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Abstract: A new, simple, and effective one-step reduction method was applied to prepare a nanocom-
posite with spherical polycrystalline silver nanoparticles attached to the surface of reduced graphene
oxide (Ag@rGO) at room temperature. Equipment such as X-ray diffraction (XRD), scanning electron
microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS),
and Fourier transform infrared spectroscopy (FTIR) was used to characterize the morphology and
composition of the Ag@rGO nanocomposite. A novel electrochemical sensor for detecting L-cysteine
was proposed based on fixing Ag@rGO onto a glassy carbon electrode. The electrocatalytic behavior
of the sensor was studied via cyclic voltammetry and amperometry. The results indicate that due to
the synergistic effect of graphene with a large surface area, abundant active sites, and silver nanopar-
ticles with good conductivity and high catalytic activity, Ag@rGO nanocomposites exhibit significant
electrocatalytic activity toward L-cysteine. Under optimal conditions, the constructed Ag@rGO
electrochemical sensor has a wide detection range of 0.1–470 µM for L-cysteine, low detection limit of
0.057 µM, and high sensitivity of 215.36 nA M−1 cm−2. In addition, the modified electrode exhibits
good anti-interference, reproducibility, and stability.
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1. Introduction

L-cysteine, also known as L-2-amino-3-mercaptopropionic acid with the molecular
formula C3H7NO2S, is a common amino acid in living organisms and an important amino
acid and glycogenic amino acid required by the human body [1]. L-cysteine, as a low-
molecular-weight amino thiol, can bind with some functional enzymes to form an active
site called cysteine protease, which participates in many life processes and is an important
substance for intracellular signal transduction and gene regulation [2,3]. L-cysteine is used
for detoxification and regulation of biological oxidative balance, and it is an important
biomarker, which can serve as a diagnostic indicator for various diseases. As a therapeutic
agent and antioxidant, L-cysteine is widely used in industries such as medicine, food,
and cosmetics [4]. For example, L-cysteine is an amino acid detoxifying agent, which
participates in the reduction process of cells and phospholipid metabolism in the liver.
It has a pharmacological effect of protecting liver cells from damage, promoting liver
function recovery, and strengthening the liver [5]. Abnormal L-cysteine indicators indicate
a potential risk of disease in the human body. For example, low levels of L-cysteine can
cause liver damage, muscle and fat loss, heart disease, hair color loss, and other diseases;
high levels of L-cysteine can lead to increased risks of renal failure, diabetes, Alzheimer’s
disease, and Parkinson’s disease [6,7].
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The L-cysteine measurement technology for clinical and commercial purposes is still
under research, and the development of low-cost, simple, and highly sensitive L-cysteine
detectors has become a key task in the food, biological, and medical fields [8]. At present,
there are many detection methods for L-cysteine, mainly including high-performance liquid
chromatography [9], colorimetric detection [10], flow injection analysis (FIA) [11], photo-
electrochemical (PEC) sensors [12], fluorescence spectroscopy [13], and electrochemical
detection techniques [14–16]. Among these methods, most of them have drawbacks, such
as a complex sample preparation process, expensive precision instruments, inconvenient
operation, or low sensitivity, which greatly limit their application in practical detection.
Electrochemical methods have attracted much attention due to their simple operation, low
cost, portability, and high sensitivity.

The application of traditional electrodes in practical detection is limited due to defects
such as easy surface passivation, high oxidation overpotential required for detecting
L-cysteine, and low sensitivity of voltammetry response [17–19]. One solution to address
these defects is to use various electrochemical media and nanomaterials to modify the
electrode surface, increase the electrode surface area, accelerate the electron migration rate,
and enhance the electrochemical response [20–23].

Due to its superior properties, such as a large specific surface area, high electron
mobility, and excellent mechanical resistance, research on graphene and its derivatives has
continued to increase since its discovery. Extensive study has been conducted on the attach-
ment of metals or metal oxides onto graphene, such as platinum (Pt), gold (Au), silver (Ag),
copper (Cu), titanium oxide (TiO2), zinc oxide (ZnO), manganese dioxide (MnO2), nickel
oxide (NiO), etc. It is expected that nanocomposites will be strengthened or improved in
the required properties [24–31]. Compared with Pt and Au, Ag is very economical and
has excellent conductivity. It can reduce the electrode resistivity and improve its electron
transfer rate, making it an excellent candidate for electrode materials. Silver nanoparti-
cles embedded between graphene sheets can prevent the re-accumulation of graphene
layers during the reduction process, increasing the electroactive surface area of graphene
nanocomposites [32]. The synthesis and application research of Ag-GO nanocomposites
has attracted much attention [33–36]. Jeong et al. prepared a nanocomposite of Ag-doped
rGO and studied its electrochemical performance. The results showed that adding Ag to
rGO increased the specific capacitance value by about 25 times [33].

Nanocomposites—such as metal nanoparticles, graphene quantum dots, MoS2 quan-
tum dots—have become promising materials for sensing and imaging biogenic sulfur in
living cells [37]. L-cysteine is a sulfur-containing amino acid with high affinity to the
Ag (111) surface [38], and its thiol side chains are adsorbed on noble metal surfaces at
room temperature [39]. Here, we proposed a one-pot reduction method for preparing Ag
attached on rGO using sodium borohydride (NaBH4) as a reducing agent at room tempera-
ture. Compared to others, the chemical reduction method has been widely used due to its
simple operation, high efficiency, and ability to obtain various types of precursors [40]. The
prepared nanocomposite was characterized by morphology and structure and was used
to modify the glassy carbon electrode (GCE) for electrochemical detection of L-cysteine.
The results showed that the prepared sensor exhibited good electrochemical response to
L-cysteine, with good stability and sensitivity, low detection limit, wide linear range, and
excellent reproducibility and stability.

2. Experimental Section
2.1. Reagents and Equipment

L-cysteine, AgNO3, NaBH4, polyethylene glycol (PEG-400), ethanol, nitric acid, and
nafion, all of analytical grade, were purchased from Aladdin Chemical Reagents (Shanghai,
China) and used without any further purification. Graphene oxide was prepared using
an improved Hummers’ method. Phosphate buffer solutions with various pH values
(0.10 M) were prepared using Na2HPO4 and NaH2PO4. All solutions were prepared with
double-distilled water (18.25 MΩ cm resistivity).
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A 524G digital constant temperature magnetic stirrer, CT14D centrifuge, Fourier
transform infrared spectrometer (FT-IR850), and BeNano 180 Zeta potential analyzer were
purchased from Shanghai Bangwo Instrument Equipment Co., Ltd., Shanghai, China. The
surface morphology and elemental content distribution spectrum of the nanocomposite
were studied using scanning electron microscopy (SEM) (Hitachi, s-4800, Tokyo, Japan)
and energy-dispersive spectroscopy (EDS) (GG314-JPS-9200). The microstructure of the
nanocomposite was characterized using transmission electron microscopy, and the lattice
structure and spacing of carbon and silver on the sample surface were detected using
high-resolution transmission electron microscopy (TEM, JEOL, JEM 2100F).

The electrochemical experiment was conducted using a CHI660E electrochemical ana-
lyzer (Chenhua Instrument Co., Ltd., Shanghai, China) and a traditional three-electrode bat-
tery. The working electrodes were, respectively, glass carbon electrodes (GCE) (Φ = 3 mm),
rGO-modified electrode (rGO/GCE), and Ag@rGO/GCE. The reference electrode was
an Ag/AgCl (saturated KCl) electrode, with a platinum electrode as the auxiliary elec-
trode. Before each experiment, the solution was blown with purified nitrogen gas for
15 min to remove oxygen. Unless otherwise specified, all measurements were carried out
at room temperature.

2.2. One-Step Synthesis of Silver @ Reduced Graphene Oxide Nanocomposite

Water-soluble graphene oxide (3 mg/mL) was fabricated following an improved
Hummers’ method using commercial graphene (99.9%). In a typical experiment, 5 mL
of polyethylene glycol 400 was added as a surfactant to 50 mL of GO solution to prevent
aggregation of silver nanoparticles.

AgNO3 (4 mL, 0.15 M) was slowly dropped into the mixture above and stirred mag-
netically for 30 min, with the aim of fully adsorbing Ag+ by GO and coordinating more Ag+

with the active sites (carbonyl, hydroxyl, carboxyl) on the surface of GO. Under continuous
stirring, newly prepared NaBH4 (0.06 M) was mixed dropwise into the solution, with a
dosage of approximately 5 mL. The black substance was deposited at the bottom of the
container after 6 h of stewing. After the supernatant was removed, the black sediment was
subsequently washed with ethanol and deionized water, until the filtrate became neutral,
and then dried in high vacuum at 50 °C for 2 h.

2.3. Preparation of Modified Electrodes

Before modification with the nanocomposite, the surface of the glassy carbon electrode
was polished with chamois and 0.05 µm alumina slurry. The processed electrodes were
sonicated in 1:1 nitric acid for 5 min to remove any remaining alumina slurry from the
surface, washed with distilled water, and then dried at room temperature. In order to fix
the nanocomposite on the surface of the glassy carbon electrode, after 1 mg of Ag@rGO was
dispersed into 2 mL of Nafion solution, the mixture was sonicated for 5 min to obtain the
Ag@rGO/Nafion dispersion solution. Subsequently, 10 µL of the dispersed solution was
coated onto the surface of GCE and dried in atmosphere to obtain Ag@rGO-modified glassy
carbon electrode (Ag@rGO/GCE). GCE modified with rGO (rGO/GCE) was prepared via
a similar process.

3. Results and Discussion
3.1. Characterization
3.1.1. Morphology and Component Characterization

The SEM technique was used to characterize the morphology of Ag@rGO nanocompos-
ite. As shown in Figure 1a, a large number of grape-shaped (spherical) silver nanoparticles
were distributed on the wrinkled surface of rGO. It can be seen in Figure 1b that the phase
composition of rGO and Ag@rGO nanocomposite was verified using XRD. The X-ray
diffraction pattern of rGO shows a sharp (002) peak centered at 26.3◦. The characteristic
peaks (2θ) of Ag@rGO are situated at 38.1◦, 44.3◦, 64.4◦, 77.5◦, and 81.5◦, indexed to the
(111), (200), (220), (311), and (222) crystal planes of metallic Ag, respectively. According to
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JCPDS 00-004-0783, silver nanoparticles have a face-centered cubic structure, consistent
with previous reported literature [41–43]. The average particle size of Ag NPs is 20.3 nm,
according to the Debye–Scherrer formula D = 0.9 λ/(β cos θ) [44].
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Figure 1. SEM image (a), XRD pattern (b), and EDX spectrum (c) of Ag@rGO.

To further confirm the composition elements of the composite material, EDX was used
to characterize the Ag@rGO nanocomposite. The EDX image shown in Figure 1c contains
strong peaks of silver and carbon as the main constituent element of the composite, except
for the silicon peak from the sample supporting substrate silicon wafer, while the oxygen
peak displayed is weak, indicating adequate reduction in silver ions and graphene oxide.

Figure 2a depicts the TEM micrograph of rGO, with obvious wrinkles on its surface
but no other substances adhering to it. Figure 2b shows the TEM image of Ag@rGO
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nanocomposite, and it is evident that spherical silver nanoparticles were dispersed on rGO
sheets, with a size range of 10–40 nm. Parts of the silver nanoparticles are stacked together,
consistent with the SEM results. The high-resolution TEM (HRTEM) images of Ag@rGO
in Figure 2c clearly demonstrate the presence of Ag in the (111) (d111 = 0.2378 nm) and
(200) plane (d200 = 0.2064 nm), respectively. The selected area electron diffraction (SAED)
pattern is shown in Figure 2d, which is composed of four concentric rings with different
radii. The formation of this circular pattern may be due to the presence of a large number of
disorderly oriented particles. Small crystal particles in the sample area under electron beam
irradiation indicate that the silver nanoparticles belong to a polycrystalline structure [45].
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Figure 2. TEM images of GO (a) and Ag@rGO (b); HRTEM image (c) and SAED pattern (d) of Ag@rGO.

The chemical states of Ag and carbon in Ag@rGO were determined under XPS.
Figure 3a shows the high-resolution C1s spectrum of GO, with three peaks located at
284.6 eV (C=C), 286.7 eV (C-OH), and 288.4 eV (O=C-OH), denoting the presence of differ-
ent functional groups (double bonds, hydroxyl groups, and carbonyl groups) on the GO
sheet [46]. Based on the blue curve (Ag@rGO) in the insert image in Figure 3a, it can clearly
be seen that the intensity of the C=C peak does not change significantly, while the peaks
of C-OH and O=C-OH almost disappear. As displayed in Figure 3b, compared to the O1s
of GO, the peak value of O1s (Ag@rGO) significantly decreased, indicating that the vast
majority of oxygen-containing functional groups in GO were reduced. Figure 3c shows
the peaks related to C1s, Ag 3d, and O1s in the Ag@rGO nanocomposite. Compared to
the XPS spectrum of GO, the C1s and Ag 3d peaks dominate in Ag@rGO, and the peak
intensity of O1s is greatly reduced. Figure 3d shows the high-resolution XPS of the 3d peak
of Ag. The peaks mainly occur at 368.5 eV (3d5/2) and 374.6 eV (3d3/2), with spin energy
separation values of approximately 6 eV between the two peaks confirming that silver is in
a zero-valence state on the surface of rGO sheets [47].

Figure 4 shows the FTIR spectra of GO and Ag@rGO. It is evident that after the
reduction reaction, the characteristic peaks of C-O (1121 cm−1) and C=O (1796 cm−1) in
GO almost disappear in the FTIR of Ag@rGO. All results show that GO and AgNO3 were
successfully reduced in one step at room temperature to the Ag@rGO nanocomposite.
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3.1.2. Characterization of Modified Electrodes

Electrochemical impedance spectroscopy (EIS) is a convenient and effective tool for
studying electrode interface properties. The ideal impedance spectrum consists of a semi-
circle at high frequencies and a straight line at low frequencies. The semicircle diameter of
the EIS spectrum is related to the electron transfer resistance (Rct), revealing the electron
transfer kinetics of the redox probe at the electrode interface, and the straight line is a
typical feature of diffusion process control [48]. Figure 5 illustrates the Nyquist plots of the
electrochemical properties of bare GCE (curve a), rGO/GCE (curve b), and Ag@rGO/GCE
(curve c) under the presence of 5.0 µM K3Fe(CN)6/K4Fe(CN)6 and 0.1 M KCl. Obvi-
ously, rGO-modified GCE exhibits a smaller interfacial electron transfer resistance than
bare GCE, which is due to the increased electron transfer rate on the electrode surface
by rGO. Compared with bare GCE and rGO/GCE, the impedance of the Ag@rGO/GCE
nanocomposite is further reduced, which may be attributed to the excellent conductivity of
Ag nanoparticles.
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Fit the obtained impedance data using a Randles circuit (illustrated in Figure 5), in-
cluding the electron transfer process (charge transfer resistance Rct) and diffusion process
(Warburg-type impedance) [49]. The electron transfer resistance (Rct) is estimated to be
495 Ω, 378 Ω, and 206 Ω, corresponding to GCE, rGO/GCE, and Ag@rGO/GCE, respec-
tively. The results indicate that Ag@rGO/GCE possesses good interfacial electron transfer
performance, which is beneficial for constructing highly sensitive electrochemical sensors.

3.2. Electrochemical Response of L-Cysteine on Different Modified Electrodes

The electrochemical detection performance of L-cysteine in phosphate-buffered so-
lution (pH = 7.0) was emulated via cyclic voltammetry (CV) using GCE, rGO/GCE, and
Ag@rGO/GCE. Figure 6 displays the cyclic voltammetry of different electrodes in response
to L-cysteine (50 µM). Obviously, GCE has no electrocatalytic activity toward L-cysteine,
since no significant redox peak is observed. In the potential range of −0.40–0.60V, a strong
oxidation peak appears at +0.0316 V, and a very weak reduction peak appears at −0.3247 V
on the CV diagram of rGO/GCE, indicating that the redox process of L-cysteine on the
electrode is almost irreversible. In the CV pattern of Ag@rGO/GCE, a strong oxidation
peak appears at −0.0208 V; a weak reduction peak appears at −0.3452 V; and the oxidation
overpotential decreases. Usually, the electrochemical determination of L-cysteine requires
a high oxidation overpotential. For example, Wang et al. [50] reported that when using
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Pt/Fe3O4 nanoparticles/reduced-graphene-oxide-modified GCE to detect L-cysteine, an
irreversible CV peak at +0.65V was observed. Cao et al. [51] reported that an electro-
chemical oxidation potential of +0.522V was observed on an electrode modified with gold
nanoparticles. The above experimental results indicate that Ag@rGO/GCE-modified GCE
has excellent electrocatalytic performance for L-cysteine. As shown in the inserted figure,
none of the three electrodes showed significant redox peaks for the phosphate-buffered
solution (pH = 7.0) without L-cysteine sample.
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3.3. Effect of Scanning Rate on Oxidation Reduction in L-Cysteine

Figure 7 shows the CV curves of L-cysteine (50 µM) on Ag@rGO/GCE at different
scanning rates. It can be seen that in the range of 20–180 mV s−1, the peak current of
Ag@rGO/GCE in the oxidation process of L-cysteine rises significantly with the increase in
scanning rate. When the scanning rate exceeds 120 mV s−1, the value of the peak current
increases slightly. If the relationship between peak current and scanning speed satisfies the
Randles–Ševčík equation, Ip = (2.69 × 105)n3/2ADCυ1/2 (n, number of electrons transferred
during the redox process; A, electrode area, generally a geometric area; D, diffusion
coefficient; C, ion concentration participating in the reaction; V, scanning rate set by cyclic
voltammetry), i.e., a square root relationship, this illustrates that the electrocatalytic process
is a diffusion-controlled reaction. The illustration in Figure 7 shows the relationship
between the peak redox current and the square root of the scanning rate, which is linear
in the range of 20–180 (mV s−1) scanning rate, with a correlation coefficient R of 0.98282,
further indicating that the electrode reaction process is controlled by the diffusion of
L-cysteine, which is consistent with the electrochemical oxidation mechanism of L-cysteine
on solid electrodes proposed by Ralph et al. [52]. In addition, as the scanning rate increases,
it can be observed that the weak reduction current peak of L-cysteine gradually increases.
It may be concluded that L-cysteine oxidation products cannot completely desorb from
rGO with the scanning rate increasing, leading to a reduction process.
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3.4. Effect of pH on L-Cysteine Electrocatalysis

In order to optimize the experimental conditions for L-cysteine detection, the effect of
Ag@rGO/GCE on the electrochemical behavior of L-cysteine at pH values from 5.0 to 9.0
was investigated using the CV method. As shown in Figure 8, the oxidation peak current
increased with the increase in pH (5.0–7.0); meanwhile, when the pH value exceeded 7.0,
the peak current value decreased. This indicates that under the condition of pH = 7.0,
Ag@rGO/GCE exhibits the best electrocatalytic performance for the oxidation of L-cysteine.
Therefore, in order to obtain the optimal current response conditions, experiments explor-
ing the electrochemical behavior of Ag@rGO/GCE for L-cysteine were conducted in a
phosphate-buffered solution with pH = 7.0.
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3.5. Amperometric Detection of L-Cysteine at Ag@rGO/GCE

Under steady-state conditions, the current method is a simple and sensitive electro-
chemical detection method [4]. In an optimized state, applying a potential of −0.0208 V
and continuous stirring to promote solution homogenization, the typical amperometric
response signals obtained by continuously adding different concentrations of L-cysteine
are shown in Figure 9. At the initial stage, low concentrations of L-cysteine were added,
and a steady-state current response was obtained within 2–5 s, implying a fast electron
transfer process in the electrode. Subsequently, in the following steps, samples of the same
concentration were added three times every 50 s, with concentrations of 0.1, 0.5, 1, 5, 10,
20, 40, and 80 µM, respectively. L-cysteine exhibits a significant linear increase in current
response. The sensor possesses a wide linear range from 0.1 µM to 470 µM (S/N = 3), and
the linear regression equation is as follows: iPa (µA) = 0.33058 + 0.16115 CL-cysteine (µM). As
shown in the inserted figure, the R is equal to 0.99449; sensitivity is 215.36 nA M−1 cm−2;
and the detection limit (LOD) is 0.057 µM. Table 1 lists the detection parameters of some
other electrochemical sensors for L-cysteine. Compared to them, the detection range and
limit of Ag@rGO/GCE for L-cysteine were significantly improved. The results indicate
that the Ag@rGO nanocomposite can be used as an excellent electrode material for de-
tecting L-cysteine, which can be attributed to the large surface area, rich active sites, high
conductivity of silver, and excellent catalytic activity of rGO. In addition, in a 40 mL
phosphate-buffered solution (pH = 7.0), the Zeta potential of Ag GO nanocomposite was
measured to be −16.5 mV, indicating that Ag-supported graphene nanomaterials have
excellent stability [53], promoting the collision and binding of L-cysteine with quantum
dots on the material [38] and undergoing rapid oxidation reactions under the catalysis of
Ag nanoparticles.
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Figure 9. Amperometric responses at Ag@rGO/GCE with successive additions of L-cysteine in 0.1 M
phosphate-buffered solution (pH = 7.0). Inset: Plots of enlarged curves showing the addition of
0.1–1 µM of L-cysteine and the corresponding calibration curve.
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Table 1. Comparison for L-cysteine determination at Ag@rGO/GCE with reported electrodes.

Electrodes Linear Range
(µM)

Detection Limit
(µM) Ref.

CuFe2O4/reduced graphene oxide/Au
nanoparticles modified GCE 50–200 0.383 [54]

Pt/Fe3O4 nanoparticles/reduced grapheme
oxide modified GCE 100–1000 10 [50]

BiPr composite nanosheets modified GCE 1–2000 0.21 [15]
Pt/carbon nanotubes modified electrode 0.5–100 0.3 [18]

Au/Nafion modified GCE 2–80 1.0 [55]
Multi-walled carbon nanotubes modified GCE 10–500 5.4 [56]
Boron-doped carbon nanotubes modified GCE 0.78–200 0.26 [57]

This work 0.1–470 0.057

3.6. Influence of Interference, Reproducibility, and Stability

To demonstrate the selectivity of the Ag@rGO/GCE sensor, the potential interferences
of some typical organic compounds for the detection of L-cysteine were also investigated
using the amperometric method. As can be seen in Figure 10, when 50 µM L-cysteine was
added to the test sample, there was a significant change in the current response. When
200 µM interferents—such as glucose, L-tyrosine, citric acid, tryptophan, sodium oxalate,
and alanine—were added, the current response value hardly changed. This indicates that
Ag@rGO/GCE has good anti-interference ability in detecting L-cysteine.
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The reproducibility and stability test of the sensor is shown in Figure 11. In a phosphate-
buffered solution (pH = 7.0), the relative standard deviation (RSD) of 50 µM L-cysteine
detected using the amperometric method for seven consecutive measurements was 3.7% (less
than 5%). The sensor was stored at room temperature and in a dry atmosphere, and 50 µM
L-cysteine was detected every 2 days. After 20 days, the current response value of the sensor
was observed, which was 9.2% lower than the initial value, indicating the good long-term
stability of Ag@rGO/GCE.

As an example of practical application, AgrGO/GCE was performed to detect L-cysteine
in the presence of human serum samples. Serum was diluted 10 times in a phosphate-
buffered solution (0.1 M, pH = 7.0) as a test sample, and a certain amount of L-cysteine
standard solution (0, 5, 10, and 20 µM) was added to the human serum sample through the
standard addition method. The results are shown in Table 2, and they are consistent with
the reported concentration range of cysteine in serum (30–200 M) [58]. The corresponding
recovery rate results range between 98.5% and 103.3%, and the relative standard deviation
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(RSD) ranges between 1.8% and 4.7%. This indicates that Ag@rGO/GCE has a satisfactory
practical application for L-cysteine detection in real samples.
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Table 2. L-cysteine detection in real samples (n = 3).

Sample Add (µM) Found (µM) Recovery (%) RSD (%)

Serum 0 5.17 ± 0.42 – 4.7
5 10.26 ± 0.36 103.3 3.1

10 15.78 ± 0.65 98.5 2.6
20 25.42 ± 0.31 99.2 1.8

4. Conclusions

In this work, we successfully synthesized the Ag@rGO nanocomposite and constructed
an electrochemical non-enzymatic sensor for L-cysteine detection. The electrochemical
research results indicate that the sensor exhibits excellent electrocatalytic oxidation ability
toward L-cysteine in a 0.1 M phosphate-buffered solution at pH = 7.0. Under optimized
conditions, Ag@rGO/GCE exhibits excellent electrocatalytic activity as a L-cysteine sensor,
with a wide linear range, low detection limit, high sensitivity, and fast response time,
which can be attributed to the high surface area, abundant active sites, and accelerated
electron transfer rate of the Ag@rGO nanocomposite. In addition, Ag@rGO/GCE has the
advantages of simple preparation and high stability; therefore, it has broad application
prospects for detecting L-cysteine in actual samples.
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