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Abstract: On-orbit servicing using a space robot is gaining popularity among the space community
for both economic and safety aspects. In particular, the estimation of the relative motion of a
noncooperative target is a challenging problem. This study presents a relative motion estimation
scheme based on stereovision for noncooperative targets considering multiple solutions of rotational
parameters. Specifically, the mass distribution of the target is identified based on the least-square
method and the principle of conservation of angular momentum. Then, the determination of a unique
principal axis coordinate frame of the target is employed to resolve the multiple-solution problem.
In addition, an EKF (extended Kalman filter)-based filter with global observability is designed to
estimate the full motion states and inertia parameters of the target. The convergence performance
of the proposed method is verified by numerical simulation. The results also demonstrate that the
method is robust to occlusion.

Keywords: relative motion estimation; noncooperative target; on-orbit servicing; Kalman filter

1. Introduction

The ever-growing number of malfunctioned spacecrafts remain in orbit with intense
space activity, which seriously threatens the safety of operational spacecraft. On-orbit ser-
vicing (OOS) technology for repairing, refueling, and deorbiting these defunct spacecrafts
has attracted widespread interest in the last decade. Relative pose and motion estimation
of the target to be serviced is a key technology in the OOS mission. Frequently, these
missions are considered cooperative. In this case, the state of the target can be measured
through a global positioning system (GPS) and position-sensing diode (PSD) mounted on
the target [1]. However, some defunct spacecrafts are noncooperative targets; i.e., they
are unable to actively (i.e., though a communication link) or passively (i.e., though an
auxiliary maker) exchange information with the servicing spacecraft, which makes the
cooperative architecture inapplicable [2]. Thus, relative motion estimation technology for
noncooperative targets has become urgently demanded and challenging.

To address this issue, the servicing spacecraft has to detect the target remotely on
its own. Recent work suggests that electronic optical (EO) sensors are the best option for
relative motion estimation purposes [3,4] when proximity operation with noncooperative
targets is required. Active LIDAR (Light Detection and Ranging) systems and passive
monocular/stereovision are typical EO sensors for space application. An LIDAR system
can acquire the 3D point cloud of the target, which can be used for motion estimation. The
iterative closest point (ICP) may be the most popular algorithm to deal with point clouds
for tracking the pose of a target [4]. In [5], the pose is initialized by matching the silhouette
image template data with the LIDAR points. The templates are built offline and the sample
are restricted to the 2D attitude domain to simplify template matching. Aghili et al. [6] used
the pose calculated through the ICP algorithm as the measurement for an extended Kalman
filter and derived the covariance of measurement noise. However, LIDAR systems have
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obvious drawbacks in terms of mass, power consumption, computation load, and hardware
complexity, especially for servicing spacecraft with limited weight and energy budget [7].

Comparatively, passive sensor-based approaches have been given more attention for
noncooperative close-proximity operations. These methods rely on the features of the target
surface, which are extracted from a sequence of images, to realize motion estimation. In
the single-camera vision system, a model-based estimation architecture is proposed in [8],
using the line segments identified from the edge of the target in images. The pose is then
computed by solving a feature-matching problem using the efficient perspective-n-point
(PNP) method. Since satellite nozzles and docking rings are equivalent to spatial circles,
several researchers select circle or ellipse features as the recognized object to estimate the
pose of the target [9,10]. However, the symmetry of these features will result in ambiguity
of the vector normal and the loss of one rotational degree of freedom [11]. Zhang et al. [12]
exploited the elliptical cone model to determine the pose of the docking ring and addressed
the duality by introducing images of a redundant nozzle. In [13], a convolutional neural
network (CNN) was applied to monocular images for pose determination. Then, an
unscented Kalman filter with adaptive process noise was designed to estimate the motion
of the target. Nevertheless, reliable datasets with labeled images of different motion states
and illumination conditions are required for CNN training, which is costly for space
applications. Because monocular vision offers bearing information only, it will suffer scale
ambiguity regarding the position magnitude, which limits its application [14].

A stereovision system can acquire two perspective views of the features, and therefore,
the depth information can be recovered. Several studies have utilized stereovision to
address motion estimation concerning uncooperative targets. In [15], the rectangle feature
of the framework on the backboard was recognized by two collaborative cameras to realize
pose measurement. Hu et al. [16] introduced extra line features to recover information
on the roll angle around the circle normal. However, the above methods will not work
if particular artificial features, e.g., rectangles, lines, or circles, are not attainable on the
target. The point feature always exists on the noncooperative target, making it an ideal
candidate feature for recognition, especially when no a priori knowledge of the target’s
structure or appearance is accessible [14]. An example of the point-based scheme in which
the pose as well as the linear and angular velocity are estimated is shown in [1]. Segal
et al. [17] built the observation model of a set of feature points based on the coupling
translational–rotational kinematic. Several iterated EKFs with different inertial tensors
are exploited and the optimal one is determined by adopting a maximum a posteriori
identification. Another work [18] reorganized the Euler equation and incorporated the
pseudo-measurement equation into the observation model.

Since there is no direct information about the target’s attitude in feature point mea-
surement data, it is a crucial aspect to define a target-fixed coordinate frame to describe
the orientation of the target. According to recent research work, the principal axis coor-
dinate frame is typically preferred for motion estimation problems of a noncooperative
target [6,18–20]. However, the principal axis coordinate frame is not unique for a rigid
body. If a principal axis coordinate frame is designed as a state to be estimated in the filter
without any constraint, it will bring multiple solution problems to angular velocity, the
inertia matrix, and coordinates of features, because these values completely depend on
which coordinate frame is utilized to describe the target’s rotation. In other words, multiple
sets of these rotational parameters will share the same measurement history, resulting in the
lack of global observability of the estimation problem [21]. The multiple-solution problem
of rotational parameters, to the knowledge of the authors, has not been mentioned and
investigated in the literature concerning relative navigation. Another aspect to take into
account is that the rotation of the target will inevitably lead to the occlusion of feature
points. During the occlusion period, the estimates will solely rely on the propagation of
the dynamic model until these feature points become visible to the sensor again. In this
circumstance, the filter may suffer serious convergence problems if the global observability
cannot be guaranteed, making it vulnerable to occlusion.
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Motivated by this, this study developed a relative motion estimation algorithm for
noncooperative targets considering multiple solutions of rotational parameters. The method
proposed herein only depends on the tracking of feature points by using stereovision
measurements and prior information about the geometric shape of the target is not required.
The original contributions of our work are twofold: First, we propose a method to determine
the attitude of the target, which has a unique solution of the principal axis coordinate frame.
Second, we use EKF along with a uniquely determined principal axis coordinate frame to
guarantee global observability. In numerical simulation, the robustness of the algorithm to
occlusion is presented and validated.

The rest of the article is organized as follows: Section 2 introduces the observation
model of the stereovision system, as well as the dynamic model of the noncooperative
target. Section 3 illustrates the multiple-solution problem of rotational parameters in
detail and introduces the method for the determination of the principal axis coordinate
frame. Section 4 formulates the EKF-based filtering scheme with a determined principal
axis coordinate frame. Then, in Section 5, the simulation results are presented. Finally, a
conclusion is drawn in Section 6.

2. Mathematical Model

The aim of the relative motion estimation problem is to estimate the relative trans-
lational and rotational motion states and inertial parameters of noncooperative targets
using the stereovision equipped on the servicing satellite. In this section, the system model,
namely, the measurement model of the stereovision and the dynamic model of the target,
are presented. Several coordinate systems are introduced to help describe these models.

2.1. Measurement Model of Stereovision

As depicted in Figure 1, a stereovision system is employed on the space robot to
observe the target. A simplified measurement model is applied, characterized by two
parallel image planes that are perpendicular to the optical axis. Let C denote the sensor
coordinate frame which is attached to the center of projection of the left camera. The x
axis of frame C point to the center of projection of the right camera, the y axis is aligned
with the optical axis, and the z axis obeys the right-hand rule. It is assumed that N feature
points on the surface of the target can be detected. The projection of the i th feature points
in the left and right image planes is denoted as (uil , vil) and (uir, vir), respectively. Then,
the coordinate expressed in frame C can be recovered using a pinhole camera model [17]:

mi =
[
xi yi zi

]
=

[
zi

uil
f zi

vil
f

f b
uil−uir

]
(1)

where f is the focal length and b is the baseline length.

2.2. Dynamic Model of Rotational Motion

In this article, the attitude of the target is parameterized using a quaternion. The
kinematics of the quaternion is given as [22,23]

G
I q =

1
2

[GωGI
0

]
⊗ G

I q (2)

where G
I q describes the orientation of any target-fixed coordinate frame (G) with respect

to the inertial coordinate frame, I. GωGI is the angular velocity of frame G with respect to
frame I expressed in G, and ⊗ represents the quaternion multiplication. When the target is
regarded as a rigid body, the rotational dynamics is given as [6]

I
.

ω= − [ω×]Iω+L (3)

where I denotes the target’s inertia matrix and L is external disturbance torque.
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Figure 1. Diagram of stereovision system. 
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Figure 1. Diagram of stereovision system.

2.3. Dynamics Model of Translational Motion

Assuming that the servicing spacecraft moves in a circular orbit, the translational
motion of the target in the Hill coordinate frame of the space robot (denoted by L) can be
described by the Hill equation [24]:[ .

r
.
v

]
=

[
03×3 I3×3
E1 E2

][
r
v

]
+

[
03×3
I3×3

]
nt (4)

where

E1 =

0 0 0
0 −ωc

2 0
0 0 3ωc

2

E2 =

 0 0 2ωc
0 0 0

−2ωc 0 0

 (5)

r =
[
x y z

]T and v =
[ .
x

.
y

.
z
]T are the relative position and velocity of the target

with respect to the servicing satellite expressed in frame L. ωc is the orbital angular velocity
of the servicing spacecraft.

3. Determination of Principal Axis Coordinate Frame

As mentioned in the introduction, the principal axis coordinate frame, the target-fixed
coordinate frame aligned with its principal axis of inertia, is more preferable to describe the
orientation of a noncooperative target and often set as the state to be estimated in a filter.
One reason is that the principal axis coordinate frame can reflect the mass distribution of
the target, which is useful information for the subsequent design of the capture strategy.
Moreover, because the corresponding inertia matrix is diagonal, it will reduce the dimension
of unknown inertia parameters. Notice that there are different ways to define a principal
axis coordinate frame. (Figure 2 shows a total of 24 principal axis coordinate frames for a
rigid body. The principal axes of the target are represented by dashed lines.) Because the
principal axis is only determined by the mass property of the target, it is usually unable to
be directly measured by the optical sensor. In other words, the target-fixed frame, G, which
is related to visual measurement, does not coincide with a principal axis frame in general.
As shown in Figure 2, the attitudes of these principal axis coordinate frames are different
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from each other, which further causes different values of the corresponding angular velocity,
inertial matrix, and coordinates of features. These 24 sets of rotational parameters can
produce the same time history of measurement and lead to a multiple-solution problem.
Consequently, the navigation filter will lose global observability.
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Motivated by this, an algorithm for the determination of a unique principal axis
coordinate frame is proposed in this section. In this phase, three non-collinear feature
points are exploited to define frame G due to the lack of direct pose measurement of
the target. The coordinates of these points are computed based on Equation (1). Three
orthogonal unit vectors, ci, can be obtained using the following equation:

c1 = (m2 − m1)/|(m2 − m1)|
c3 = (m2 − m1)× (m3 − m1)/|(m2 − m1)× (m3 − m1)|
c2 = c3 × c1

(6)

Then, a target-fixed photogrammetric coordinate frame, G, is defined, which conforms to

G
C R =

[
c1 c2 c3

]T (7)

where G
C R is the rotation matrix from frame C to frame G. The corresponding inertial matrix

expressed in frame G is denoted as

GI =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (8)

Since these feature points are randomly distributed and selected, the product of inertia
is set as non-diagonal elements of the inertia matrix without loss of generality. It is worth
noting that only five inertial parameters are independent because the inertial matrix will
always conform to Equation (3), even when multiplied by any constant. After being divided
by the first element, the inertial matrix can be normalized as

GI =

 1 Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (9)
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and the constant inertia ratio vector is expressed as l = [Iyy Izz Izy Ixz Iyz]
T . Accord-

ing to attitude dynamics, the angular momentum of target can be formulated as

GIω = G
I RH (10)

where H = [h1 h2 h3]
T denotes the angular momentum expressed in frame I. It is as-

sumed that the target is a torque-free tumbling rigid body; the principle of the conservation
of angular momentum can be adopted to estimate the inertia parameters. In that case,
H will remain constant. Consequently, Equation (10) can be rewritten as the following
linear equation:

a(t)X=b(t) (11)

where

a(t) =

 0 0 ωy(t) ωz(t) 0
ωy(t) 0 ωx(t) 0 ωz(t) −G

I R(t)
0 ωz(t) 0 ωx(t) ωy(t)

, b(t) =

−ωx
0
0

 (12)

X = [lT HT ]
T

. The unknown constant X is estimated by the least-square method if
observation data from different epochs are acquired:

x̂= (ATA
)−1

ATB (13)

where

A =


a(t1)
a(t2)

...
a(tk)

, B =


b(t1)
b(t2)

...
b(tk)

 (14)

To estimate the angular velocity in Equation (12), we rewrite Equation (2) as

ω=2ΞT(q)
.
q (15)

where

Ξ(q) ≡

q4I3 + [q1:3×]

−qT
1:3

 (16)

The angular velocity can be approximated from the numerical differentiation of q [25].
The resulting Î relates the mass distribution of the target to the stereovision measure-

ment. Therefore, the orientation of a principal axis coordinate frame, T, can be determined
through orthogonal diagonalization of I:

T
GRG ÎT

GR
T
=

[
r1 r2 r3

]TG Î
[
r1 r2 r3

]
=

λ1
λ2

λ3

 (17)

where λi are eigenvalues of I. The corresponding eigenvectors, ri, are the column vectors of
the rotation matrix from frame T to frame G. Note that multiple solutions of frame T exist,
resulting from the selection of ri, as shown in Figure 2. Therefore, an approach to uniquely
determine frame T is proposed as follows: Specifically, ri is chosen so that the inequality
constraint λ1 > λ2 > λ3 can be satisfied. Furthermore, the first element of r1 is set to be
positive. In fact, these conditions are equivalent to the constraints that the x axis and z axis
of frame T are aligned with the principal axis of the largest and smallest moment of inertia,
respectively, and that the x axis of frame T forms an acute angle with the x axis of frame G.
In this way, the principal axis coordinate frame, T, can be uniquely determined.
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4. Extended Kalman Filter with Determined Principal Axis Coordinate Frame

In our implementation, an EKF-based scheme is employed using the estimated attitude
of frame T and observed feature points to estimate the rotational and translational motion
of the target. Meanwhile, the orientation of frame T is set as the rotational state of the target
to be filtered. Because frame T has been defined and a rough estimation is directly acquired
in Section 3, the multiple-solution problem will be resolved.

We denote the inertia matrix of the principal axis coordinate frame, T, as

I =

Ix 0 0
0 Iy 0
0 0 Iz

 (18)

which is parameterized in a similar way as in [6].

px =
Iy − Iz

Ix
, py =

Iz − Ix

Iy
, pz =

Ix − Iy

Iz
(19)

where p =
[
px py pz

]T is the inertia ratio with

.
p = 0 (20)

Therefore, Euler dynamics (3) can be rewritten in terms of the inertia ratio as

.
ω = K(ω) + J(p)nr (21)

where

K(ω) =

 pxωyωz
pyωxωz
pzωxωy

, J(p) =

1 0 0
0 1−py

1+px
0

0 0 1+pz
1−px

 (22)

nr is the disturbance torque.
Let fi denote the coordinate of feature points in frame T, which is constant, i.e.,

.
fi = 0 (23)

The state vector to be estimated by the filter is therefore

x = [TI qT
ωT pT rT vT fT

1 fT
2 · · · fT

N ]
T

(24)

From Equations (2), (4), (20), (21) and (23), the system model is described by

x = f(x) (25)

Considering the composition rules of the quaternion, the error-state vector is given by

∆x = [δθT δωT δpT δrT δvT δfT
1 δfT

2 · · · δfT
N ]

T
(26)

For the angular velocity, inertia ratio, position, velocity, and coordinates of feature
points, the error in the estimated b̂ of a state (b) is defined as δb = b− b̂. For the quaternion,
the error is parameterized using a rotation vector (δθ) which satisfies

q =

 1
2 δθ√

1 −
∥∥∥ 1

2 δθ
∥∥∥2

⊗ q̂ (27)
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The linearized continuous-time model for the error states is obtained by retaining
only the first-order term of the Taylor expansion of Equation (25) around the current
estimated value [22]:

∆
.
x=F∆x+Gn (28)

where

F =



−[ω̂×] I3 03×3 03×3 03×3 03×3N
03×3 M(ω̂, p̂) N(ω̂) 03×3 03×3 03×3N
03×3 03×3 03×3 03×3 03×3 03×3N
03×3 03×3 03×3 03×3 I3×3 03×3N
03×3 03×3 03×3 E1 E2 03×3N

03N×3 03N×3 03N×3 03N×3 03N×3 03N×3N

, G =



03×3 03×3
J(p) 03×3
03×3 03×3
03×3 03×3
03×3 I3

03N×3 03N×3

 (29)

n = [nT
r nT

t ]
T with

M(ω̂, p̂) =

 0 pxωz pxωy
pyωz 0 pyωx
pzωy pzωx 0

, N(ω̂) =

ωyωz 0 0
0 ωxωz 0
0 0 ωxωy

 (30)

The covariance of process noise (n) is denoted by Q.
As mentioned above, the estimated attitude of frame T in Section 3 offers the direction

observation of the state within the filter, the measurement model of which is simply

y0 = T
I q = T

Cq ⊗ C
I q (31)

where C
I q is computed based on the attitude installation matrix of stereovision and the

attitude estimation of the servicing spacecraft. Meanwhile, the coordinate of the i th feature
point in frame L satisfies

yi = r + L
I R I

TRfi (32)

which is obtained from the absolute orbit determination of the servicing spacecraft. Putting
all the components together, the observation model of filter is defined as

y = h(x) =
[
yT

0 yT
1 yT

2 · · · yT
N
]T (33)

The error measurement model is approximated by linearizing Equation (33):

∆y = H∆x + η (34)

where η is the measurement noise, and the measurement sensitive matrix (H) is given as

H =


I3×3 03×3 03×3 03×3 03×3 03×3

−L
TR̂[f̂1×] 03×3 03×3 I3×3 03×3

L
TR̂

· · · · · · · · · · · · · · · · · ·
−L

TR̂[f̂N×] 03×3 03×3 I3×3 03×3
L
TR̂

 (35)

In this study, a continuous–discrete type of EKF is employed to solve the relative
motion estimation problem. The implementation of the EKF is based on two processes:
prediction and update.

In the prediction step, the optimal estimation of the state (x) and error covariance (P)
are propagated for the time interval (tk, tk+1) through

x−k+1 = x+k +
∫ tk+1

tk

f(x(t))dt (36)

P−
k+1 = Φ(tk+1, tk)P

+
k ΦT(tk+1, tk) + Qk (37)
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The error-state transition matrix Φ(tk+1, tk) can be computed by numerical simulation
of the following differential equation:

.
Φ(τ, tk) = F(τ)Φ(τ, tk) (38)

With the initial condition of Φ(tk, tk) = I. Qk is the discrete covariance of system noise and
is calculated by [26]

Qk =
∫ tK+1

tk

Φ(tk+1, τ)GQGTΦT(tk+1, τ)dτ (39)

Once the measurement is available, the error state (∆x) and the corresponding covari-
ance are corrected according to

∆xk+1 = Kk+1∆yk+1 (40)

P+
k+1 = (I − Kk+1Hk+1)P

−
k+1(I − Kk+1Hk+1)

T + Kk+1Rk+1KT
k+1 (41)

where Rk+1 is the covariance of measurement noise and Kk+1 is the Kalman gain.

Kk+1 = P−
k+1HT

k+1

(
Hk+1P−

k+1HT
k+1 + Rk+1

)−1
(42)

The optimal estimation of filter states, except the attitude, can be updated as

x+k+1 = x−k+1 + ∆xk+1 (43)

To satisfy the unit norm constraint, the update of quaternion is realized through

q+k+1 =

 1
2 δθk+1√

1 −
∥∥∥ 1

2 δθk+1

∥∥∥2

⊗ q−k+1 (44)

5. Numerical Simulation

In this section, the numerical simulations are carried out to verify the proposed relative
motion estimation method. Specifically, the objectives of the simulative experiment are
to (a) evaluate the validity of the determination of the principal axis coordinate frame
and (b) investigate the estimation performance of the EKF-based filter with a uniquely
determined attitude.

It is assumed that the servicing spacecraft is in a circular orbit with a radius of 6800 km,
and thus, the angular rate is 0.0012 rad/s. The initial relative position and velocity of
the target with respect to the servicing spacecraft are set as r0 = [10, 10, 10]T m and
v0 = [−0.3889,−0.4932,−0.8264]T m/s. In this simulation, a microsatellite, mentioned
in [6], is selected as the target spacecraft, which has the inertia matrix diag([8, 5, 4]) kg · m2.
The initial attitude of the target parameterized by the quaternion is given as q0 = [0, 0, 0, 1]T.
According to [27], a malfunctional spacecraft may tumble at a rate varying greatly, from
2.9 deg/s to 36 deg/s. Based on this, a typical value of w0 = [0.1, 0.1, 0.1]T rad/s is con-
sidered as the initial angular velocity. We assume that the coordinates of feature points
expressed in frame T are subject to uniform distribution, with lower and upper bounds
of −1.5 m and 1.5 m, which is the same as in [17]. Six instead of ten feature points are
supposed to be measured to test the proposed method in extreme conditions. The measure-
ment is generated at a rate of 10 Hz (similarly to [28]). Due to the self-occlusion of the target
caused by rotation, these feature points will inevitably be unobservable for some time
intervals. The availability of a feature point can be identified by evaluating whether the
angle between the observation direction and the normal direction is acute [29]. However,
this algorithm is reliable only when the body is convex. For simplicity, a hypothesis of a
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fixed occlusion period is made, which is sufficient for the purpose of this study. In view
of the magnitude of the initial angular rate, |w0| ≈ 10 deg/s, we consider a complete
unavailability of measurement within 20 s, about half of the rotation period of the target.
Figure 3 illustrates this concept. In addition, Figure 4 shows the visible trajectories of these
six feature points.
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(1) Results of principal axis coordinate determination

This section presents the principal axis coordinate determination results. To evaluate
the influence of the measurement noise level, we consider the stereovision system with an
angular resolution of 0.1 × 10−5rad, 0.5 × 10−5rad, 2 × 10−5rad, and 5 × 10−5rad, similar
to the setup used in [30]. The root mean square error (RMSE) is applied as the metric of the
algorithm, which is defined as

RMSE =

√√√√ 1
N

N

∑
i=1

eT
i ei (45)

where e is the estimated error and N is the number of Monte Carlo runs.
The RMSE of the estimated attitude of the principal axis coordinate frame is shown in

Figure 5, with different levels of noise over 500 Monte Carlo runs. As seen, all RMSE plots at
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different noise levels converge quickly in a few seconds with acceptable performance, even
before the occurrence of occlusion. It is clearly shown that the noise covariance variations
have a great influence on the accuracy and convergence performance: an increased noise
level implies lower accuracy and slower convergence. This is because the determination of
the principal axis coordinate frame is based on the identification and diagonalization of
the inertial matrix, the accuracy of which is directly related to the measurement accuracy.
Overall, it is safe to state that the principal axis coordinate frame can be determined
uniquely with relatively high accuracy through the proposed algorithm, which is used
during the subsequent filter phase.
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(2) Results of motion estimation

In this section, the EKF with the determination of the principal axis coordinate frame
(DPACF) is implemented to estimate the motion of the target. The covariance of the
orbital force and disturbance torque are set as σ2

t = 2 × 10−6 I3 m2/s4 and σ2
r = 2.5 ×

10−5 I3 rad2/s4, the same as in [6]. Note that the states and parameters are predicted by
solely relying on their latest values and propagation of dynamics during the occlusion
period shown in Figure 3. We evaluate the performance of the proposed scheme by
comparing it with the method in [6], not employing DPACF. The simulation time is 200 s.

Figures 6–9 show the estimation errors of rotational parameters, i.e., the attitude angle,
angular velocity, inertia ratio, and coordinates of feature points. It is evident from the
figure that estimation errors of the method without DPACF are characterized by significant
nonzero mean deviation in the whole process. This is because, due to the multiple solutions
of the principal axis coordinate frame, the rotational parameters are not unique. In other
words, the filter is not globally observable. On the other hand, when the feature points are
missing during occlusion, the noise process will lead to a deviation of estimates from the
solution it is supposed to converge to. Therefore, there is no guarantee that the filter will
converge to the previous or any specific solution of the 24 candidates in the next estimation
phase when the measurements are available again, which results in the fluctuation of
estimates. This makes the estimation process fragile to occlusion. Comparatively, the error
curves of our method can converge in some periods of time and finally remain within
a small neighborhood around zero. This mainly benefits from the determination of the
principal axis coordinate frame to force the filter to converge to a unique solution, defined
in Section 3. The estimation errors of the relative position and velocity are shown in
Figures 10 and 11. It can be seen that the divergence of rotational parameters even causes
translational states to deviate, although there is no multiple-solution problem in these
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states. In conclusion, the proposed method is expected to remove the multiple-solution
problem and exhibit robustness to inevitable occlusion.
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6. Conclusions

A relative motion estimation scheme for noncooperative targets considering multiple
solutions of rotational parameters is presented in this paper. This scheme depends on the
determination of the principal axis coordinate frame before the implementation of a filter.
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Through the identification of the mass distribution of the target and the diagonalization
of the normalized inertia matrix, the multiple-solution problem of rotational parameters
is prohibited and the global observability of the estimation problem is guaranteed. The
results demonstrate good convergence performance and robustness to occlusion, owing to
the new filter structure with a unique solution. It should be noted that such an algorithm
improves the estimation capability and provides a feasible solution for the relative motion
estimation problem of future OOS missions.
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