, as shown
in Figure 4.
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Figure 4. We use the two green points from the blue bunny object as a demonstration of the
uncertainty of the normal direction. The uncertainty in normal directions arises when, for example,
the direction n+

1 is the correct normal direction, but n−1 is mistakenly chosen as the normal direction.
In this case, the normal angle increases from α to β, resulting in an incorrect estimation of the
normal angle.

The distance of the salient point (DSP) constraint [13] is derived based on the difference
in distance between the center point p and its corresponding salient point q∗. The salient
point is selected from the boundary region of the local surface, satisfying two conditions:
firstly, within this boundary region, the vector pq∗ has the longest length; secondly, the
vector pq∗ has the most similar direction to the normal direction of centroid p. These
conditions make the point q∗ exhibit saliency characteristics. An illustration of salient
points is shown in Figure 5.
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Figure 5. In the computation of salient points, for example, if the absolute value of vector pq1 is
greater than that of pq2, and the direction of vector pq1 is more similar to the normal vector n
compared to pq2 (cosα > cosβ), we consider q1 as the salient point. The black dots represent the
points on the boundary region, and the blue dot represent the point that qualify as salient point on
the boundary region.
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As shown in (5), q∗ represents a point on the boundary region that satisfies two
conditions: the vector pq has the maximum length among all points in the boundary region,
and its direction is consistent with the normal vector n of point p within a local surface
with a radius of R. These imply that pq aligns to some extent with the tangent plane of
the local surface. In this case, pq can be considered as a point on the surface with the
maximum saliency.

q? = argmax
q
|qp · n| (5)

The radius R of the local surface is determined by considering a neighborhood of
points around p as shown in (6). Specifically, we select the

⌈
1
pr

⌉
points pnni

in the neighbor
of p, denoted as k points. By using the point cloud resolution as a measure of the number
of neighboring points, we ensure that the support radius is consistent with the sampling
density of the point cloud. This choice of support radius allows for a better representation
of the local surface’s geometric characteristics.

R =
1
k

(
k

∑
i=1

∥∥∥p− pnni

∥∥∥) (6)

After computing the salient points for each point, we apply a similar approach to the
rigidity constraint by comparing the distance difference between q∗1 and q∗2 , as shown in (7).

Sdsp =
∣∣‖(q?s

1 − ps
2ps

1)− q?s
2 ‖ −

∥∥(q?t
1 − pt

2pt
1
)
− q?t

2

∥∥∣∣ (7)

However, in addition to this, we also translate the salient points by a vector p2p1. By
aligning the salient points with the center of p2, we eliminate the effect of spatial distance
variation between p1 and p2. This allows for a more accurate comparison of local structural
differences in the two correspondences, taking into account not only the overall rigid
transformation, but also the local variations, as illustrated in Figure 6a.
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Afterwards, we combine the rigidity constraint and the distance of salient points 
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of the correspondences cଵ and cଶ given by (8). 
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Figure 6. The red and blue points in the figure represent two source points from a grouping correspon-
dences. The pink and dark blue points correspond to their salient points. Illustration of Salient points’
distance constraint (a); generating the transformation matrix with two correspondences (b) based on
the centroid p an d the salient point q to establish a local reference frame (also demonstrated as the
rotation pose in the transformation matrix).
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Afterwards, we combine the rigidity constraint and the distance of salient points
constraint. These two constraints are eventually combined as Sboth to compute the score of
the correspondences c1 and c2 given by (8).

sboth (c1, c2) = exp

(
−
Srigidity

(a · pr)2 −
Sdsp

(b · pr)2

)
(8)

To weight the scores of each constraint, we use an exponential function. This allows
the rigidity constraint (Srigidity) and the DSP constraint (Sdsp) to have a more significant
impact on decreasing the overall score if their values are higher, thus favoring the exclusion
of correspondences that do not satisfy the constraints. In this formulation, a ∗ pr and b ∗ pr
serve as distance thresholds for Srigidity and Sdsp, respectively. When the constraints of
correspondences are below these thresholds, it indicates that the geometric differences
between the two correspondences are within an acceptable range, and the score will be
maintained at a relatively high level. By setting appropriate values for a and b, we can
achieve a desirable distance threshold. Here, pr represents the point cloud resolution, and
it is defined by the Formula (9).

pr =
1
|P| ∑

p∈P

1
10

(
10

∑
i=1

∥∥∥p− pnni

∥∥∥) (9)

We calculate the average distance of the 10 nearest neighbor points pnni
around each

point p in the point cloud P . Then we compute the average distance of all points in the
cloud. After that, we select the top-ranked correspondence combinations and calculate the
local reference frame for the two correspondences c1 and c2, as shown in (10).

D12 =

[
p1p2 ×

(
p1q∗1 + p2q∗2

)∥∥p1p2 ×
(
p1q∗1 + p2q∗2

)∥∥ p1p2
‖p1p2‖

p1p2 ×
(
p1q∗1 + p2q∗2

)
× p1p2∥∥p1p2 ×

(
p1q∗1 + p2q∗2

)
× p1p2

∥∥
]

(10)

Here, we establish the first axis of the local reference frame based on the plane formed
by p1q∗1 + p2q∗2 and p1p2. P1q∗1 + p2q∗2 to integrate the information of the two salient points.
Additionally, p1p2 serves as the second axis. We then construct the third axis, which is per-
pendicular to the plane formed by the first two axes, using the p1p2 ×

(
p1q∗1 + p2q∗2

)
× p1p2

vector. These three vectors form an orthogonal reference coordinate system, as shown
in Figure 6b.

Finally, we can calculate the rotation and translation matrix based on the formula (11)
proposed by Quan, S., and J. Yang [13].

H =

[
Dt

12
pt

1+pt
2

2
0 1

]−1[
Ds

12
ps

1+ps
2

2
0 1

]
(11)

In the formula, Ht =

[
Dt

12
pt

1+pt
2

2
0 1

]
and Hs =

[
Ds

12
ps

1+ps
2

2
0 1

]
represent the matrices

formed by the center positions and rotation poses of two points in the source and target
point clouds, respectively. However, in the formula Ht×H = Hs, the transformation matrix
is applied to the target point cloud, returning it to the original coordinate system. We need
to modify the formula to H×Hs = Ht so that the transformation matrix acts on the source
point cloud. The modified transformation matrix formula should be as follows (12):

H =

[
Dt

12
pt

1+pt
2

2
0 1

][
Ds

12
ps

1+ps
2

2
0 1

]−1

. (12)
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2.3. Matrix Evaluation

After generating the transformation matrix for the highly ranked correspondences,
we need to evaluate the coarse registration results. We use two metrics to evaluate the
results: overlap ratio and the number of inlier points. The overlap ratio can be calculated
using two methods: KD-tree and octree. The KD-tree employs a nearest neighbor search
algorithm to find the closest points to the query point within a given radius. On the other
hand, the octree uses a voxelization approach to check for the existence of point samples
within each voxel. Based on a comparative experiment between these two methods (as
shown in Figure 7), we adopt the octree method to calculate the overlap ratio.
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Figure 7. The green bunny model and the red bunny model represent unregistered point clouds. The
blue areas represent their overlapping areas. In the left figure, the overlap ratio calculated using the
kd-tree method is 60%, while in the right figure, the overlap ratio calculated using the octree method
is 44%.

From the images, it can be observed that the octree method is able to more accurately
identify the overlapping regions. Additionally, the octree method also demonstrates better
search efficiency compared to the kd-tree method, which is beneficial for evaluating a large
number of matrices and complex scenes. As for the specific steps of evaluating, firstly, we
select the top-ranked registration results based on the overlap ratio threshold. Then, using
the number of inlier points within the distance threshold to choose the best transformation
matrix within these top-ranked results. We employ two metrics for evaluation for multiple
reasons. Firstly, the overlap ratio considers the overall registration accuracy and reflects the
alignment of the two point clouds on a global scale. Secondly, the number of inlier points
takes into account the local quality of the registration results. Correct correspondences
demonstrate consistency in geometric shape and topological structure within the local
region. A higher number of inlier points signifies more precise and stable registration
results within the overlapping region. Therefore, by considering both the overlap ratio
and the number of inlier points, we can comprehensively evaluate the accuracy and
completeness of the registration results.

Finally, we convert these main steps into Algorithm 1.
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Algorithm 1 Proposed registration method

Require: Point clouds ps and ps, and correspondence set C;
Ensure: Generate the best transformation matrix;
1: Using TOLDIs descriptors and H3D keypoint detection to generate feature Histogram and
using Equation (1) to generate initial correspondences;
2: Using Equation (2) to select the number of C

C = 200;
3: Evaluate each correspondence based on the Equation (8)

in C using Equation (8);
4: Ranking samples based on the compatibility score. Then we select out top N correspondences
as candidates

N = 300;
5: while i < N do
6: Compute transformation H based on (c1, c2)i using Equation (11);
7: Calculate inlier number Ii and overlap ratio Oi for each Hi;
8: i = i + 1;
9: end while
10: Setting threshold for overlap ratio

OT = 0.5; Then we use HT to store the Hi that fit OT
11: while i < N do
12: If Oi > OT then
13: HT ← Hi
14: else Re-enter the ovelap ratio until there is a point cloud exist
15: end if
16: i = i + 1;
17: end while
18: Select the H from HT with highest Ii as the optimal matrix.

3. Experiments and Discussion

This section focuses on verifying the accuracy of the point cloud coarse registration
method proposed by this article. The entire experiment was conducted using the Point
Cloud Library (PCL 1.12.1) with C++ programming language on a PC with an i7-9700
processor and 16 GB of RAM.

3.1. Experimental Setup

The experiment utilized various datasets, including Bunny, Dragon, and Armadillo
from the Stanford dataset; kitchen and indoor scenes scanned by Princeton University;
“Iqmulus & TerraMobilita Contest” [36] dataset is an urban environment in Paris, acquired
by the French National Mapping Agency through mobile laser scanning (MLS); and the
Taoist Zhenwu Temple in Rong County, Guangxi, collected by our team, as registration
data (Table 1). These datasets exhibit different point cloud densities, overlap ratios, and
application scenarios. By incorporating the diversity of these datasets, we can evaluate the
practical applicability of the proposed method.

Table 1. Experimental data.

No. Data Source Points Target Points Overlap Ratio Resolution Scenario

1 Bunny 30,379 40,251 0.60304 0.001 Object
2 Dragon 41,841 22,092 0.36715 0.00099 Object
3 Armadillo 26,941 25,570 0.81912 0.001 Object
4 redKitchen 258,342 268,977 0.47331 0.0081 Indoor
5 Home 425,577 373,295 0.74085 0.008 Indoor
6 Paris 372,620 204,128 0.85941 0.73 Outdoor
7 Zhenwu Temple 2,273,238 2146,665 0.84996 0.018 Indoor
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In terms of the evaluation criteria, the root mean square error (RMSE) [37] method
is commonly used as a standard in various fields. We first calculated the distance error
between corresponding points using the Formula (13).

εp
(
ps, pt) = ∥∥Rps + t− pt∥∥ (13)

where R represents the rotation matrix and t represents the translation matrix. Additionally,
ps and pt, respectively, represent the source point and the target point from the true
correspondence. RMSE is defined as follows (14):

RMSE = ∑
(ps,p′)∈Cgt

εp(ps, pt)∣∣Cgt
∣∣ . (14)

Cgt refers to the ground truth correspondences within the distance threshold. These
correspondences are determined by comparing the distances between correspondences in
correctly registered point cloud data. Specifically, the correspondences whose distances
meet the distance threshold are considered as the ground truth correspondences. However,
relying solely on the RMSE value does not effectively reflect the quality of point cloud
registration. Some locally optimal matches can result in low RMSE values. The RMSE
value becomes meaningful only when both point clouds are accurately aligned as a whole.
Precision [38] was added to make the evaluation more comprehensive.

Precision =

∣∣Ccorret
inlier

∣∣
|Cinlier|

(15)

Cinlier refers to the correspondences that satisfy the distance threshold after the registra-
tion process. Through multiple experiments, the distance threshold is typically set around
20*pr. Correspondences that meet this threshold ensure that the source and target point
clouds are geometrically close. Ccorrect

inlier specifically refers to the correct correspondences that
are in Cinlier and also meet the Cgt standard. These correspondences are originally correct
and remain accurate after registration process.

3.2. Analysis of Proposed Method

First, we investigate the influence of two key parameters on the registration accuracy
of the method: the number of selected correspondences after NNSR selecting and the
number of optimal transformation matrix. The experiment is conducted on the BUNNY090
and BUNNY180 datasets for registration. We use the TOLDI descriptor and Harris3D
keypoint detection as the method for generating correspondences.

According to the results shown in Figure 8, the precision and RMSE tend to stabilize
when the NNSR method selects approximately 300 correspondences. After consider-
ing the trade-off between computational efficiency and registration accuracy, we choose
300 correspondences as the experimental parameter. The 300 correspondences perform
well in terms of RMSE and precision, and provide a sufficient sample size for accuracy
calculation, allowing for a more comprehensive evaluation of the practical effect of point
cloud registration.

Based on the results shown in Figure 9, different transformation matrices yield consis-
tent registration results ranging from 100 to 600, except for 400 and 250 correspondences.
Considering the number of provided transformation matrices for evaluation and compu-
tational efficiency, we choose 300 hypothesized transformation matrices as the optimal
parameter. Having too many transformation matrices can increase the computation time for
metrics such as overlap ratio and inlier count, while having too few may result in missing
some high-quality transformation matrices.
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Figure 10 illustrates the influence of different transformation matrices on RMSE and
precision in the case of 300 correspondences. From the graph, it can be observed that the



Sensors 2024, 24, 1853 15 of 28

accuracy results remain consistent across 100 to 800 transformation matrices. This indicates
the uniqueness of the optimal matrix within this number of correspondences.
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Figure 10. Influence of different hypothetical transformation matrices on registration accuracy under
300 correspondences.

In determining the settings for the distance threshold of the inliers and overlap ratio
parameters, based on multiple experiments, we determined to set the distance threshold
in the range of 15*pr to 20*pr. This range allows us to assess the proximity between point
pairs. The overlap ratio is also a parameter used to evaluate registration accuracy. We
utilize the pre-registration overlap ratio as a threshold, as shown in Table 1. This approach
helps eliminate misalignments introduced during the registration process and visually
showcases the improvements achieved in numbers after registration.

Subsequently, to validate the superiority of combining rigidity constraints with dis-
tance of salient point constraints, we conducted tests on three different approaches: rigidity
constraint with distance of salient point constraint, rigidity constraint only, and rigidity
constraint with normal constraint. We conducted tests on the RMSE values of different
object under various geometric constraints (as shown in Figure 11). The registration re-
sults of the three different objects clearly indicate that the registration accuracy of the two
geometric constraints is superior to using only a single rigidity constraint. By adding the
normal constraint, we ensure the similarity in the normal direction of correspondences.
Additionally, the salient point constraint utilizes local surface information and provides
effective assistance in situations where the rigidity constraint may be ambiguous.

The RMSR value of the Rigidity + DSP constraint can be observed to be superior to the
Rigidity + Normal constraint at 50 to 200 correspondences. Both constraint exhibit similar
RMSE when the number of correspondences reaches 300. However, there is still an average
difference of 0.0005 between them in the RMSE value, proving that the Rigidity + DSP
constraint is still superior. As shown in , overall, the combination of the rigidity constraint
with the distance of salient point constraint yields better registration results.

In the case of the Bunny, the RMSR value of the Rigidity + DSP constraint can be
observed to be superior to the Rigidity + Normal constraint at 50 to 200 correspondences as
shown in Figure 12. Both constraints exhibit similar RMSE when the number of correspon-



Sensors 2024, 24, 1853 16 of 28

dences reaches 300. However, there is still an average difference of 0.0005 between them
in the RMSE value, proving that the Rigidity + DSP constraint is still superior. The trends
of RMSE value in the Dragon are similar to those of the Bunny, as shown in Figure 11b,
while in the Armadillo(Figure 11c), both methods exhibit a nearly constant trend. Overall,
the registration performance of Rigidity + DSP is superior to Rigidity + Normal when the
number of correspondences is small.
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Figure 11. (a–c) respectively represents the registration accuracy of Armadillo, Dragon, and Bunny
models respectively under different geometric constraints.

Then, we compared the registration results using different evaluation methods. We
conducted tests on the Bunny model and compared the performance of these methods, as
shown in Figure 13 and Table 2. These evaluation methods include using the maximum
number of inliers and the highest overlap ratio for assessment. We can observe that the
method combining inliers and overlap ratio consistently produces the best registration
matrix overall. The method based on overlap ratio reaches a similar performance to the
inliers and overlap ratio method after generating approximately 200 correspondences.
On the other hand, the method based on the maximum number of inliers shows more
fluctuations in its registration results and only catches up with the inliers + overlap ratio
method when the number of correspondences exceeds 300. In conclusion, among these
three evaluation methods, combining the two criteria leads to better registration results.
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The registration results of Bunny using different evaluation methods are shown in Figure 14.
We selected a range of 50 to 250 correspondences for comparison. It can be observed that,
overall, the method combining inliers and overlap consistently achieves good registration
results at any number of point pairs.
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Figure 12. The red bunny represents the target point cloud. The black bunny represents registration
under Rigidity constraints. Green one represents registration under the Rigidity + Normal constraint.
The blue one represents registration under the constraints of Rigidity + DSP. Figure shows registration
result under different geometric constraints.
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Table 2. RMSE result of three evaluation methods.

Selected Correspondences Inliers Overlap Ratio Inliers + Overlap

50 0.05663 0.02998 0.01096
100 0.0157 0.03027 0.01152
150 0.01622 0.03254 0.01406
200 0.02018 0.01433 0.01433
250 0.01474 0.01607 0.01607
300 0.0667 0.01474 0.01474
350 0.01507 0.01507 0.01507
400 0.0156 0.0172 0.0156
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Finally, we conducted tests on different transformation matrix calculation methods,
and the results are shown in Figure 15 and Table 3. Firstly, we compared the proposed
method with the GC-SAC method, which is using a different matrix calculation formula.
Additionally, it can be seen that the proposed method outperforms the GC-SAC method
in terms of registration accuracy. Then, we adopted the RANSAC method to remove the
outlier proposed by X. L. [39], and combined it with singular value decomposition (SVD)
to calculate the optimal transformation matrix. The results show that in the registration
results with 50 to 250 selected correspondences, the proposed method is superior to the
RANSAC method overall. In the range of 300 to 400 selected correspondences, the proposed
method has a slightly higher average RMSE value compared to the RANSAC method, with
a difference of 0.00018. However, the proposed registration method still achieves good
results overall, as shown in Figure 16.
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After confirming the entire registration process, we compared the entire registration
process of the proposed method, along with some of the feature-matching registration
methods such as IRIS [21], GROR [22], and Super 4PCS [40]. The results are present in
Figures 17 and 18. We can observe that in the comparison of three different point cloud
objects, the proposed method outperforms the other three methods in terms of RMSE value
and actual registration performance. Additionally, the proposed method is similar to Super
4PCS, which also utilizes geometric constraints such as limiting distance range and angle to
find the optimal identical four-point matches. However, the proposed method has a lower
computational time compared to Super4PCS.
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3.3. Proposed Method in Practice

Based on the BUNNY090 and BUNNY180 datasets, we evaluated the registration
performance of the method using different descriptors and keypoint detection methods.
The keypoint detection methods included Harris 3D (H3D) and intrinsic shape signatures
(ISS). The descriptors included fast point feature histograms (FPFH), 3D shape context
descriptor (3DSC), signature of histograms of orientations (SHOT), spin image (SI), and
TOLDIs. We assessed the accuracy of the registered point clouds using different descriptors
and keypoint detection methods (Figure 19), as well as the visual quality of the registration
results (Figure 20). Detailed results after registration are shown in Table 4.
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Table 4. Different descriptors and keypoint detections combined with the proposed method.

Method RMSE Precision

TOLDI + H3D 0.014741 0.96
TOLDI + iss 0.01594 0.94
Fpfh + H3D 0.01590 0.84
Fpfh + iss 0.03420 0.23
SI + H3D 0.0197 0.92
SI + iss 0.01586 0.88

3DSC + H3D 0.01914 0.17
3DSC + iss 0.02222 0.43

SHOT + H3D 0.02405 0.8
SHOT + ISS 0.02113 0.82

Observing Figures 19 and 20, it can be noted that under the constraints of rigidity
and salient points’ distance, most of the methods achieve good actual registration results.
The RMSE values are maintained around 0.01 to 0.02, and the precision also exceeds 80%.
However, the 3DSC descriptor, in combination with both keypoint detection methods, and
the FPFH descriptor with the ISS keypoint detection method, did not meet the expected
standards in terms of actual registration results.

In the comparison between the combinations of H3D and ISS methods with different
descriptors, it can be observed that the registration results with H3D keypoint detection
are slightly better than those with ISS keypoint detection. This is because our experimental
dataset, Bunny, is more sensitive to corner point features such as the ears and nose of the
rabbit, and the Harris 3D method is more suitable for capturing these corner point features.
On the other hand, the ISS algorithm focuses on capturing more comprehensive keypoint
information of the model, including curvature and normal changes. From the experimental
results, it can be concluded that the corner point features of the rabbit have more distinctive
characteristics compared to its ISS keypoints.

In terms of descriptors, TOLDI utilizes projections in three orthogonal directions,
allowing it to capture local shape features of the point cloud data in different directions.
This enables TOLDI to capture more detailed and local structural information in multiple
dimensions. This is the reason why TOLDI performs well among all the descriptor methods.
The spin image descriptor achieves the second best performance. Since the BUNNY090
and BUNNY180 datasets are obtained from different viewpoints, the spin image descriptor,
which calculates rotational projection histograms on the point cloud, can describe local
geometric features and counteract noise and inconsistencies between local point clouds
through rotational invariance. As a result, it demonstrates good matching performance on
point cloud data acquired by rotating at different angles.

The SHOT descriptor has relatively high dimensions, typically around 352 dimensions,
while the FPFH descriptor has relatively low dimensions, typically around 33 dimensions.
Therefore, the registration results achieved by the SHOT descriptor are superior to the
FPFH descriptor. The 3DSC descriptor encodes the geometric relationships between points
on a spherical surface and their neighboring points, providing a more comprehensive
representation of the overall shape of the point cloud. On the other hand, the FPFH
descriptor focuses on the relative angular changes between the neighboring points’ normal
changes and is suitable for surfaces with significant normal variations or objects with edge
features. For the Bunny model, which emphasizes local features, the FPFH descriptor
slightly outperforms the 3DSC descriptor.

To test the robustness of proposed registration method on different data types, we
conducted experiments on seven datasets: Bunny, Dragon, Armadillo, RedKitchen, Home,
Paris, and the Taoist Zhenwu Temple. The Taoist Zhenwu Temple dataset was acquired
using the Riegl VZ-1000 3D laser scanner in Rong County, Yulin City, Guangxi, China. It
can be observed from Table 5 that the precision of the registrations using the geometric
constraints and comprehensive evaluation method remain above 80%. The RMSE values
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are also below 15pr. Even for complex indoor scenes such as the Taoist Zhenwu Temple, the
RMSE is around 5pr. The actual registration results for each dataset are shown in Figure 21.
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Table 5. Registration results for different types of data.

Data RMSE Precision

Bunny 0.01474 0.90385
Dragon 0.01742 0.8932

Armadillo 0.00894 1
redKitchen 0.02249 0.84906

Home 0.04516 0.827
Paris 0.52034 0.948

Taoist Zhenwu Temple 0.135652251 0.850746269

Figure 22 displays the local details of the registration for the Taoist Zhenwu Temple.
Even for complex historical architectural structures and with voxel filtering applied to the
raw data, the proposed method can achieve structural registration. This verifies that the
registration method is capable of providing high-quality registration results for complex
structures and multi-scale data.
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Figure 22. The upper right image shows the nameplate(southern wonder) of the building. The
upper left image depicts decorative beams. The lower right image displays beams and pillars within
the building. The lower left image shows the junction at the staircase. In this figure, red and blue
represent the Zhenwu Temple scanned from different angles.

4. Discussion

Our experimental observations distinctly illustrate the superiority of point-to-point
correspondence-based registration methods compared with others. The approach that
employs a combination of rigidity constraints and distance of salient point constraints yields
a more accurate set of correspondences when contrasted to other geometric constraints. The
key advantage of integrating rigidity and DSP constraints is that DSP takes into account
local geometric details, effectively resolving ambiguities introduced by normal constraints
and rigidity constraints.

When it comes to generating transformation matrices and selecting the best trans-
formation, through experiments, it was shown that the proposed method for creating
transformation matrices, based on pairs of points from both the source and target point
clouds, outperforms conventional techniques such as RANSAC and GC-SAC. Because of
the high-quality correspondences, the proposed method achieves improved efficiency and
accuracy in registration results compared to other estimator methods. Additionally, the
proposed evaluation method, which combines inlier points and overlap ratio, provides
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a comprehensive assessment of both local and global qualities of the registration results.
This innovative evaluation approach outshines other methods and contributes to a more
comprehensive understanding of registration outcomes. Once the registration process was
set, we compared our proposed method with three existing feature-based registration meth-
ods. The results indicate that our method also outperformed similar registration methods
in terms of accuracy. The experiment also proves the robustness of the proposed coarse
registration method in real-world applications, as it performs well in terms of precision
and practical effectiveness when tested with different types, overlap ratios, and point cloud
densities of data.

However, it is important to acknowledge the limitations inherent in our experimental
approach. It should be noted that the results, those concerning different estimators, and
evaluation techniques, were derived from the Bunny model. To ascertain the method’s effi-
cacy across varied datasets, future research should encompass more extensive experiments.
Furthermore, in the comparative experiments involving recent methods, we encountered
several challenges due to time constraints. Specifically, we encountered the following issues:

(1) Due to our incomplete understanding of the underlying principles of the other three
methods, achieving optimal registration results was challenging.

(2) The selection of comparable methods for our study was constrained by a limited pool
of options. Additionally, some of the chosen methods may not accurately represent
the latest advancements in registration techniques. This aspect limited the breadth
and accuracy of our comparative analysis.

(3) By not integrating other established point cloud registration evaluation metrics, the
comprehensiveness of our results was compromised, and as a result, the overall
persuasiveness of our findings was diminished.

5. Conclusions

In this paper, we propose a coarse registration method based on local geometric fea-
ture constraints, combined with a comprehensive evaluation of inliers and overlap ratio.
The main steps of this method include correspondences filtering, transformation matrix
computation, and evaluation of matrix. First, we combine the constraints of the salient
points’ distance and rigidity to select high-quality correspondences. Then, based on the
centroids of the correspondences and their reference frames, we compute the transforma-
tion matrix for each correspondence. Finally, using the evaluation metrics of inliers and
overlap ratio, we select the best registration matrix. We compare different descriptors and
feature point detection methods to choose the one with the highest registration accuracy as
our experimental approach. Additionally, we compare the effects of different geometric
constraints on the experimental results and demonstrate that the constraints of salient
points’ distance and rigidity yield better results. By comparing single evaluation criteria,
we show that the overall registration results are improved when both evaluation metrics
are considered. Finally, we test our registration method on different types of datasets to
demonstrate its robustness and accuracy. In future work, the repetitive evaluation process
still significantly consumes time. There is still room for us to optimize the code in order
to improve computational efficiency. Additionally, the current method only considers the
geometric aspects (XYZ) of the point cloud data. We aim to incorporate additional param-
eters, such as RGB and intensity, in the subsequent registration experiments to enhance
the coarse registration process. These parameters can provide valuable information and
improve the accuracy of the coarse registration by considering not only geometric features,
but also color and intensity characteristics.
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Abbreviations
The following abbreviations are used in this manuscript:

RMSE Root Mean Square Error
ICP Iterative Closest Point
GC-SAC compatibility-guided sampling consensu
RoPS Rotation Projection Statistics
3DHV 3D Hough Voting
PCV Progressive Consistency Voting
ISS intrinsic shape signatures ISS
3DSC 3D shape context descriptor
GROR graph reliability outlier removal
RANSAC Random Sample Consensus
OASC Optimized Sample Consensus
H3D Harris 3D
SI Spin Image
LRF Local Reference Frame
FPFH Point Feature Histogram
SHOT Signature of Histograms of Orientations
NNSR Nearest Neighbor Similarity Ratio
PCRMLP point cloud registration with multilayer perceptrons
DBSCAN density-based spatial clustering of applications with noise
TODLI triple orthogonal localdepth images
DSP distance of salient point
PCL Point Cloud Library
MLS Mobile Laser Scanning
SVD Singular Value Decomposition
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