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Abstract: This work is focused on developing a self-calibration algorithm for an orientation estima-
tion of cattle movements based on a quaternion Kalman filter. The accelerometer signals in the earth’s
frame provide more information to confirm that the cow is performing a jump to mount another
cow. To obtain the measurements in the earth’s frame, we propose a self-calibration method based
on a strapdown inertial navigation system (SINS), which does not require intervention by the user
once deployed in the field. The self-calibration algorithm uses a quaternion-based Kalman filter
to predict the angular orientation with bias correction, and update it based on the measurements
of accelerometers and magnetometers. The paper also depicts an alternate update to adjust the
inclination using only the accelerometer measurements. We conducted experiments to compare the
accuracy of the orientation estimation when the body moves similarly to cow mount movements.
The comparison is between the proposed self-calibration algorithm with the IvenSense MPU9250 and
Bosch BNO055 and the quaternion attitude estimation provided in the BNO055. The auto-calibrating
algorithm presents a mean error of 0.149 rads with a mean consumption of 308.5 mW, and the Bosch
algorithm shows an average error of 0.139 rads with a mean consumption of 307.5 mW. When we
executed this algorithm in an MPU9250, the average error was 0.077 rads, and the mean consumption
was 277.7 mW.

Keywords: self-calibration; Kalman filter; cow attitude estimation; IMU-based collar

1. Introduction

Timely and accurate estrus detection is a long-standing problem affecting dairy produc-
ers [1]. The non-detection, or discrimination, of events of interest that allow the detection of
estrus, results in an increase in the interpartum period, which translates into losses in milk
production and in the efficiency of reproductive management; that is, the loss of money for
the production system [2].

According to Göncü and Koluman [3], errors in estrus detection can cost between USD
2 and 6 per extra day in the interpartum period, and the loss of one estrous cycle (21 days)
could cost between USD 42 and 126 per cow. The efficiency in milk production is related
to the liters produced daily by a cow and the number of days that it is lactating. This
number of days increases as the period between delivery and the following service “open
days” decreases, which conventionally is around 60 days [4]; therefore, an increase in this
period decreases the annual milk production. To maintain the open days period within the
60-day range, cows must become pregnant as soon as possible, and in that sense, a return
to a normal estrous cycle and early estrus detection is essential. According to Mičiaková
et al. [5] and Brehme et al. [6], estrus could last between 7.5 and 9.5 h, varying among
different breeds, 10/12 h after the ovulation begins. Thus, detecting estrus is essential as it
is the only signal farmers have to know when ovulation occurs, and when it is necessary to
inseminate or allow mating.
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In recent years, the aging of dairy workers and the lack of skilled labor in rural sectors,
as explained by Hirata et al. [7], has led to a decrease in the efficiency of visual detection of
the heat of around 55% to 70% in just 20 years, forcing the production system to seek more
efficient detection methods. Another critical point considered by Hirata et al. [7] is that
estrus expresses in approximately the same proportion during the day and night, the latter
period being even more complex to perform a visual detection. Today, the most commonly
used methods for this purpose, from the most practical to the most precise, such as the use of
patches accompanied by visual inspection (which requires time and adequate experience),
vasectomized bulls, andronized cows, and clinical techniques, such as ultrasonography,
progesterone detection in milk, and observation of vaginal secretions [5].

Automatic techniques that significantly reduce the personnel needed for this labor
have been introduced recently. These techniques use pedometers, accelerometers, mount
detectors, and ruminal monitors [5] as detection mechanisms, all associated with the
animal’s behavior and activity. Recently, they have been complemented with the use of
real-time video surveillance [7].

Activity identification is the most used mechanism to detect cows in heat automatically;
however, there is no uniform way to measure activity using accelerometer-based collars.
For example, Løvendah and Chagunda [8] used electronic activity tags fitted on neckbands
(Alpro, version 6.60; DeLaval, 2007). An activity count represents the average activity
level within the selected interval, which can be set from 2 s to 15 min. Mayo et al. [9]
performed an analysis of different commercial devices that measure the activity in steps,
neck movement, high activity of head movement, or a proprietary motion index (that refers
to an activity index developed by the vendor), which increased on the day of estrus from
69% to 170% when compared to the baseline before estrus. Although automatic detection
methods based on activity are an excellent alternative to visual inspection systems due to
the lower labor requirement, their success rates do not exceed 70% [5].

Pfeiffer et al. [10] compared the evaluation of different devices, showing that some
of them reach up to a 80% success rate only when they are complemented with other
measurements. The results obtained by Nelson et al. [11] with Hereford cows showed that
detection with mechanisms based on activity measurement reached 68%, while those based
on visual inspection reached 89%. Visual inspection is based on a scale established by Van
Eerdenburg et al. [1], which assigns scores to behaviors detected by visual observations.
For example, he assigned 100 points when a cow allows itself to be mounted by another
cow, and for the cow’s activity status, he only assigned 5 points. In this case, the activity
status is defined as the percentage of time the cow is walking or jogging. One way to
identify when a cow allows itself to be mounted is by using marker patches on the animal’s
tail-head. This is confirmed by Hill et al. [12], who showed with an accuracy of more than
90% that the patches are effective in identifying the most suitable time to carry out artificial
insemination to improve the fertility rate. It should be noted that this procedure requires
personnel’s assistance to verify that the patches are not stained and to apply them again if
needed. There are also pressure-sensitive adhesive devices, such as FlashMate [13], which
identifies cows in heat when the contacts’ frequency exceeds a threshold within a variable
time window in the previous hours. This device does not transmit data wirelessly, but
produces a blinking visual signal when activated [14,15]. On the other hand, there are
patches with pressure detectors and electronic transmitters, presenting an effectiveness of
56–94% [5].

The automatic identification of movements (like mounts) is difficult with data acquired
from a collar located around the neck of the cow because when the cow jumps to mount,
the head is oriented in the direction the cow intends to move. The accelerometer signals
provided in the three axes are taken in the frame of a cow body, so it is difficult to discrimi-
nate which acceleration offers more information to confirm that the cow is performing a
jump to mount another cow.

There is evidence in the published literature, in which movement classification is
performed using raw data from the IMU for calibration. For example, the article [16] focuses
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on the study of sheep for the purpose of classifying their movements. These movements,
subject to measurement, are influenced by the orientation that the IMU adopts as the
movement is carried out. Therefore, the movement pattern which is being attempted to
classify could experience significant variations depending on the positioning of the sheep’s
neck. Another problem with using raw data is that the IMUs provide this information
with different scaling, so if you change from an IMU manufactured by one supplier to one
manufactured by a different supplier, the calibration model changes because the parameters
obtained from the classifier depend on the type of data used for training. This is relevant
since product changes due to the technological obsolescence of the IMUs can lead to the
need to collect mount signals for training again, which is a long and complex process [17].
However, Liu et al. [18] proposes a processing stage for the measured signals that consist of
obtaining modules from the raw data, followed by a classification system based on neural
networks. The author’s methodological approach to measured data deviates from the
identification of more complex movements as it loses orientation information. Despite this,
it manages to obtain good results in measuring activity indices. Andriamandroso et al. [19]
goes one step further and proposes a pre-processing stage based on the normalization of
measurement signals. The authors used a smartphone as a capture device in the collar of
the cow, so they had already calibrated data and orientation provided by the device. They
used the collected data only for analytical purposes and as support for the classification of
movements, but not to make orientation updates.

The alternative is to use the normalized accelerations taken by the collar but expressed
in the earth’s frame of reference. In this sense, when the cow attempts to mount, the
acceleration in the z axis is easily distinguishable from the other accelerations, in particular,
when the cow falls down to a standing position. To obtain the accelerations in the world
frame of reference, the accelerations acquired in the body frame must be rotated using
the orientation of the collar expressed in the world frame of reference. Something similar
happens when trying to identify walking from accelerations measured in the body’s frame.
When the cow walks, there are accelerations in the forward and backward sense in the
plane of the earth. In this case, the module of the acceleration in the (x, y) plane, in the
world’s frame, is more helpful in discriminating the walking movements.

As the IMU is strapped to the cow’s collar, to obtain the attitude in the world’s frame,
we need to solve the problem known as strapdown inertial navigation systems (SINS),
which is a method to determinate the position, speed, and orientation of moving objects
without external information [20,21]; Chang and Li [22] showed that skew errors are better
handled using quaternions to design attitude algorithms. Zhong et al. [23] proved that
the quaternion-based nonlinear models contain high-order error items, which allow the
accurate description of the nonlinear characteristics of the SINS navigation system and
the variation of attitude errors. The use of Kalman filters is also reported in biological
characterization, Zhu [24] employed extended Kalman filters for the real-time soft tissue
characterization of robotic-assisted minimally invasive surgery, achieving precise haptic
control of robotic surgical tasks and providing realistic force feedback to the operator.
In the case of application to biological systems, Zhang et al. [25] presented a standing
calibration method of the MEMS gyro bias for autonomous pedestrian SINS when the
human body sways slightly. The methods do not use external measurements for calibration,
and they show in a turntable that the errors of the auto-calibrating method were accurate.

Usually, the attitude estimation is only available in some middle-cost IMUs, such as
Bosch BNO055, but less expensive IMUs do not provide reliable methods to obtain the
attitude. The challenge addressed in this article is to obtain an accurate measurement of the
attitude of the cow´s IoT collar using low-cost IMU and using as low a computational load
as possible in order to drain the minimum amount of energy from the onboard batteries.

2. Initial Calibration Models

Although the IMUs are meant to provide acceleration, gyroscope, and magnetometer
data, they are very different and have unique properties due to the fabrication procedure
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used by the vendor, furthermore, the Bosch BNO055 and the InvenSense MPU9250 provides
the raw data in different formats. It is advisable to use an initial calibration model to
compare the measurements. A simple method based on collecting measurements of the
Earth’s magnetic field and the field of gravity accelerations, according to [26] is used in
this work.

2.1. Initial Accelerometer Calibration Model

Consider the model,

ac(i) = KaSa(am(i) + ba + na), i = 1, · · · , n (1)

where ac and am are the calibrated acceleration and the measured acceleration, respectively,
and the parameters of the calibration matrices Ka (scaling matrix), Sa (Non-orthogonal
matrix), and ba (bias vector) are given by the following:

Ka =

kx,a 0 0
0 ky,a 0
0 0 kz,a

 Sa =

 1 γxz,a γxy,a
γyz,a 1 γyx,a
γzy,a γzx,a 1

 ba =

bx,a
by,a
bz,a

 (2)

and na is modeled as a white noise with zero mean and variance given by the following:

Var(na) =

σ2
x,a

σ2
y,a

σ2
z,a

 (3)

When the body containing the accelerometer is steady, the magnitude of the measured
acceleration must be 1g (g = 9.8 m/s), and to correct the scaling, the non-orthogonality, and
the bias in (2), it is advisable to take n measurements of am(i) with the body containing
the accelerometer aimed at different orientations. This involves finding the values of the
parameter vector θa = [kx,a, ky,a, kz,a, γxz,a, γxy,a, γyz,a, γyx,a, γzy,a, γzx,a, bx,a, by,a, bz,a], which
minimize the error between a function dependent on the calibration parameters of the
measurement model. This accelerometer model is calibrated in the laboratory using the
cost function (4), according to the calibration procedure depicted in Bonnet et al. [27].

θa = arg min
θa

{
Ja =

n

∑
i=1

ea(i)

}
(4)

with the error ea(i) given by the following:

ea(i) =
n

∑
i=1

(||ac(i)|| − 1)2, i = 1, · · · , n (5)

2.2. Initial Magnetometer Calibration Model

Similarly to the accelerometer, the model for the magnetometer measurement is given
by Equation (6),

Bc(i) = KbSb(Bm(i) + bb + nb), i = 1, · · · , n (6)

where Bc and Bm are the calibrated magnetic field and the measured magnetic field,
respectively, and the calibration matrices Kb (scaling matrix), Sb (non-orthogonal matrix),
and bb (bias vector), these matrices include the interference given by hard iron, which is
modeled in the biases in the calibration model, while the interference of soft iron is modeled
through the scaling factors [28] and are given by the following:
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Kb =

kx,b 0 0
0 ky,b 0
0 0 kz,b

 Sb =

 1 γxz,b γxy,b
γyz,b 1 γyx,b
γzy,b γzx,b 1

 bb =

bx,b
by,b
bz,b

 (7)

and nb is modeled as a white noise with zero mean and variance given by the following:

Var(nb) =

σ2
xb

σ2
yb

σ2
zb

 (8)

The calibration methodology for the magnetometer is similar to that of the accelerome-
ter, and, in this case, the measurements are normalized in order to find the magnetic North,
so, the magnitude of the magnetic field must be one. The measurements are taken in various
orientations to estimate parameters such as scaling, non-orthogonality, and bias. The objec-
tive is to minimize the disparity between actual magnetic field measurements (9) and the ex-
pected values based on the following parameters: θb = [kx,b, ky,b, kz,b, γxz,b, γxy,b, γyz,b, γyx,b,
γzy,b, γzx,b, bx,b, by,b, bz,b].

eb(i) =
n

∑
i=1

(||Bc(i)|| − 1)2, i = 1, · · · , n (9)

This process is conducted in a laboratory environment and utilizes a cost function,
similar to the accelerometer calibration, given by the following:

θb = arg min
θb

{
Jb =

n

∑
i=1

eb(i)

}
(10)

2.3. Magnetic Tilt Correction

The existence of a magnetic field component perpendicular to the earth’s surface
generates problems when attempting to estimate the orientation, since the basic principles
on which the self-calibration algorithm is based, we first use the magnetic field vector
perpendicular to the gravity vector as a reference. To solve this problem, we calculate and
separate the horizontal component of the magnetic field at the earth’s surface. The method
of projection of the magnetic field vector onto the gravity acceleration vector is given by
the magnetometer.

proy(B⃗c,⃗a) =
B⃗c · a⃗c

||⃗ac||
a⃗c (11)

Equation (11) will be used to estimate the perpendicular component and it will be
subtracted from the calibrated measurement given by the following:

B⃗
∗
c = B⃗c − proy(B⃗c,⃗a) (12)

In this way, it is possible to eliminate the magnetic field component perpendicular to
the earth’s surface using the readings of the magnetometer and accelerometer and, thus, we
are only left with the horizontal component, which will be used as a reference to perform
the IMU self-calibration. However, when eliminating a component of the magnetic field
vector, it is necessary to normalize the new vector obtained as follows:

B⃗ =
B⃗
∗
c

||B⃗∗
c ||

(13)

which will be aligned to the tangent plane to the earth’s surface, and will be perpendicular
to the gravity vector.
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2.4. Gyroscope Scaling

To keep the procedure as simple as possible, we scale the gyroscope to convert the
raw values into rad/sec units using the factors informed by the vendors in the IMUs
BNO055 [29] and MPU9250 [30] datasheets. The procedure assumes that the most significant
error of the gyroscope is in the bias parameters, and the KF can correct this error.

3. Attitude Auto-Calibration

It is possible to obtain accurate measurements of the attitude of the cow´s collar in the
world frame using a simplified SINS approach, considering that most of the time, the cows
perform slow movements, like grazing, ruminating, or resting. The first step is to obtain
the orientation of the cow’s collar, i.e., body frame, and make a prediction of the attitude
and correct the measurements of the accelerometer and magnetometer in the world frame,
and compare it with the expected ones if the cow is not moving. A practical method to
obtain the orientation of the body frame is to integrate the angular velocity measured by
the gyroscope. However, this mechanism must deal with a time-varying bias inherent to
the measurement process of the IMU. One approach is to use a Kalman filter, an algorithm
based on a system’s state variables model. Friedland [31] pioneered the application of the
Kalman filter utilizing quaternions, a development that has since evolved into a widely
adopted technique for strapdown inertial navigation systems (SINS) [22,32,33]. In the
present study, we employ the Kalman filter approach for model prediction and update,
addressing two distinct scenarios for the update. The first involves updating the model
using acceleration and magnetometer measurements, while the second focuses solely on
updating with accelerometer data.

3.1. Model Prediction

The system model starts from the equation.

˙̄q =
1
2
[q̄ ⊗ w̄b] =

1
2
[w̄b ⊗ q̄] (14)

where q̄ is the attitude quaternion, composed of a scalar term, q0 and three imaginary
terms, q1, q2, and q3, and w̄b is the quaternion for the angular velocity in the body reference
as follows:

q̄ =


q0
q1
q2
q3

, w̄b =

[
0
w

]b

(15)

The angular velocity is modeled by the quaternion, w̄b, given by the following:

w̄ = ū + b̄ (16)

where ū is the gyroscope measurement quaternion (17) and b̄ (18), is a quaternion whose
components are the bias of the angular velocity measurement, as shown in (16). This bias b̄
is the variable to be estimated in real-time.

ū =

[
0
u

]b

, u = [ux, uy, uz]
T (17)

b̄ =

[
0
b

]b

, b = [bx, by, bz]
T (18)

From (14)–(16), the derivative of a quaternion is as follows:

˙̄q =
1
2
[(ū + b̄)⊗ q̄] =

1
2
[ū ⊗ q̄] +

1
2
[b̄ ⊗ q̄] (19)
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Considering the following approximation:

˙̄q =
q̄k − q̄k−1

T
(20)

where T represents the sampling time, then, from (19) and (20); thus, the following:

q̄k = q̄k−1 +
T
2
[ūk−1 ⊗ q̄k−1] +

T
2
[b̄k−1 ⊗ q̄k−1] (21)

where we assume that the bias b̄ is constant between Tk−1 and Tk as follows:

bk = bk−1 (22)

Following the work of Li [34], we define the state vector xk as follows:

xk =

[
q̄
b

]
k
=

[
q0 q1 q2 q3 bx by bz

]T
k (23)

This model allows you to correct the angles provided by the angular velocity model,
auto-calibrating the parameter bias to compensate for the gyroscope drifts in real-time. In
this case, the calibration is only made with the data measured by the IMU. This process
is an auto-calibration because the SINS algorithm adjusts the gyroscope bias in real-time
without external measurements. The auto-calibration is relevant because once the collars
are deployed with the IMU device strapped in the cow collar, we need to keep updating
the correction of the gyro bias while the cows are in the grassland. We use the Quanser
platform only to verify the goodness of this correction and the energy consumption.

Then, Equations (21) and (22) can be expressed as follows:

x̂−k = Ak−1 x̂k−1 + Bk−1uk−1 (24)

where u k−1 is the gyroscope measurement at time k − 1; thus, the following:

Sk =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


k

Ak =

[
I4×4 − T

2 S
03×4 I3×3

]
k

Bk =

[ T
2 S

03×3

]
k

(25)

This is also known as a priori estimate, x̂−k . Note that in (24), the matrices Ak and Bk
are evaluated at each time k using the estimated attitude qk. Considering a sample time
in the order of 10 times per second, the variation of the attitude qk due to the cow’s slow
movements is negligible, so we assumed that these matrices are almost constant between
two consecutive time samples, and we opted to keep the Kalman filter structure instead of
an extended Kalman filter.

3.2. Measurement Update with Accelerometer and Magnetometer

To obtain the a posteriori state, x̂k, the Kalman filter [35] uses a correction by comparing
the measured output yb

k with an inferred output ŷb
k based on the a priori state x̂−k , given by

the following:
x̂k = x̂−k + Kk(y

b
k − ŷb

k) (26)

In this case, the selected outputs to be compared are the magnetometers and accelerom-
eters measured and inferred in the frame of reference located in the sensing device, where
also the body reference is as follows [34]:

yb
k =

[
ab

mb

]
k

and ŷb
k =

[
âb

m̂b

]
k

(27)
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In this case, we assume the magnetic field vector with coordinates in the reference
frame of the world is m̂w

k = [0, 1, 0], assuming the cows show scarce movements. The
acceleration magnitude shown in these movements is usually lower than the gravity
acceleration; therefore, we will assume these cow accelerations are negligible with respect
to the gravity acceleration, so we will compare the acceleration measured in the IMU only
with the dominant acceleration (gravity) given in the world reference, âw

k = [0, 0, 1].
To compare these outputs in the body frame of reference, we use the matrix rota-

tion, Rb
w, for the quaternion q̄. In this matrix, the superscript b symbolizes the body’s

frame of reference and the subscript w symbolizes the world’s frame of reference, hence
the following:

Rb
w =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (28)

This matrix Rb
w allows us to express the gravity acceleration given in the world

reference, aw = [0, 0, 1], as follows:

âb
k = Rb

w âw
k = Rb

w

0
0
1

w

= −

 2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

 = Ca
k q̄k (29)

To express the gravity acceleration from the world frame in the body frame, multi-
plying the rotation matrix by the attitude quaternion is required, resulting in a non-linear
equation; therefore, it is necessary to define a matrix Ca expressed in terms of the quaternion
q̄, as follows:

Ca
k = −

−q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3


k

(30)

For the magnetometer, we have the rotation matrix based on quaternions, as stated
in Equation (28), and already assigned the magnetic field vector with coordinates in the
world reference frame, mw

k = [0, 1, 0], as follows:

m̂b
k = Rb

w

0
1
0

w

=

 2(q1q2 + q0q3)
q2

0 − q2
1 + q2

2 − q2
3

2(q2q3 − q0q1)


k

= Cm
k q̄k (31)

As with the estimation of the acceleration, Equation (31) is nonlinear; therefore, it
is necessary to factor by a matrix Cm based on the quaternion q̄ to compare it with the
measured acceleration in the body frame. To fulfill (31), Cm is represented as follows:

Cm
k =

 q3 q2 q1 q0
q0 −q1 q2 −q3
−q1 −q0 q3 q2


k

(32)

Finally, using Ca and Cm, the inferred output ŷb
k is as follows (33):

ŷb
k =

[
âb

m̂b

]
k

=

[
Ca

k 03x3
Cm

k 03x3

][
q̄
b

]
k
= Ck x̂−k (33)

3.3. Measurement Update Only with Acceleration

In our application, we do not require precision in the orientation of the cow, with
respect to the north or the east, but we require precision with respect to the inclination
of the device because if the cow’s head is aimed to the ground or up to another cow, the
acceleration measured in the body reference will be difficult to interpret as a cow’s walking
movement or a cow’s mount movement. The correct tilt angle allows a ground-based
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representation of the accelerations to analyze the cow’s movements. This auto-calibration
shows the same benefits as the full attitude calibration to identify a cow’s movements, but
the energy requirements are lower. It spares the use of the magnetometer and requires
fewer computations.

The inclination auto-calibration is simpler because it only uses the measurements of
acceleration and gyroscopes, dismissing the use of the magnetometer. This is relevant
because the magnetometer power consumption is the most consuming measurement in
the IMU [30]. In this case, the outputs to be compared are the accelerometers measured
and inferred in the frame of reference located (34) in the sensing device, also named body
reference as follows:

yb
k =

[
ab]

k and ŷb
k =

[
âb]

k (34)

where the inferred output ŷb
k is (35).

ŷb
k =

[
âb]

k =
[
Ca

k 03x3
][q̄

b

]
k
= Ck x̂−k (35)

3.4. Status Update

To solve Equation (26), we need Equation (36), to update the a priori covariance, to
update the Kalman gain, Kk, and to update the a posteriori covariance matrix, Pk, via [35],

P̂−
k = AkPk−1 AT

k + Qn (36)

Kk = P−
k CT

k [CkP−
k CT

k + Rn]
−1 (37)

Pk = (I − KkCk)P
−
k (38)

4. Experimental Setup

The IoT collar comprises an IMU and a Heltec ESP32 microcontroller with LoRaWAN.
The IMUs used are the Bosch BNO055 and the InvenSense MPU9250, both with three-axis
accelerometers, magnetometers, and gyroscopes. BNO055 is more expensive and came
with a quaternion estimate of the attitude provided in the firmware. We will execute
the developed auto-calibration algorithms in real-time and compare them in terms of
attitude estimation and power consumption. An experimental board of the IoT collar was
constructed for this comparison. The board integrates a Heltec wireless stick module as a
main processor and two IMUs, an InvenSense MPU9250, and a Bosch BNO055 connected
through I2C bus. A clock configuration for the I2C protocol was implemented with an
operating frequency set to 100 kHz in the Arduino IDE environment. The sensors have
been configured to operate within the same operational range, ensuring that they sample
synchronously at a rate of 10 Hz. To accurately track the cow’s movements, the BNO055
and MPU9250 sensors were meticulously configured. The gyroscope measurement range
for both sensors was set to +/− 2000 DPS, while the accelerometer range was set to +/−
2G. Specifically, for the BNO055, it was operated using the “fusion mode/NDOF” mode to
estimate the quaternion attitude. This algorithm is provided “as is” within the BNO055,
and it does not require additional setup.

4.1. Initial Calibration Procedure

The initial calibration does not require reference measurements for the initial calibra-
tion procedure (see Section 1). For this procedure, the experimental board must be kept
resting in a set of fixed directions spaced in 3D. With the tests, we found that 30 regularly
spaced measurements provided enough information to proceed with the calibration. Ac-
cording to our experiments, the contribution to the goodness of the fit is marginal when
the number of evenly spaced positions in 3D space increases over 30. To ensure the device
was still in each new position, we checked the stationary position of the gyroscope mea-
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surements. When the gyroscope module reaches a steady state for each of these positions,
we acquire the complete set of measurements (accelerometers and the magnetometer in
3D). With the data collected, we will apply the initial calibration depicted in Section 2.1 to
calibrate the accelerometer model (1) and the magnetometer model (6).

4.2. Testing Procedure

The Kalman filter algorithms shown in Section 2 do not require external measurements
to calibrate the parameters of the model, as they use the magnetic and gravity fields
to make the corrections. The Kalman filter updates in real-time, not only to the initial
conditions of the angles, but also to the bias parameters of the model (19), correcting the
drift of the gyroscope. Prior to putting the collars on the cows, we will use an experimental
setup consisting of a Quanser platform to emulate movements similar to a cow´s mount.
This Quanser platform allows us to quantify the error of the estimated angles of the IMU
strapped down to the collar and to assess the energy used.

Figure 1 illustrates the experimental setup utilized in the design performed with
the Quanser SRV02 [36] platform setup. The setup consists of a data acquisition module
and a voltage-controlled linear power amplifier from the VoltPAQ to power the rotary
servo base unit of the servo arm. This amplifier is explicitly designed to achieve a high
performance in the hardware-in-the-loop (HIL) implementations. This platform reproduces
movements with high repeatability, and uses accurate rotational angle sensors (0.2 degrees)
as a reference signal. In the setup, the experimental board is attached to the arm’s end part
of the platform SRV02 to retrieve the IMU signals while the platform arm is moving.

Figure 1. Experimental setup.

For testing the algorithms, we will use the test curve shown in Figure 2b (radian units),
which is expressed in Euler angles Θ = [ψ, θ, ϕ], and represents the cow mount movements.
In the mount procedure, the cow’s initial position is over the rear end of another cow, and
then it goes up, staying for a second, then it goes up again, and finally, it goes down. The
test figure shows a 10-s-long test curve with the movement repeated twice. The figure
shows only the pitch angle because this is the only angle of interest in the earth´s frame of
reference, and the other two angles are kept almost constant.

In Equation (39), Jx is an index of the error obtained in a reproduction of the test curve,
i is the discrete-time at a rate of 10 samples per second, N = 100 is the total samples in
the curve, Θm is the reference attitude measured in the Quanser SRV02 with accurate shaft
encoders. In (39), the attitude Θm is compared to five different test subjects Θx, defined
as follows:
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Jx =

√√√√ 1
N

N

∑
i=1

(Θm(i)− Θx(i))2 (39)

(a) Movement sequence.

(b) Measurement QUANSER SVR02 [radians].

Figure 2. Test movements, (a) view of the movements at 5 waypoints, (b) measurement angles in
Quanser SRV02.

• Θx = ΘGIMPU : the attitude in Euler angles computed only by integrating the gyroscope
measurements provided by an InvenSense MPU9250. This quaternion is not self-
calibrated;

• Θx = ΘGIBNO : the attitude in Euler angles computed only by integrating the gyroscope
measurements provided by a BOSCH BNO055. This quaternion is not self-calibrated;

• Θx = ΘSCMPU : the attitude in Euler angles computed with the self-calibration method
presented in Section 3, using the measurements (magnetometer, accelerometer, and
gyroscope) provided by an InvenSense MPU9250;

• Θx = ΘSCBNO : the attitude in Euler angles computed with the self-calibration method
presented in Section 3, using the measurements (magnetometer, accelerometer, and
gyroscope) provided by a Bosch BNO055;

• Θx = ΘQBNO : the attitude in Euler angles of the quaternions provided by the
Bosch BNO055.
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The test was conducted 200 times and the anomalous cases were excluded, resulting in
a total of 180 valid cases. The choice of sample size was based on the results of Levene’s tests
(p > 0.544), which assessed the equality of variances. The procedure involved comparing
variance across a range of experiments with different sample sizes, encompassing the
values of N ranging from 30 to 200. The final conclusion was that the variance remains
statistically constant from a sample size of 60 experiments onward as the sample size
increases. However, due to the conditions of relative ease of experimental repeatability, a
sample size of 200 experiments was chosen.

To create a more efficient and magnetometer-free routine, simplifying the automatic
cow mount detection process. We employ a performance index similar to the one outlined
in Equation (39) to assess our progress; however, we include a weighting matrix Λ. This
matrix is essentially an identity matrix, but with the third component of the diagonal set to
zero, allowing us to exclude errors associated with rotations around the z axis as follows:

JIx =
1
N

N

∑
i=1

||Λ[Θm(i)− Θx(i)]|| (40)

• Θx = ΘISCMPU : the attitude in Euler angles computed with the self-calibration method
presented in Section 3.3, using only the accelerometer and gyroscope measurements
provided by an InvenSense MPU9250;

• Θx = ΘISCBNO : the attitude in Euler angles computed with the self-calibration method
presented in Section 3.3, using only the accelerometer and gyroscope measurements
provided by a BOSCH BNO055.

The parameters needed for the Kalman filter execution are the measurement variance,
Rn, and the inner noise variance, Qn. In this case, as the Rn is a scalar value related to the
measurement noise, the parameters were obtained with measurements taken from the IMU
when it stood over a table for 15 min.

The parameters of the inner noise variance, Qn, were estimated solving the problem
as follows:

Qn = arg min
Qn

{
1
N

N

∑
i=1

||Θm(i)− Θx(i)||
}

(41)

We used the algorithm fminsearch of MATLAB with a data set resulting from a test
using the Quanser SRV02 [36] involving 3200 s of data sampled at 10 Hz, and discarding
the first 2 s to avoid the effect of the transient response of the Kalman filter (N = 32,000).

4.3. Statistical Analysis Methods

We applied exhaustive statistical analyses to evaluate possible significant differences
between the various orientation estimation methods. These tests begin with calculating
descriptive statistics parameters and, subsequently, we performed normality tests using
the indices obtained from Equation (39). These indices were computed based on the
difference between three orientating estimation subject tests and the measured orientation
performed in the Quanser SRV02 with the rotary encoders in the articulated arm. The
three algorithms are the quaternions measurements provided by the BNO055 and the
self-calibrated algorithms based on the inertial sensors of the MPU9250 and the BNO055.
To validate the assumptions necessary for an ANOVA, we applied a normality test of the
data obtained in Equation (39) with the Shapiro–Wilks. As the normality test failed, we
used the Dwass–Steel–Critchlow–Fligner test as a non-parametric analysis to determine if
there were significant differences between groups.

4.4. Energy Analysis

In this Section, we gauge the power increase incurred by the use of the attitude estimate
routines presented in this article. To assess the power consumption, we used the Joulescope
(see Figure 3b), which is a precision measuring instrument boasting a resolution of 0.5 nA
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and a bandwidth of 300 kHz, capable of handling 2 million samples per second [37]. The
measurement circuit design is depicted in Figure 3a.

In this analysis, we identify the attitude estimate routines using lettered subscripts
for differentiation, A refer to the measurement algorithms executed with data obtained
from the MPU9250, while B is for those executed with data acquired from the BNO055. The
subscripts indicate the following cases:

0. None of the algorithms were active, and this is for comparisons as a baseline. In this
case, the IMU is powered, but in the configuration, the accelerometer, gyroscope, and
magnetometer are disabled;

1. The simplified self-calibration algorithm (i.e., the inclinometer using only accelerome-
ters and gyroscopes). In this case, only the magnetometer is disabled;

2. The comprehensive self-calibration algorithm considering all inertial measurements (ac-
celerometer, gyroscopes, and magnetometers), and in the specific case of the BNO055;

3. The quaternion estimate provided by the Bosch algorithm in the BNO055 IMU.

These details are summarized in Table 1. The Joulescope measurements focus on en-
ergy consumption, expressed in milliwatts, [mW]. The experiments involve the individual
execution of each self-calibration algorithm over a 10-min interval with a sample time of
0.1 s. Subsequently, statistical metrics, such as mean and standard deviation, are calculated.
Additionally, normality tests will be conducted, followed by parametric and non-parametric
statistical tests, depending on the data’s nature. JAMOVI statistical software [38] are for
determining the presence of significant differences.

The choice of a 10 min interval for each execution is justified regarding the stability
and consistency in measurements over time. Additionally, it is taken into account that
the Levene test (p > 0.279) for the equality of variances is assumed after the first 5 min,
ensuring that the required conditions for this analysis are properly met.

(a) Connection diagram. (b) Energy consumption measurement setup.

Figure 3. Experimental design for accurate measurement of electrical energy.
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Table 1. Experimental description.

Algorithm Types Description

A0 Base line for MPU9250
A1 Algorithms “ISC” for MPU9250
A2 Algorithms “SC” for MPU9250

B0 Base line for BNO055
B1 Algorithms “ISC”s for BNO055
B2 Algorithms “SC” for BNO055
B3 Algorithms “Q” for BNO055

SC: self-calibration; ISC: inclination self-calibration; Q: quaternion native estimation.

5. Results
5.1. Initial Calibration of the Accelerometer for MPU9250 and BNO055

Table 2 describe the calibration results of the accelerometer model parameters using
Equations (4) and (5) for a set of 30 accelerations measured at orientations obtained when
the three rotation axis were changed at regular intervals.

Table 2. Calibrated parameters of the accelerometer, θa, for MPU9250 and BNO055 IMU’s. Source:
self-made.

Parameter [g = 9.8 m/s2] Invensense MPU9250 Bosch BNO055

γa,xz 0.0016 2.9621 × 10−5

γa,xy −0.0017 −8.5622 × 10−5

γa,yx 0.009 −4.15645 × 10−5

γa,yz 0.0091 −2.13033 × 10−5

γa,zy 0.0060 −2.6978 × 10−5

γa,zx −0.0009 −7.82731 × 10−5

Ka,x 0.0615 0.0010360
Ka,y 0.0610 0.0010356
Ka,z 0.0601 0.0010321
ba,x 219.8976 8.3184
ba,y 287.6430 −21.9462
ba,z 1346.7 −8.5860

5.2. Initial Calibration of the Magnetometer for MPU9250 and BNO055

Table 3 describe the calibration results of the magnetometer model parameters using
Equations (9) and (10) for a set of 30 magnetometer measurements acquired when the
3 rotation axis were modified at regular intervals.

Table 3. Table of calibrated magnetometer parameters, θb, for MPU9250 and BNO055 IMU’s. Source:
self-made.

Parameter [µT] Invensense MPU9250 Bosch BNO055

γm,xz 0.000414 1.2614 × 10−5

γm,xy −0.0003 −2.9753 × 10−5

γm,yx −0.0001 −2.1678 × 10−5

γm,yz 0.0032 4.3141 × 10−5

γm,zy 0.00015 −1.4241 × 10−5

γm,zx 0.00041 −2.6346 × 10−5

Km,x 0.02844 0.0011077
Km,y −0.0284 0.0011077
Km,z 0.02752 0.0011166
bm,x −22.18170 −3.832519
bm,y 5.3160 −0.120414
bm,z −44.9796 9.245934
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5.3. Results of Self-Calibration Algorithms

The results of the optimization problem (41) applied to the extended Kalman filter for
MPU9250 and BNO055 are provided below for the estimation of Qn. It is worth noting that
this routine was specifically employed to compute error parameters associated with Qn,
while the matrix Rn was directly measured and given by the following:

QMPU = diag([1.2681, 3.8625, 4.5505, 9.5457, 0.0670, 0.0893, 0.0292])10−5

RMPU = diag([0.0011, 0.0026, 0.0031, 0.0012, 0.0026, 0.0010])

QBNO = diag([8.9884, 2.4526, 4.4477, 3.4589, 0.0227, 0.0105, 0.0186])10−6

RBNO = diag([0.0011, 0.0016, 0.0024, 0.0227, 0.0262, 0.0276])

Figure 4 illustrates the evolution of measurement indices assessed through the five
proposed algorithms. As anticipated, the methods that integrate angular velocity from the
MPU9250 and BNO055 IMUs demonstrate poor performance over the extended integration
duration. This observed behavior renders the integration of angular velocity impractical
for collar-worn devices intended to analyze the acceleration in terms of the resulting angles
used as matrix rotations between the body and world frames. The other algorithms’ key
disparity between these two algorithms lies in the substantially higher error due to the bias
b̄ of the gyroscopes.
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Figure 4. Evolution of the error index Jx for algorithms JSCMPU , JGIMPU , JSCBNO , JGIBNO and JQBNO .

Compared to the other proposed algorithms, which share similar characteristics by
maintaining a relatively constant mean error with variations attributed to random variables,
the Kalman filter method that utilizes the MPU9250 stands out for its ability to provide a
smaller margin of error.
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5.4. Statistical Results

Table 4 shows the results of comparing the means, µ(Jx), and standard deviation,
σ(Jx), for each test subject (39) when the test corresponds to similar mount movements (see
Figure 2b) was repeated 185 times in the SRV02 platform. The lower result, as expected, is
the obtained one with the attitude quaternion computed only by integrating the gyroscope
measurements provided by an InvenSense MPU9250 and a Bosch BNO055, represented by
JGIMPU and JGIBNO . These quaternions are not self-calibrated, and the high mean value of
JMPU is due to the variability of the bias. The other three indices are very close, meaning
the error is less significant when using either technology. In Table 3, the best results were
obtained with the self-calibrating algorithm and the InvenSense MPU9250, a low-cost IMU.
The self-calibrating algorithm applied to the Bosch BNO055 shows better performance with
this index than the quaternion provided in this IMU. The results of the normality tests using
the Shapiro–Wilks criteria applied to the indices indicate that with 95% confidence, the
proposed orientation estimation algorithms do not follow a normal distribution (p < 0.001).

Figure 5 illustrates the distribution density of the error index using Kalman filtering
and quaternion measurements from the BNO055. It is evident that the curves for MPU9250
and BNO055 are similar, with MPU having a slight edge, but both are significantly different
on average from the quaternions obtained from the BNO055 (Kruskal–Wallis p < 0.001).
Furthermore, using the statistical software JAMOVI [38], we estimate the effect size, Cohen’s
d, (ϵ2 = 0.89), which is considered a large effect according to Cohen’s standards.
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Figure 5. Error distribution density of Kalman for self-calibration using BNO055 (JSCBNO ) and
MPU9250 (JSCMPU ), and the quaternion estimates provided by Bosch in the BNO055 (JQBNO ).

Table 4. Mean and standard deviation of the error indices when the test curve was executed 185 times.

Metrics JSCMPU JSCBNO JQBNO JGIBNO JGIMPU

µ 0.0774 0.1393 0.1493 1.6717 8.5258
σ 0.0164 0.0024 0.0130 0.7142 5.0098

Shapiro–
Wilks <0.001 <0.001 <0.001 <0.001 <0.001

JSCBNO : self-calibration with data from BNO055; JSCMPU : self-calibration with data from MPU9250; JGIBNO : gyro-
scope integration with data from BNO055; JGIMPU : gyroscope integration with data from MPU9250; JQBNO : native
quaternion from BNO055.
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5.5. Results of Inclination Auto-Calibration

The descriptive statistical analysis results suggest that the mean of the MPU Kalman
filter is slightly superior to that of the BNO055 Kalman filter, while the BNO055 exhibits a
lower estimation variability. Normality tests at a 95% confidence level fail to provide suffi-
cient evidence for the normality of the results (see Table 5). Consequently, a non-parametric
Kruskal–Wallis test was conducted to assess the differences in outcomes between both
algorithms. The results indicate the presence of statistically significant mean differences
(p < 0.001). Figure 6 depicts that the error distribution of the algorithm with the Kalman
filter based on the measurements of the MPU9250 is lower than that obtained with the
Kalman filter based on the measurements of the BNO055. Furthermore, the results using
the statistical software JAMOVI [38] estimate the effect size, Cohen’s d, (ϵ2 = 0.696), which
is considered a large effect according to Cohen’s standards [39].
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Figure 6. Error distribution density of Kalman filter for inclination self calibration using BNO055
(Jx = JISCBNO ) and MPU9250 (Jx = JISCMPU ).

Table 5. Mean and standard deviation of the error indices when the test curve was executed 185 times.

Metrics JISCMPU JISCBNO

µ 0.1195 0.1370
σ 0.0135 0.0032

Shapiro–Wilks <0.001 <0.001
JISCMPU : inclination self-calibration with data from MPU9250; JISCBNO : inclination self-calibration with data
from BNO055.

5.6. Result Energy Analysis

Table 6 resumes the obtained power consumption results [mW] obtained in the tests
described in Section 4.4. Figures 7 and 8 show the power consumption distributions for
BNO055 and MPU9250, respectively. Furthermore, the results using the statistical software
JAMOVI [38] of the non-parametric tests indicate that there are statistically significant
differences between the algorithms for the BNO055 and MPU9250 (p < 0.00001) and effect
size estimates, Cohen’s d, (ϵ2 = 0.8538) for BNO055 and (ϵ2 = 0.8881) for MPU9250, which
is considered a large effect according to Cohen’s standards.
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Table 6. Mean and standard deviation of energy consumption.

MPU9250 BNO055

Method x̄[mW] σ[mW] Shapiro–
Wilk Method x̄[mW] σ[mW]

Shapiro–
Wilk

A0 262.9 0.8 <0.00001 B0 303.3 0.1 <0.00001
A1 274.6 0.3 <0.00001 B1 307.6 0.2 <0.00001
A2 277.7 0.3 <0.00001 B2 308.5 0.2 <0.00001
- - - - B3 307.5 0.1 <0.00001
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Figure 7. Energy consumption results A0, A1, and A2 with Invensense MPU9250. Methods A0:
MPU9250 energized but inactive, BNO055 not connected. Methods A1: inclination-self-calibration
algorithms with data acquired from MPU9250. Methods A2: Self-calibration algorithm with data
acquired from MPU9250.
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Figure 8. Energy consumption results B0, B1, B2, and B3 with Bosh BNO055. Methods B0: BNO055
energized but inactive, MPU9250 not connected. Methods B1: inclination-self-calibration algorithm
with data acquired from BNO055. Methods B2: self-calibration algorithm with data acquired from
BNO055. Methods B3: quaternion attitude estimates from BNO055.
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6. Discussion

This study showed that a simple but effective method implemented in a low-cost
microcontroller could accurately estimate the device’s attitude with an IMU strapdown
when stressed in similar conditions to a cow collar. For this work, we assumed that the
acceleration resulting from the cow’s movement is negligible. Yet, it remains present,
influencing the inclination due to acceleration when the cow is in motion, while the errors
highlighted in this study are not deemed significant, assessing the potential impact of
these inclination errors on classification algorithms is relevant. Moreover, a thorough
examination of the impact of inclination errors on classification algorithms could enlighten
future research on enhancements for the auto-calibration algorithm.

Incorporating self-calibration algorithms, such as those based on Kalman filters, into
previous works on motion classification using IMUs can have considerable effects on the
precision and efficiency of said classifications. By addressing the challenges associated
with orientation variability and the need for precise calibration, these algorithms could
significantly improve the robustness of classification models, allowing for a more accurate
interpretation of motion patterns.

Variability in the orientation of the IMUs during data capture can influence the results
of motion classification. The addition of self-calibration algorithms for slow-moving bodies,
such as a cow, helps mitigate this issue, providing more consistent results regardless of
device’s position. The use of self-calibration algorithms would reduce this dependency,
facilitating the transition between different IMU providers without the need for signifi-
cant adjustments.

The successful incorporation of self-calibration algorithms in previous works high-
lights the need for future research that explores the adaptability and performance of these
algorithms in various contexts and specific applications, thus allowing continuous evolu-
tion in the improvement of IMU-based technologies.

Sensor choice and energy efficiency are critical factors in device life and performance.
Implementing self-calibration algorithms can enable a more flexible selection of sensors,
thus optimizing power consumption and extending battery life. The energy analysis for
the MPU9250 and the BNO055 (see Table 6) highlights differences between the power
consumption requirements of IMUs with a potential impact on battery life. Thus, this
analysis provides a practical perspective focused on determining the relationship between
the accuracy of orientation estimation measurements and energy efficiency. Although the
inclination self-calibrating algorithm offers only accurate orientation information with
respect to the z-axis, they use 3.1 mW less energy for MPU9250 and 0.9 mW less for BNO055
with respect to the full calibration. These differences are significant when we project the
energy consumption along the life cycle of the IoT Collar.

7. Conclusions

The innovation of this work is the use of strapdown inertial navigation systems as an
autonomous, accurate method for estimating cattle orientation, emphasizing its impact on
long-term power efficiency, the benefit for animal behavior monitoring and energy-efficient
field applications, and advancing the understanding of cattle behavior. The proposed
method was experimentally verified using an arm axis that generates rotational movements
similar to a cow and executing a statistical analysis of performance and a power analysis of
the developed system.

In this paper, we developed two versions of the Kalman filter to estimate the attitude of
an IMU strapped to a cow’s collar. The first version used a correction based on acceleration
and magnetometer measurements. The resulting algorithm corrects the bias entirely and
is very useful for supporting the identification of cow movements. The other one uses
only the accelerometers, which partially corrects bias. In this case, the bias associated with
the tilt and roll angles is accurate, but the bias associated with the rotation in the z-axis
has a drift. This algorithm is still helpful to support identifying some cow movements,
particularly those associated with mounts and walk.
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The quaternion Kalman filter for the auto-calibration of the attitude is simple enough
to allow coding into the microcontroller installed on the cow collar. Although the attitude
quaternion corresponds to a rotation, it is advisable to include a correction between itera-
tions to maintain their module equal to one. The algorithm assumes that most of the time,
the acceleration produced by the cow is negligible compared with the acceleration of grav-
ity, the attitude estimation shows good results, and due to its simplicity, the algorithm has a
low demand for computing, maintaining a low energy load to diminish the collar’s battery
drain. This is a promising result to continue developing classification algorithms based on
attitude estimates to execute them at the edge in the cow’s IoT collar using low-cost IMUs.
Further work must evaluate the impact of the attitude estimate error on the classification
when identifying different cow movements, such as mounts, regular walking, and gait.

The proposal to use self-calibration algorithms using Kalman filters for IoT cow collars
seeks to look for guidance to acquire correct acceleration measurements in a common
reference frame. These algorithms have a slight impact on processing time and energy
consumption. However, the choice of sensor is crucial in terms of energy efficiency and
presents significant differences. Notable discrepancies were found in average power
consumption, with a difference of around 30 mW between the MPU9250 and the BNO055.
This disparity is considerable in terms of duration, highlighting the importance of selecting
the appropriate sensor.

To advance in searching for SINS to support the rotation of coordinates in a cow collar
with low power requirements, accuracy, and computing load, we must keep exploring the
algorithms’ efficiency in various IMUs and trying algorithm alternatives to the Kalman
filter, such as the Complimentary filter [40] or the Madgwick filter [41]. Future research
should investigate the synergies and potential improvements that arise from integrating
these filters, providing a comprehensive assessment of its impact on classification accuracy
for various cow movements, including riding, regular walks, and walking.

We searched for simple algorithms to be included in cow collars to empower the cow
collar with SINS. The proposed algorithms perform a real-time gyro bias calibration and at-
titude estimation. Initially, we manually calibrated the accelerometer and magnetometer to
have a fair comparison. This initial calibration is complex because we must orient the device
in several positions. Once the collars will be installed on the cows, we cannot recalibrate the
accelerometer and the magnetometer, while the accelerometers’ scaling, alignment, and bias
parameters do not change significantly with time, the anomalies affecting the parameters
of the magnetometers are more significant, deteriorating not only the yaw update but
also the roll and pitch estimate. The Kalman filter with measurement updates based only
on accelerations presented in Section 2.3 shows a reasonable tilt estimate. Applying this
rotation on the body axes produces a representation that favors the discrimination between
horizontal and vertical movements. This algorithm is more straightforward, as it does not
use the magnetometer and consumes less power; thus, we recommend using this algorithm
for running at the edge in the microcomputers of the cow collar.
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Glossary and Abbreviations
The following abbreviations are used in this manuscript:

SINS Strapdown inertial navigation system
SC Self-calibration
ISC Inclination self-calibration
ac Calibrated accelerometer
am Accelerometer measurement
Ka Scaling matrix for accelerometer
sa Non-orthogonal matrix for accelerometer
ba Bias for accelerometer
na Noise for accelerometer
Bc Calibrated magnetometer
Bm Magnetometer measurement
Kb Scaling matrix for magnetometer
sb Non-orthogonal matrix for magnetometer
bb Bias for magnetometer
nb Noise for magnetometer
JGIBNO Performance error of gyroscope integration with data from BNO055
JGIMPU Performance error of gyroscope integration with data from MPU9250
JSCMPU Performance error of self-calibration with data from MPU9250
JSCBNO Performance error of self-calibration with data from BNO055
JQBNO Performance error of native quaternion from BNO055
JISCMPU Performance error of inclination self-calibration with data from MPU9250
JISCBNO Performance error of inclination self-calibration with data from BNO055
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