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Abstract: Aiming at the traditional single sensor vibration signal cannot fully express the bearing
running state, and in the high noise background, the traditional algorithm is insufficient for fault
feature extraction. This paper proposes a fault diagnosis algorithm based on multi-sensor and hybrid
multimodal feature fusion to achieve high-precision fault diagnosis by leveraging the operating
state information of bearings in a high-noise environment to the fullest extent possible. First, the
horizontal and vertical vibration signals from two sensors are fused using principal component
analysis, aiming to provide a more comprehensive description of the bearing’s operating condition,
followed by data set segmentation. Following fusion, time-frequency feature maps are generated
using a continuous wavelet transform for global time-frequency feature extraction. A first diag-
nostic model is then developed utilizing a residual neural network. Meanwhile, the feature data is
normalized, and 28 time-frequency feature indexes are extracted. Subsequently, a second diagnostic
model is constructed using a support vector machine. Lastly, the two diagnosis models are integrated
to derive the final model through an ensemble learning algorithm fused at the decision level and
complemented by a genetic algorithm solution to improve the diagnosis accuracy. Experimental
results demonstrate the effectiveness of the proposed algorithm in achieving superior diagnostic
performance with a 97.54% accuracy rate.

Keywords: multimodal feature fusion; multi-sensor; PCA; ResNet; SVM; ensemble learning

1. Introduction

In contemporary industrial production environments, rotating machinery stands as
one of the most prevalent pieces of mechanical equipment [1], with bearings serving as
crucial components within such machinery. Faults in bearings can result in a decrease in
technical indicators, substantial economic losses, and even significant safety incidents [2–5].
The majority of faults in rotating machinery stem from bearing issues [6]. Hence, timely
and accurate identification of bearing faults holds immense importance in mitigating the
occurrence of accidents [7]. The operational status of a bearing cannot be adequately cap-
tured by a single sensor due to variations in sensor monitoring locations and environmental
interferences. Moreover, the operational environment of bearings frequently experiences
disruptions from shock, wear, and corrosion, leading to changes in the bearing surface
geometry and therefore to non-stationary and non-linear impulse responses on damaged
contact surfaces [8]. Extracting and identifying fault characteristics pose significant chal-
lenges. Thus, it is imperative to address the non-stationary and non-linear attributes of
vibration signals captured from multiple sensors to extract fault characteristics effectively
and develop a high-precision fault diagnosis model based on these features.

In a practical working environment, it is difficult to diagnose bearing faults directly.
Sensors can capture digital signals, such as vibration signals, reflecting the condition of
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the bearing. Signal processing and analysis enable the determination of the bearing’s
condition [9,10]. During operation, the bearing generates vibration signals characterized
by non-stationarity and non-linearity. Traditionally, signal features are extracted using
methods such as empirical modal decomposition (EMD) [11] and wavelet transform (WT).
EMD is primarily an empirical method. However, challenges such as modal aliasing arise
during the signal decomposition process, limiting the applicability of EMD [12]. WT divides
the signal’s frequency band into multiple scales, facilitating feature extraction from both
the time and frequency domains. This approach has demonstrated effectiveness in practical
applications [13]. However, the above methods inevitably lose fault information during the
process; consequently, this paper proposes a multimodal feature fusion method based on
multi-sensors in order to maximize the retention and extraction of fault information.

In real industrial environments, multiple sensors are commonly deployed. The fusion
of signals or extracted features from these sensors constitutes a pivotal step preceding fault
diagnosis. Lupea et al. [14] extracted signal features from both time and frequency domains
and used them in the classification process to solve the proposed multi-fault detection
problem. Ye et al. introduced a multi-level feature fusion network for integrating vibration
signals, yielding promising outcomes [15]. Chen et al. employed sparse autoencoders
to fuse signals from multiple sensors and utilized deep belief networks for fault diagno-
sis [16]. Zhu et al. employed wavelet packet transform and multi-weight singular value
decomposition for extracting time-frequency features. They employed a support vector
machine (SVM) classifier [17]. Shao et al. utilized denoising autoencoders and contractive
autoencoders to learn features. Subsequently, they employed locality-preserving projection
for feature fusion, enhanced feature quality, and finally applied softmax for fault diag-
nosis [18]. Wang et al. introduced a three-stage multimodal feature fusion approach for
integrating vibration and torque signals. They coupled this with an attention-based multi-
dimensional concatenated convolutional neural network for fault diagnosis [19]. Buchaiah
et al. employed a random forest for feature selection. They utilized 14 feature extraction
techniques to extract 2D features and employed a SVM classifier for fault diagnosis [20].
Wang et al. applied principal component analysis (PCA) to fuse multidimensional features,
characterizing the operating condition of rolling bearings [21].

In summary, it is challenging to combine signals from multiple sensors and perform
feature fusion to extract information that characterizes the operational status of the bearing.
Furthermore, integrating the extracted features and leveraging diverse classifiers for a final
diagnosis represents a crucial and challenging phase. In this paper, a fault diagnosis algo-
rithm based on multi-sensor and hybrid multimodal feature fusion is proposed. Ultimately,
the algorithm’s effectiveness is validated through comprehensive experimental results. The
main contributions of this paper include the following:

(1) The fusion of horizontal vibration signals (HVS) and vertical vibration signals (VVS)
from a multi-sensor in a feature layer yields dual-channel data. This approach maxi-
mizes the integration of feature information from both sensors, thereby enhancing the
robustness and generalization capabilities of the algorithm.

(2) Initially, the dual-channel data is consolidated into a single-channel dataset. Continu-
ous wavelet transform (CWT) is employed to extract global time-frequency feature
information, generating time-frequency feature maps for training the residual neural
network (ResNet). Simultaneously, time-frequency feature indexes are extracted post-
normalization to obtain key indexes, facilitating training of the SVM. Utilizing global
time-frequency features and key indexes for model training enhances the algorithm’s
learning capability.

(3) Ensemble learning is employed to achieve decision-level fusion. The genetic algorithm
(GA) is combined to address the multi-objective optimization model for obtaining
weight parameters for the ResNet and SVM models. This integration harnesses
the strengths of both base models, resulting in a diagnostic model with superior
classification accuracy.
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The remainder of the paper is organized as follows: The theoretical background,
including multimodal feature fusion, time-frequency feature extraction, residual neural net-
works, support vector machines, and genetic algorithms, is briefly introduced in Section 2.
Section 3 provides a description of the proposed diagnosis method in detail. In Section 4,
the experimental results are analyzed and discussed. Finally, the conclusions are given in
Section 5.

2. Theoretical Background
2.1. Multimodal Feature Fusion

PCA is a widely utilized algorithm for data dimensionality reduction. It recombines
the original correlated variables into new variables that are uncorrelated with each other,
aiming to retain as much information from the original variables as possible [22]. The
information in the data is primarily captured by the variance, where a higher variance
indicates more information content. The specific calculation steps are outlined below:

(1) Data preprocessing;
(2) Compute the matrix of correlation coefficients between variables, denoted as

R = (rst), s, t = 1, 2, . . . , n;
(3) Determine the eigenvalues λi and corresponding eigenvectors ei =

(
ei1, ei2, . . . , eip

)
,

||ei|| = 1 for R;
(4) Compute the variance contribution Vcr and the cumulative variance contribution

ratio Cvcr for the first l principal components as follows:

Vcr =
λi

∑n
i=1 λi

(1)

Cvcr = ∑l
i=1 λi

∑n
i=1 λi

(2)

(5) Select the first l principal components F1, F2, . . . , Fl based on the following cumulative
variance contribution ratio:

Fk = ek1X1 + ek2X2 + · · ·+ eknXn, k = 1, 2, . . . , l (3)

where Fi is uncorrelated with Fj(i ̸= j; i, j = 1, 2, . . . , l) and ar(Fi) > var
(

Fj
)
, i < j.

2.2. Time-Frequency Feature Extraction
2.2.1. Continuous Wavelet Transform

WT, introduced by Gilles [23], is a signal processing technique designed for analyzing
non-smooth, non-linear vibration signals. Similar to the Fourier transform, it employs a
family of wavelet functions to represent the signal. Let us assume the function ψ ∈ L2(R)∩
L1(R), ψ̂(0) = 0. ψ is translated and scaled to generate the following set of functions:

ψa,b(t) = |a|−
1
2 ψ

(
t− b

a

)
, a, b ∈ R, a ̸= 0 (4)

where ψa,b represents an analytic or continuous wavelet; ψ is a fundamental wavelet; a is a
scaling factor; and b is a translation factor.

CWT for an arbitrary function f (t) ∈ L2(R) is as follows:

W f (a, b) = < f , ψa,b > = |a|−1/2
∫

f (t)ψ
(

t− b
a

)
dt (5)

where ψ(t) represents the complex conjugate of ψ(t); < f , ψa,b > denotes the inner product;
W f (a, b) denotes the coefficients of the wavelet function for a given scale factor a and
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translation factor b; a and b are continuous variables, and when the WT is performed in
this manner, it is referred to as CWT.

In this study, CWT is employed to convert the vibration signals into time-frequency
feature maps. The process is as follows:

(1) fs represents the sampling frequency, Fc is the wavelet center frequency, and the actual
center frequency corresponding to a is Fa = Fc × fs/a;

(2) Let totalscal denote the length of the scale sequence during WT of the signal and c be
a constant. The scale sequence takes the form c

totalscal , . . . , c
totalscal−1 , c

4 , c
2 , c;

(3) According to step (1), c/toalscal corresponds to the actual frequency of fs/2, thus
c = 2× Fc × totalscal. The scale sequence t can be calculated based on step (2);

(4) After determining the wavelet base and scale, the wavelet coefficient W f (a, b) is com-
puted according to the principle. Following step (1), the scale sequence is converted
into a frequency sequence f , which is then combined with the time sequence t to
obtain time-frequency feature maps.

2.2.2. Time-Frequency Indexes Extraction

When a fault occurs in the bearing, changes are observed in both time- and frequency-
domain signals. Time-domain signals primarily undergo alterations in amplitude and dis-
tribution, while frequency-domain signals exhibit new frequency components and changes
in spectral convergence. In the work of this paper, a total of 28 time-frequency indexes are
selected, comprising 15 time-domain indexes and 13 frequency-domain indexes. These
time-frequency characteristic indexes can comprehensively reflect the statistical characteris-
tics of the bearing at the time of fault, thus helping to establish a fault diagnosis model.

As shown in Tables 1 and 2, parameters p1, p12–p15 primarily reflect changes in signal
amplitude in the time domain, while parameters p2, p6–p11 mainly describe the distribution
of the signal in the time domain. Parameters p3–p5 mainly indicate the distribution of
the energy in the time domain, while parameter p16 primarily represents vibration energy
in the frequency domain. Parameters p17–p19, p21, p25–p28 primarily describe changes in
spectral power convergence, while parameters p20, p22–p24 indicate positional changes in
frequency [24].

The formulas for calculating the time domain characteristic indexes are shown in
Table 1:

Table 1. Parameters of time domain characteristic indexes.

p1 = ∑N
n=1 x(n)

N p2 =

√
∑N

n=1(x(n)−p1)
2

(N−1)

p3 = (
∑N

n=1

√
|x(n)|

N )
2

p4 =

√
∑N

n=1(x(n))2

N
p5 = max|x(n)| p6 = ∑N

n=1(x(n)−p1)
3

(N−1)p2
3

p7 = ∑N
n=1(x(n)−p1)

4

(N−1)p2
2

p8 =
p5
p3

p9 =
p5
p3

p10 =
p4

1
N ∑N

n=1|x(n)|
p11 =

p5
1
N ∑N

n=1|x(n)|
p12 = max x(n)

p13 = min x(n) p14 = |p12|+ |p13|
p15 = |p1|

x(n) is a time series, n = 1, 2, . . . , N. N is the number of data points.

The formulas for calculating the frequency domain characteristic indexes are shown
in Table 2:
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Table 2. Parameters of frequency domain characteristic indexes.

p16 = ∑K
k=1 s(k)

K p17 = ∑K
k=1(s(k)−p16)

2

K−1

p18 = ∑K
k=1(s(k)−p16)

3

K(
√

p17)
3 p19 = ∑K

k=1(s(k)−p16)
4

Kp17
2

p20 = ∑K
k=1 fks(k)

∑K
k=1 s(k) p21 =

√
∑K

k=1( fk−p20)
2s(k)

K

Table 2. Cont.

p22 =

√
∑K

k=1 fk
2s(k)

∑K
k=1 s(k)

p23 =

√
∑K

k=1 fk
4s(k)

∑K
k=1 fk

2s(k)

p24 =

√
∑K

k=1 fk
2s(k)

∑K
k=1 s(k)∑K

k=1 fk
4s(k)

p25 =
p21
p20

p26 = ∑K
k=1( fk−p20)

3s(k)
Kp21

3 p27 = ∑K
k=1( fk−p20)

4s(k)
Kp21

4

p28 = ∑K
k=1(s(k)−p20)

1
2 s(k)

K
√

p17

s(k) is the spectrum, k = 1, 2, . . . , K. K is the number of spectral lines, and fk is the frequency value of the Kth
spectral line.

2.3. Residual Neural Network

To address the issue of gradient disappearance encountered in traditional convolu-
tional neural networks (CNN) as depth increases, He [25] introduced the ResNet. The key
innovation of this network lies in the incorporation of residual blocks. The structure of the
residual block is shown in Figure 1, which directly connects the residual block to the for-
ward neural network. The forward neural network contains a convolutional layer, a batch
normalization layer, and a Relu activation function layer. The input of the residual block is
x, the output is Hx, and the forward neural network layer is Fx, Fx = Hx − x. For instance,
in the case of a forward neural network layer with two weight layers, Fx and x are element-
wise summed up during direct concatenation, ensuring equal dimension mapping.{

y = F(x, {Wi}) + x
F = W2σ(W1x)

(6)

where F(x, {Wi}) is the residual mapping; F is the residual function; W is the weight
parameter; and σ is the activation function.
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When the dimensions of the mappings within the residual block are dissimilar, a linear
mapping is performed on x to ensure dimensional alignment. Subsequently, the outputs
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of the linear mapping and the neural network layers are added together while preserving
the dimensions. {

y = F(x, {Wi}) + Wsx
F = W2σ(W1x)

(7)

where Ws is the mapping weight of the input x.
ResNet offers enhanced optimization and improved accuracy compared to traditional

convolutional neural networks, particularly as network depth increases. Different types
and sizes of data can benefit from various configurations of ResNet, such as ResNet-18,
ResNet-34, ResNet-50, ResNet-101, and ResNet-152.

2.4. Support Vector Machine

SVM is a machine learning algorithm grounded in statistical theory, primarily em-
ployed for classification tasks [26]. Fault diagnosis based on time-frequency feature indexes
inherently presents a challenge as a small-sample and nonlinear classification problem.
SVM typically exhibits superior generalization to small-sample data compared to Back
Propagation (BP), Extreme Learning Machines (ELM), Long Short-Term Memory (LSTM),
and Deep Belief Network (DBN), which may suffer from overfitting. While SVM leverages
kernel methods to address nonlinear classification issues, BP, LSTM, and DBN necessitate
intricate architectures and parameter tuning to handle nonlinear relationships. SVM offers
enhanced interpretability relative to BP and ELM, with the added benefit of avoiding local
minima due to their convex optimization nature. LSTM excels at processing temporal
information, yet in this paper, time-frequency feature indexes are extracted from temporal
signals, which diverges from temporal information. In summary, for the specific problem
addressed in this paper, SVM demonstrates a pronounced advantage. Its fundamental
concept revolves around identifying the optimal classification hyperplane by maximizing
the margin between the hyperplane and the classification data, as depicted in Figure 2:
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Let the input data be xi = (i = 1, 2, . . . , M), with M representing the number of
samples. For the binary classification problem, the classification label yϵ{−1, +1}. For
linearly separable data, the corresponding hyperplane is defined as follows:

fx = wTx + b = 0 (8)

where w represents the M-dimensional weight vector and b is the bias scalar. These
two parameters determine the distance between the hyperplane and the origin. Maxi-
mization of the margin between different classes is achieved by solving the following
optimization problem:

max
2b

||w||2
(9)
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For cases where linear separability is not possible, a soft-spaced support vector ma-
chine is implemented by introducing the slack variable εi ≥ 0 and the penalty factor C
as follows:

min
1
2
||w||2 + C ∑n

i=1 εi (10)

For multi-classification problems involving N classes of samples, N(N − 1)/2
standard SVM classifiers are trained, and the final result is based on the predictions of
each classifier.

In SVM, the kernel function is employed to compute the similarity or inner product
between input vectors, expressing the relationship between data in the feature space. The
Radial Basis Function (RBF) is chosen as the kernel function due to its suitability for high-
dimensional data and nonlinear mapping. The expression of the RBF kernel function is
given by the following equation:

k
(
xi, xj

)
= exp

(
−γ

∣∣∣∣xi − xj
∣∣∣∣) (11)

where xi, xj represent the input vector and center vector, respectively;
∣∣∣∣xi − xj

∣∣∣∣ denotes
the Euclidean distance; and γ is a monotonic function that takes a small value when xi is
far from xj.

2.5. Genetic Algorithm

GA is an adaptive global optimization search technique inspired by nature’s genetic
mechanisms and biological evolution, employing binary genetic coding [27]. Assuming that
allele Γ = {0, 1} and individual space HL = {0, 1}L. Reproduction comprises crossover
and mutation. The optimization steps are shown below:

(1) Determine the population size N, crossover probability Pc, mutation probability Pm,
and termination criterion. Randomly generate N individuals as the initial population
X(0) and set an algebraic counter t← 0 .

(2) Calculate the fitness of individuals in X(t).
(3) Select M/2 pairs of matrices from X(t) using a selection operator, where M ≥ N.
(4) Perform crossover among the selected pairs to create M intermediate individuals

according to Pc.
(5) Apply mutations to the M intermediate individuals according to Pm to obtain M

candidate individuals.
(6) Select N individuals from the M candidates based on fitness to form the new genera-

tion population X(t + 1).
(7) If the termination criterion has been satisfied, output the individual with maximum

fitness in X(t + 1) as the optimal solution; otherwise, t← t + 1 and return to (5).

3. Proposed Method

The proposed fault diagnosis algorithm leverages multi-sensor and hybrid multimodal
feature fusion, as depicted in Figure 3. The model framework comprises the following
three primary components: multimodal signal feature fusion, model training optimization,
and multimodal decision fusion.

Initially, HVS and VVS from the bearing are captured by two sensors and normalized
via min-max scaling. Subsequently, the vibration signals in both directions undergo fusion
using min-max scaling and PCA. In the next stage, the fused feature signals (FVS) from
the two sensors are partitioned into datasets. Time-frequency maps are generated using
CWT, while a ResNet model is trained to establish a diagnostic model. Simultaneously,
28 time-frequency feature index parameters are extracted, normalized using min-max
scaling, and used to train SVM for another diagnostic model. Finally, leveraging the base
models obtained, GA optimizes the weight hyperparameters. The final diagnostic model is
constructed using ensemble learning techniques, thereby enhancing the overall accuracy of
the diagnostic system.
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3.1. Multimodal Signal Feature Fusion

Two sensors, such as acceleration meters, are deployed at distinct locations on the
test rig. Each sensor captures vibration signals across various modes in two directions:
HVS and VVS. These signals, influenced by the sensor deployment positions and vibration
directions, exhibit distinct fault characteristics. Initially, these signals are normalized using
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min-max scaling. Employing PCA facilitates data dimensionality reduction and enables
the fusion of diverse modal signals from each sensor to yield FVS, as depicted in Figure 4.
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3.2. Model Training Optimization
3.2.1. ResNet Diagnostic Model Based on Time-Frequency Feature Maps

After acquiring the FVS through PCA, the signal undergoes segmentation to generate
a dataset based on the sampling frequency and interval. Subsequently, CWT is applied to
analyze and process feature information across time and frequency domains, resulting in
the generation of time-frequency maps from three channels. Finally, the ResNet-34 model
is trained to establish the initial base classification model. The model architecture and steps
are as depicted in Figure 5:
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The loss function adopts the cross-entropy loss function, which is defined as shown in
the following equation:

L =
1
N ∑

i
Li = −

1
N ∑

i
∑M

c=1 yiclog(pic) (12)

where M is the number of categories; yic denotes the sign function (0 or 1), taking 1 if the
true category of sample i is equal to c and 0 otherwise; and pic is the predicted probability
of observing that sample i belongs to category c. The optimization algorithm used in this
paper is stochastic gradient descent.

3.2.2. SVM Diagnostic Model Based on Time-Frequency Indexes

On the alternate pathway, employing the time-frequency index formulas, 28 key
indexes are computed for each data segment. Following normalization via min-max scaling,
SVM is trained. The One-vs.-Rest strategy is adopted to enable multi-class classification,
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thereby yielding an additional base model. The model architecture and steps are outlined
as depicted in Figure 6:
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The dataset utilized in this study comprises high-dimensional, linearly indivisible
data, prompting the adoption of the RBF as the kernel function due to its ability to handle
such data structures effectively. The penalty factor C and the RBF parameter γ play pivotal
roles in shaping the accuracy of the classification model.

To optimize the SVM classification model, this paper employed the grid search method,
a technique widely recognized for its effectiveness in determining optimal parameter
values. Through systematic exploration within predefined ranges, the grid search method
facilitates the identification of the most suitable values for C and γ, ensuring the creation of
an accurate classification model.

3.3. Multimodal Decision Fusion

After training to obtain two base models, ResNet and SVM, set a weight parameter
for each base model to combine their diagnostic results for the purpose of decision fusion.
Define two weight coefficients a, b as shown in the following equation:

0 ≤ a ≤ 1 (13)

a + b = 1 (14)

P(x) = argmax(
a× PResnet(x) + b× PSVM(x)

2
) (15)

where P(x) is the predicted category; PResnet(x) is the probability of the category predicted
by the ResNet model; PSVM(x) is the probability of the category predicted by the SVM
model; a is the weight coefficient assigned to the ResNet model; and b is the weight
coefficient assigned to the SVM model.

Table 3 shows the confusion matrix for the binary classification, which presents the
complete evaluation of the classification results.

Accuracy =
TP + TN

TP + FP + FN + TN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)
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F1 =
2× Precision× Recall

Precision + Recall
(19)

Table 3. Confusion matrix for the binary classification.

Total Population Condition Positive Condition Negative

Predicted condition positive True positive (TP) False positive (FP)
Predicted condition negative False negative (FN) True negative (TN)

GA is employed to optimize the weight hyperparameters a, b in the context of max-
imizing both accuracy and F1 score. This optimization task presents a multi-objective
problem, where the objective function aims to balance the trade-off between accuracy and
F1 score as follows:

max(Accuracy, F1) (20)

4. Case Study

In order to evaluate the effectiveness of the proposed algorithm, experimental tests
were conducted using the test rig depicted in Figure 7. The components of the test rig
include an electric motor, an inertia wheel for applying radial load, a coupling, a conveyor
belt drive mechanism, a conveyor belt, a crank-connecting rod mechanism, a gearbox, and
a reciprocating mechanism with a spring. The bearing under investigation is mounted
close to the motor side and is identified as a contact deep groove ball bearing (MB ER-10K).
Three distinct types of faults, namely inner race fault (IF), outer race fault (OF), and rolling
element fault (RF), were intentionally implanted in the bearing.
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For fault implantation, localized cracks with a width and depth of 0.2 mm were intro-
duced in the outer race groove, inner race groove, and ball surface of the bearing. Two ac-
celeration meters (AM), specifically PCB Model 608A11, were strategically mounted at loca-
tions indicated in Figure 7. These meters, with a sensitivity of 10.2 (mV/ms−2)/100 (mv/g),
played a crucial role in capturing vibration data essential for fault diagnosis. The rotational
speed is 900 revolutions per minute. The acquisition card used in the experiment is the
NI 9234, operating at a sampling frequency of 25.6 kHz.
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The raw signals of the three types of faults measured by the multi-sensor are shown in
Table 4:

Table 4. Vibration signal time domain.

AM Fault Type HVS VVS

1

IF
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From Table 4, it is evident that the amplitude of time-domain signals varies signifi-
cantly across different fault types. Typically, the signals exhibit distinct amplitudes: the RF
signal displays the highest amplitude, followed by the IF signal, with the OF signal regis-
tering the smallest amplitude. Additionally, it is observed that the amplitude difference
among measured signals in various directions for the same fault remains relatively minor.

4.1. Feature Layer Fusion

HVS and VVS from each of the multi-sensors are fused using PCA. The contribution
of the two principal components after fusion is shown in Table 5:

Table 5. PCA results.

AM Fault Type Principal Component 1 Principal Component 2

1
IF 0.83593733 0.16406267
OF 0.63439911 0.36560089
RF 0.81361577 0.18638423

2
IF 0.76050419 0.23949581
OF 0.64756928 0.35243072
RF 0.71948348 0.28051652

IF refers to inner race fault, OF to outer race fault, and RF to rolling element fault; AM refers to acceleration meter,
HVS to horizontal vibration signals, and VVS to vertical vibration signals.
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From Table 5, it can be seen that for the three faults, the principal component 1 of fused
vibration signals from the two sensors can cover 63–84% of the original information. This
table can prove that the signals after PCA fusion well extract the fault feature information.

In this paper, principal component 1 is chosen as FVS. The fused feature signal is
shown in Figure 8:
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In Figure 8, it is evident that following data normalization, the amplitudes predomi-
nantly fall within the range of −0.5 to 0.5. Notably, the amplitude ranges vary noticeably
across the three different faults examined. Specifically, the amplitude of the IF signal
exhibits a broader distribution, while that of the RF signal appears more concentrated.
This distinction suggests varying fault characteristics within the analyzed signals. Further-
more, despite normalization, the overall waveform remains largely consistent with the
original vibration signal, indicating the preservation of fundamental signal characteristics
post-normalization.

4.2. Base Model Training Optimization

The dataset was obtained with a sampling frequency of 25.6 kHz. Each segment of FVS
is sliced into intervals of 0.05 s, containing 1280 sample points. In total, 2240 segments are
generated from the dataset. The dataset is divided into training and test sets according to
an 8:2 ratio, resulting in 1792 segments allocated for training and 448 segments for testing.

4.2.1. ResNet-34 Diagnostic Model

CWT is employed to process the datasets and generate time-frequency feature maps.
Given that the fault frequencies predominantly lie within the low-frequency band, the
vertical coordinate display range is constrained to 0–1000 Hz to capture the primary global
feature information. This study utilizes the Gaussian wavelet as the wavelet function for
the CWT, with a scale factor set to 256 to ensure comprehensive feature extraction across
the signal spectrum.

For illustration, consider a subset of three signals from each fault type. Their respective
time-frequency feature maps are presented as depicted in Figure 9:

The ResNet model, comprising ResNet-18, ResNet-34, ResNet-50, ResNet-101, and
ResNet-152 architectures, is employed for training on the extracted time-frequency feature
maps. These models are evaluated to select the most effective diagnostic model for the task
at hand. Table 6 provides a summary of the model parameters for each ResNet architecture.
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Table 6. ResNet model parameters.

Layer Name Output Size 18-Layer 34-Layer 50-Layer 101-Layer 152-Layer

Input layer -- (200,200,3)

Conv1
112 × 112 7 × 7, 64, stride 2

56 × 56 bn, 3× 3 max pool, stride 2

Conv2_x 56 × 56
[

3× 3, 64
3× 3, 64

]
× 2

[
3× 3, 64
3× 3, 64

]
× 2

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Conv3_x 28 ×28
[

3× 3, 128
3× 3, 128

]
× 2

[
3× 3, 128
3× 3, 128

]
× 4

 1× 1, 64
3× 3, 64
1× 1, 256

× 4

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 8

Conv4_x 14× 14
[

3× 3, 256
3× 3, 256

]
× 2

[
3× 3, 256
3× 3, 256

]
× 6

 1× 1, 64
3× 3, 64
1× 1, 256

× 6

 1× 1, 64
3× 3, 64
1× 1, 256

× 23

 1× 1, 64
3× 3, 64

1× 1, 256

× 36

Conv5_x 7 × 7
[

3× 3, 512
3× 3, 512

]
× 2

[
3× 3, 512
3× 3, 512

]
× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

Output layer 1 × 1 Average pool, 1000-d fc, softmax

The input image size is set to 200× 200 pixels with three channels (RGB). Conv1 serves
as a preprocessing convolutional layer, featuring a 7 × 7 convolutional layer with a stride
of 2, followed by a batch normalization layer, and a 3 × 3 maximum pooling layer with a
stride of 2. Subsequently, Conv2_x, Conv3_x, Conv4_x, and Conv5_x represent the residual
structures, each comprising a variable number of residual blocks. The output of the final
residual layer undergoes average pooling before entering the fully connected layer (FC) for
classification. Finally, the softmax classifier outputs the probability values corresponding
to the categories, yielding the recognition results.

In this paper, the training iteration is 40 epochs, and the model effect is tested at five
epoch intervals. The training and testing results are shown in Figure 10.
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From Figure 10a,c, it is observed that the ResNet-34 model demonstrates faster conver-
gence in terms of accuracy and loss on the training set, outperforming other models. From
Figure 10b,d, the ResNet-34 model achieves an accuracy of 89.06% with a corresponding
loss of 0.396 after 40 epochs of training, indicating superior performance compared to
alternative models.

The classification results of the faults are shown in Figure 11, which reveal that the
ResNet-34 model achieves a precision of 89.22%, a recall of 89.47%, and an F1 score of 0.8928.
These metrics collectively demonstrate the model’s effectiveness in fault classification, with
ResNet-34 showcasing superior performance in comparison to other models. Furthermore,
the AUC values for all three fault types are observed to be close to one, indicating excellent
classification performance across the board. Consequently, the ResNet-34 model emerges
as a robust base model for subsequent ensemble learning diagnostic models.
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4.2.2. SVM Diagnostic Model

Utilizing the 28 time-frequency index calculation formulas, 28 time-frequency feature
indexes are obtained for each piece of data. In order to visualize the expression of these
time-frequency feature indicators for the features, the t-SNE method is used to visualize
the high-dimensional data.

Figure 12a demonstrates that FVS on a two-dimensional plane makes it challenging to
distinguish between various types of data points effectively. However, Figure 12b reveals
that after extracting 28 time-frequency indexes, clear differentiation among data points is
observed, particularly with RF being notably distinct from IF and OF, while differentiation
between IF and OF is less pronounced. In this study, min-max normalization is employed
to normalize the time-frequency indexes. Figure 12c illustrates that after normalization,
the three types of fault data points become highly distinguishable, effectively expressing
the characteristic information of each fault type while minimizing the impact of noise.
The enhanced distinguishability among fault types is crucial for accurate fault diagnosis
and analysis.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 21 
 

 

a b  
Figure 11. ResNet-34 diagnosis results: (a) confusion matrix; (b) ROC and AUC. 

4.2.2. SVM Diagnostic Model 
Utilizing the 28 time-frequency index calculation formulas, 28 time-frequency feature 

indexes are obtained for each piece of data. In order to visualize the expression of these 
time-frequency feature indicators for the features, the t-SNE method is used to visualize 
the high-dimensional data. 

Figure 12a demonstrates that FVS on a two-dimensional plane makes it challenging 
to distinguish between various types of data points effectively. However, Figure 12b 
reveals that after extracting 28 time-frequency indexes, clear differentiation among data 
points is observed, particularly with RF being notably distinct from IF and OF, while 
differentiation between IF and OF is less pronounced. In this study, min-max 
normalization is employed to normalize the time-frequency indexes. Figure 12c illustrates 
that after normalization, the three types of fault data points become highly 
distinguishable, effectively expressing the characteristic information of each fault type 
while minimizing the impact of noise. The enhanced distinguishability among fault types 
is crucial for accurate fault diagnosis and analysis. 

a b c  
Figure 12. Two-dimensional visualization by t-SNE. (a) FVS; (b) time-frequency indexes; (c) time-
frequency indexes after normalization. 

In this study, RBF is employed as the kernel function for SVM to perform 
classification tasks. The classification effectiveness of the SVM model is primarily 
influenced by the following two key parameters: the penalty factor 𝐶 and the parameter 𝛾 of the RBF kernel function. The values of the penalty factor 𝐶 and the parameter 𝛾 of 
the RBF kernel function are shown in Table 7. 

  

Figure 12. Two-dimensional visualization by t-SNE. (a) FVS; (b) time-frequency indexes; (c) time-
frequency indexes after normalization.

In this study, RBF is employed as the kernel function for SVM to perform classification
tasks. The classification effectiveness of the SVM model is primarily influenced by the
following two key parameters: the penalty factor C and the parameter γ of the RBF kernel
function. The values of the penalty factor C and the parameter γ of the RBF kernel function
are shown in Table 7.

Table 7. Parameter values.

C γ

0.10 0.50 0.001 0.005
0.46 2.32 0.010 0.050
2.15 10.77 0.100 0.500
10.00 50.00 10.000 50.000

In this paper, the grid search method is used to solve the penalty factor C and the
parameter γ. The classification accuracy of the SVM model is shown in Figure 13.

The model classification accuracy is 95.76% when C is 50 and γ is 0.5, which is the best
performance among the parameter combinations.

The results of fault diagnosis using the SVM model are presented in Figure 14a. The
model demonstrates high precision (96.04%), recall (95.97%), and F1 score (0.9581), in-
dicating its effectiveness in accurately classifying the three types of faults. Additionally,
Figure 14b illustrates that the AUC values for the three fault types are close to one, under-
scoring the SVM’s robust classification performance across fault categories. These findings
affirm the SVM’s superior classification efficacy in fault diagnosis, warranting its selection
as another base model for subsequent ensemble learning diagnostic models.
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4.3. Diagnostic Model Based on Ensemble Learning

In this study, ensemble learning techniques are employed to combine the diagnostic
results of two base models through decision-level fusion, aiming to enhance the accuracy of
fault diagnosis. The synthesis of diagnostic results is achieved using GA, which iteratively
optimizes the weight coefficient values a,b assigned to the base models.

GA aims to maximize the accuracy and F1 score, treating them as fitness functions
guiding the optimization process. A population size of 50 individuals is initialized, with a
maximum population size capped at 100 to ensure computational efficiency. A mutation
probability of 0.2 and a crossover probability of 0.7 are defined to introduce variability and
exploration within the population.

The optimization process iterates over 1–15 generations, seeking to converge towards
individuals with the highest fitness values, which represent the optimal weight coefficient
values for combining the base models. By leveraging GA, the study seeks to identify the
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most effective combination of base models that maximizes diagnostic accuracy and F1
score, ultimately improving fault diagnosis performance.

According to the GA solution results in Figure 15, the accuracy and F1 of the model
reached their maximum value when the population was iterated to the ninth generation
and a was found to be 0.4859 and b was 0.5141. Therefore, these two values were used as
weights for the base model ResNet-34 and the SVM diagnostic model.
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Using this integrated learning model for the test set, the diagnostic results are obtained
as shown in Figure 16.
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The diagnostic results of the ensemble learning model for three types of faults are
presented in Figure 16a. The model achieves an impressive accuracy rate of 97.54%, a
precision rate of 97.63%, a recall rate of 97.68%, and an F1 score of 0.9757. Additionally,
Figure 16b illustrates that the AUC values for the three fault types are very close to one,
indicating excellent classification performance across fault categories.
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As depicted in Figure 11, Figure 14, and Figure 16, distinguishing between IF and OF
poses a challenge primarily due to the mechanical similarity between the inner and outer
races. The operational faults occurring in the inner and outer races of the bearing result
in a partial overlap of their spectral components. Additionally, factors such as sampling
frequency, sensor placement, and noise interference further complicate the distinction
between IF and OF.

As shown in Table 8, these evaluation metrics collectively demonstrate the superior
performance of the ensemble learning model compared to the individual base models. The
ultimate diagnostic model demonstrated an 8.48% and 1.78% enhancement in accuracy
compared to the two foundational models, accompanied by improvements in the other
three metrics to varying degrees. By combining the strengths of the ResNet-34 and SVM
diagnostic models through ensemble learning, the model achieves a better diagnostic effect,
effectively enhancing fault diagnosis accuracy and reliability.

Table 8. Classification evaluation metrics.

Algorithm Accuracy Precision Recall F1

ResNet-34 0.8906 0.8922 0.8947 0.8928
SVM 0.9576 0.9604 0.9597 0.9581
The proposed ensemble model 0.9754 0.9763 0.9768 0.9757

5. Conclusions

The proposed fault diagnosis algorithm based on multi-sensor and hybrid multimodal
feature fusion shows promise in improving diagnostic accuracy and credibility. The fusion
of hybrid multimodal features is delineated into two stages. In the initial phase, vibration
signals from distinct sensors in varying directions are amalgamated at the feature layer.
Subsequently, in the second stage, diagnostic outcomes from diverse modal data sources
are integrated at the decision layer employing ensemble learning techniques. By fusing
features from the HVS and VVS using PCA, the algorithm extracts global time-frequency
information through CWT and key index information using 28 time-frequency indexes.
This approach addresses the non-stationary and non-linear characteristics of vibration
signals and enhances the accuracy and credibility of diagnostic results.

The utilization of ResNet-34 and SVM models for fault diagnosis, followed by ensem-
ble learning for decision layer fusion, further improves diagnostic performance. Despite
the overall effectiveness of the proposed algorithm, misclassifications between IF and OF
remain a challenge. Subsequent research should optimize the feature extraction technique,
enhance the classifier structure, and enrich the model training with additional data. These
steps are essential for effectively discerning between bearing IF and OF.

In conclusion, this paper presents an effective solution for leveraging multi-sensor
vibration signals of different modes for fault diagnosis in high-noise environments. The
proposed approach employs a two-stage fusion process involving the feature layer and
the decision layer, resulting in an efficient fault diagnosis algorithm. The algorithm shows
promise as a robust classifier, opening avenues for further refinement and optimization in
future research endeavors.
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