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Abstract: Compared to fault diagnosis across operating conditions, the differences in data distri-
bution between devices are more pronounced and better aligned with practical application needs.
However, current research on transfer learning inadequately addresses fault diagnosis issues across
devices. To better balance the relationship between computational resources and diagnostic accuracy,
a knowledge distillation-based lightweight transfer learning framework for rolling bearing diag-
nosis is proposed in this study. Specifically, a deep teacher–student model based on variable-scale
residual networks is constructed to learn domain-invariant features relevant to fault classification
within both the source and target domain data. Subsequently, a knowledge distillation framework
incorporating a temperature factor is established to transfer fault features learned by the large teacher
model in the source domain to the smaller student model, thereby reducing computational and
parameter overhead. Finally, a multi-kernel domain adaptation method is employed to capture
the feature probability distribution distance of fault characteristics between the source and target
domains in Reproducing Kernel Hilbert Space (RKHS), and domain-invariant features are learned
by minimizing the distribution distance between them. The effectiveness and applicability of the
proposed method in situations of incomplete data across device types were validated through two en-
gineering cases, spanning device models and transitioning from laboratory equipment to real-world
operational devices.

Keywords: lightweight; knowledge distillation; variational-scale residual networks; multi-kernel
domain adaptation approach

1. Introduction

With the rapid development of modern industry and science and technology, highly
precise and integrated industrial equipment has been widely adopted across various fields.
This trend has led to an increased risk of mechanical failures, particularly in rotating
components such as bearings [1,2]. However, detecting abnormal noises or subtle faults
in bearings can be challenging, making it difficult to mitigate potential risks [3,4]. Minor
issues may lead to equipment malfunction or downtime, resulting in economic losses, while
more serious failures can pose catastrophic safety hazards [5].

With the rise of deep learning and revolutionary breakthroughs in computer hard-
ware, deep learning-based fault diagnosis algorithms have gained popularity, fueled by
the availability of massive datasets [6]. Convolutional neural networks (CNNs) are the
most commonly used network in deep learning, achieving excellent results in feature
recognition [7]. The local receptive field and weight sharing improve the training speed of
CNNs. Deep convolutional networks exhibit outstanding classification performance and
have been widely applied in rolling bearing fault diagnosis. Wang et al. [8] proposed an
intelligent fault diagnosis method for bearings based on the combination of symmetrical
dot pattern representation and a squeeze-excitation convolutional neural network model.
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Li et al. [9] introduced a novel bearing fault diagnosis model based on ensemble deep
neural networks and CNN, where each local network is trained with different datasets to
extract diverse features, thereby integrating features with different resolutions for fault
identification. Shenfield et al. [10] introduced a new dual-path recurrent neural network
(RNN-WDCNN) with a wide one-step kernel and deep CNN path, capable of operating
on raw time signals (e.g., vibration data) to diagnose bearing fault data collected from
electromechanical drive systems.

However, applying deep learning strategies to rolling bearing fault diagnosis often
encounters challenges such as imbalanced data distribution leading to poor generalization
of deep diagnostic networks, high memory consumption, and large computational resource
utilization by deep models [11–14]. The emergence of transfer learning provides a fresh
and effective approach to address such practical issues, leveraging previously acquired
knowledge to assist in learning new knowledge [15]. Shen et al. [16] adjusted the weights
between selectively assisted data in the TrAdaBoost algorithm to enhance diagnostic capa-
bility, while avoiding negative transfer by judging similarity, thus improving the algorithm
accuracy and reducing the computational burden. Liao [17] proposed a transfer network
based on dynamic distribution adaptation for cross-domain bearing fault diagnosis. Zhang
et al. [18] first extracted features from source and target domain data using CNN, then
minimized the probability distribution distance of multi-kernel maximum mean difference
and maximized the domain recognition error of the domain classifier to reduce domain
distribution differences. Zhou et al. [19] introduced a domain adaptation method, utilizing
mixed distance measures to minimize distribution differences between source and target
domains, applied to bearing fault diagnosis under different operating conditions. Zhao
et al. [20] designed a deep transfer diagnostic method, achieving comprehensive optimiza-
tion of sample probability distribution distance, model classification error, and domain
classification error. Tong et al. [21] proposed a feature transfer learning-based domain adap-
tation method to address the performance degradation of fault diagnosis models in varying
operating condition environments. These transfer methods have demonstrated excellent di-
agnostic performance under cross-condition scenarios but are challenging to apply to fault
diagnosis problems under cross-device scenarios [22,23]. Cross-device scenarios not only
involve different operating scenes and environmental changes but also encompass devices
of different types with distinct materials, sizes, configurations, or installation methods [24].
These varying factors inevitably lead to more significant distribution differences between
the source and target domain data, necessitating research into fault diagnosis methods with
better generalization capabilities [25,26].

Knowledge distillation, proposed and popularized by Geoffrey Hinton et al. in
2015 [27], is a technique that can be viewed as a special case of transfer learning. It transfers
knowledge from a complete large network (teacher model) to a smaller network (student
model) in the form of soft labels, thereby enhancing the accuracy of the network [28,29].
Therefore, this paper proposes a domain-adaptive residual network model based on the
knowledge distillation framework. To prevent gradient vanishing as CNNs deepen, a
variable-scale residual network is employed to extract domain-invariant fault features from
both the source and target domain data. Based on the variable-scale residual network,
a knowledge distillation framework is constructed, enabling the student model in the
framework to reference soft label information from the teacher model while reducing
the model’s size for ease of deployment in industrial scenarios. Domain adaptation is
achieved by measuring the difference between the source and target domain data in the
feature space using maximum mean discrepancy (MMD), enabling cross-device invariant
feature learning.

The main contents of each section of this paper are described as follows: Section 2 in-
troduces the theoretical foundation of the paper, Section 3 details the designed lightweight
distillation transfer learning diagnostic model, Section 4 conducts engineering case verifica-
tion and analysis, and Section 5 provides the conclusions of the paper.
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2. Theoretical Foundation
2.1. Residual Network

The residual network (ResNet) [30] model consists of a series of stacked residual units,
each containing two main components: identity mapping and residual mapping. The
identity mapping directly connects the input X to the output, while the residual mapping
transforms the input through a residual connection (shortcut connection). The principal
diagram is shown in Figure 1a, and the output of the residual unit can be calculated
as follows:

Xl+1 = Xl + F(Xl) (1)

where Xl denotes the input data, Xl+1 denotes the output data, and F() stands for the
convolutional operation.
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Figure 1. Schematic diagram of ResNet.

During the convolution operation, the number of channels in the input data Xl may
differ from that in the output data Xl+1. In such cases, a convolution with a kernel size of
1 is required to either increase or decrease the dimensionality of the input data, ensuring
consistency in the number of channels between the input and output data. This principle is
illustrated in Figure 1b, where the output of the residual unit can be calculated as follows:

Xl+1 = Convk=1(Xl) + F(Xl) (2)

where Convk=1(·) represents the convolution operation with a kernel size of 1. For deeper
layers L in the ResNet model, they can be represented as the sum of any shallow layer l
and the residual part between two layers. This principle is illustrated in Figure 1c, and the
specific output can be calculated using the following equation:

XL = Xl + ∑L−1
i=1 F(Xi) (3)

where ∑L−1
i=1 F(Xi) represents the sum of the residual mappings of each residual unit.

According to the chain rule of derivatives in backpropagation, the gradient of the loss
function ε with respect to Xl can be expressed as:

∂ε

∂Xl
=

∂ε

∂XL

∂XL
∂Xl

=
∂ε

∂XL

(
1 +

∂

∂Xl
∑L−1

i=1 F(Xi)

)
(4)
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Observing Equation (4), it can be seen that regardless of how small the derivative pa-
rameters of ∂

∂Xl
∑L−1

i=1 F(Xi) are, it ensures that there will be no gradient vanishing during
the parameter update of the residual network at this node. This type of residual unit
enables better gradient propagation during model training, leading to faster training and
convergence speeds.

2.2. Knowledge Distillation Model with Soft Labels

Knowledge distillation models typically consist of two main stages: the first stage
involves the teacher model inferring the training data to obtain soft labels for the classi-
fication task, while the second stage entails training the student model using the richer
information contained in the soft labels [28]. This process is illustrated in Figure 2. Nor-
mally, the model’s prediction results represent the probability predictions for each class
in the classification task after passing through the Softmax classification layer. However,
these probabilities often do not contain information about the similarity between different
classes, which can weaken the learned feature information to some extent. Therefore, the
teacher model introduces a temperature factor T into the Softmax function to capture the
similarity information between different classes in the classification task, as shown in the
following equation:

qT
i =

exp(zi/T)
∑
j

exp(zj/T)
(5)

where zi and zj are the inputs to the Softmax function, qi represents the predicted probabil-
ities for each class in the classification task, and T is the temperature factor. Introducing
the temperature factor makes the output probabilities of Softmax smoother. When T = 1,
Equation (5) is equivalent to the traditional Softmax classifier.
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Figure 2. Principle of knowledge distillation.

During the training process of the student model, knowledge distillation introduces
the predictions of the teacher model as additional targets while learning the error between
the input data and the true sample labels. Generally, the cross-entropy loss function is
chosen as the loss calculation function between the model’s test probability values and
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the true labels. Then, the distilled loss Cdistill between the teacher model and the student
model, as well as the loss Cclass between the predictions of the student model and the true
labels, are represented by Equations (6) and (7), respectively.

Lso f t = −
N

∑
j

pT
j log(qT

j ) (6)

Lhard = −
N

∑
j

cj log(q1
j ) (7)

where pT
j and qT

j , respectively, denote the predicted probability distributions of the teacher
and student models after distillation with temperature factor T, cj represents the true labels
of the classification task, and q1

j represents the predicted probability distribution of the
student model when the temperature factor T is 1, also known as the hard label prediction
of the student model. The loss of the entire knowledge distillation model consists of two
parts, denoted by Lso f t and Lhard, respectively, as shown in Equation (8):

L = αLso f t + (1 − α)Lhard (8)

where α represents the weighting of the model loss considering soft labels.

2.3. Maximum Mean Discrepancy

MMD projects input data onto the Reproducing Kernel Hilbert Space (RKHS) by
defining a kernel function, transforming complex relationships that are linearly inseparable
in low-dimensional space into linear relationships in high-dimensional space, thereby
describing the statistical properties of the data [31]. The definition of the distance between
two probability distributions in RKHS is as follows:

MMD(X, Y) =

∥∥∥∥∥ 1
n

n

∑
i=1

ϕ(xi)−
1
m

m

∑
j=1

ϕ(yi)

∥∥∥∥∥
2

H

(9)

where X and Y represent the source domain and target domain datasets, respectively, H
denotes the measurement of data mapped to RKHS, and if the MMD value tends to zero, it
indicates that the two probability distributions are similar. Expanding Equation (9) yields
the following:

MMD(X, Y) =

∥∥∥∥∥∥ 1
n2

n

∑
i

n

∑
i′

ϕ(xi)ϕ(x′i)−
1

nm

n

∑
i

m

∑
j

ϕ(xi)ϕ(yj) +
1

m2

m

∑
j

m

∑
j′

ϕ(yj)ϕ(y′j)

∥∥∥∥∥∥ (10)

where the inner product calculation of two vectors ϕ(xi)ϕ(x′i) can implicitly map data to a
high-dimensional feature space through the kernel function k(·). Therefore, MMD can also
be expressed as follows:

MMD(X, Y) =

∥∥∥∥∥∥ 1
n2

n

∑
i

n

∑
i′

k(xi, x′i)−
1

nm

n

∑
i

m

∑
j

k(xi, yj) +
1

m2

m

∑
j

m

∑
j′

k(yj, y′j)

∥∥∥∥∥∥ (11)

The kernel function k(·) is typically a Gaussian kernel function, as shown in Equation (12).

k(x, x′) = exp

(
−∥x − x′∥2

2σ2

)
(12)
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where x′ is the kernel function center, ∥x − x′∥2 represents the Euclidean distance between
vector x and vector x′, and σ represents the kernel function width, which also controls the
range of influence of the Gaussian kernel function. When σ is relatively large, changes in
∥x − x′∥2 have a small impact on the kernel function, indicating that changes in k(x, x′) are
relatively “smooth”; when σ is relatively small, changes in ∥x − x′∥2 have a greater impact
on the kernel function, indicating that changes in k(x, x′) are relatively “sharp”.

3. Lightweight Distillation Transfer Learning Diagnostic Model

This paper fully considers the advantages and limitations of deep and shallow deep
learning networks. Based on the techniques of knowledge distillation lightweight models
and feature-level domain adaptation transfer, it investigates model compression while
ensuring the performance of deep learning models. Addressing the task of fault diag-
nosis across devices with incomplete inter-class data, this paper proposes a knowledge
distillation-based residual network with domain adaptation (KD-ResNet-DA). This method
utilizes a variable-scale ResNet model to extract domain-invariant features from the source
domain data. Employing the framework of knowledge distillation, it transfers the fault
features extracted by the deep teacher model from the source domain to the smaller-volume
student model, achieving the extraction of fault features in the target domain. Furthermore,
it minimizes the probability distribution distance of fault features between the source and
target domains, facilitating domain-invariant feature learning across devices. The struc-
ture of the KD-ResNet-DA network model is illustrated in Figure 3, comprising primarily
the knowledge distillation framework and feature-level domain adaptation transfer. The
knowledge distillation framework enables the student model to reference the internally
invariant features learned by the teacher model during training. Meanwhile, domain
adaptation transfer learns mutually invariant features of probability distribution between
the source and target domain data from the feature level. The overall objective function
of the model consists of three parts: the distillation error Ldistill from the knowledge distil-
lation framework, the classification error Lclass of the student model, and the probability
distribution distance loss LMMD at the feature level. The specific methods for obtaining
each loss will be discussed in the following two sections.
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3.1. Acquisition of Knowledge Distillation Framework Error

The knowledge distillation framework considering soft labels mainly consists of a
deep variable-scale ResNet teacher model and a shallow ResNet student model. This
framework relies on the teacher model to extract domain-invariant features relevant to fault
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classification tasks from the source domain data and transfer the learned fault classification
information to the smaller-volume student model at the classification layer. The specific
steps are as follows:

(1) Input source domain data into the deep variable-scale ResNet teacher model: The

source domain dataset XSource =
{

xi, yi}N
i=1 ∈ ℜ1×D is input into the deep variable-

scale ResNet teacher model. Initially, convolutional layers with larger kernel sizes
capture coarse-grained features in a wide frequency band of the frequency domain sig-
nals. Then, the variable-scale ResNet progressively converts coarse-grained features
into fine-grained fault features, with each residual unit adding a convolutional layer
with a kernel size of 1 to reduce the depth of intermediate feature matrices and de-
crease model parameters. This process yields domain-invariant features embeddingT

II
for the source domain data.

(2) Pretrain the teacher model and infer with Softmax classifier: The teacher model is
pretrained via backpropagation, and the pretrained variable-scale ResNet teacher
model performs inference. By introducing the temperature factor T in the Softmax
classifier as in Equation (5), the probabilities of each sample belonging to each fault
class in the classification layer are obtained, i.e., soft labels Labelso f t.

(3) Input target domain data into the shallow student model: The target domain dataset

XTarget =
{

xj, yj}N
j=1 ∈ ℜ1×D is input into the shallow student model with fewer

parameters, and the features embeddingS of the target domain data are obtained.
(4) Calculate distillation error between student model’s soft predictions and soft labels:

The distillation error Ldistill between the soft predictions Preso f t of the student model
and the soft labels Labelso f t is computed using Equation (6).

(5) Calculate classification error between student model’s hard predictions and true sample
labels: The classification error Lclass between the hard predictions Prehard of the student
model and the true sample labels Labelhard is calculated using Equation (7).

(6) Utilize overall knowledge distillation framework loss as training objective for student
model: The overall loss, composed of distillation error Ldistill and classification error
Lclass, serves as the training objective for the student model, enabling it to gradually
approach the outstanding fault classification performance of the teacher model.

3.2. Domain Adaptation Loss Acquisition Based on MMD

In the aforementioned knowledge distillation framework, domain-invariant features
embeddingT

II of the source domain data and features embeddingS of the target domain data
are extracted at the feature level. The probability distribution distance LMMD between the
two is then computed in the RKHS using Equation (11). This distance is learned as more
diverse domain-invariant features are encouraged through regularization. In Equation (11),
the value σ in the Gaussian kernel function k(·) represents the width of the kernel function,
controlling the range of influence of embeddingT

II and embeddingS on the kernel function,
i.e., the smoothness of the Gaussian kernel function. Considering the potential variation in
feature distributions across different cross-device fault diagnosis tasks, this study selects
multiple values of σ to enhance the flexibility of domain adaptation. By selecting multiple
different values of σ, the model can adapt to the diverse data features present in different
cross-device scenarios, thus making it more suitable for a variety of fault classification tasks.

3.3. Training Procedure of KD-ResNet-DA

The proposed method represents a novel integration of the knowledge distillation
framework with domain adaptation at the feature level, offering a comprehensive approach
to address the challenges posed by cross-domain data incompleteness. By leveraging the
strengths of both techniques, the proposed approach facilitates the seamless transfer of
domain-invariant features gleaned from the teacher model trained on the source domain
data to the student model. This transfer ensures that the student model can effectively
capture and utilize essential information without being hindered by domain discrepancies.
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Moreover, our method goes beyond traditional knowledge distillation by incorporating
domain adaptation mechanisms to bridge the gap between the source and target domains.
Specifically, it exploits multi-kernel MMD to discern domain-invariant features between
the source and target domain data. This process enhances the adaptability of the model
to diverse data distributions encountered in real-world scenarios, thereby improving its
robustness and generalization capability. The ultimate objective function of the proposed
KD-ResNet-DA method encapsulates the essence of these strategies, aiming to minimize
the distillation error, classification error, and probability distribution distance simultane-
ously. The distillation error quantifies the discrepancy between the soft predictions of the
student model and the soft labels provided by the teacher model, facilitating the transfer of
knowledge effectively. The classification error measures the disparity between the hard
predictions of the student model and the ground truth labels, ensuring accurate diagnostic
outcomes. Additionally, the probability distribution distance captures the dissimilarity
between the probability distributions of the source and target domain data, guiding the
model towards learning domain-invariant representations.

In essence, the proposed KD-ResNet-DA method offers a synergistic fusion of knowl-
edge distillation and domain adaptation techniques, underpinned by a comprehensive ob-
jective function that optimizes model performance across domains. This holistic approach
not only enhances the diagnostic accuracy and efficiency but also lays the groundwork for
advancing intelligent fault diagnosis in diverse industrial settings. The ultimate objective
function L f inal of the proposed KD-ResNet-DA method consists of distillation error Ldistill ,
classification error Lclass, and probability distribution distance LMMD, which can be defined
as follows:

L f inal = αLdistill + (1 − α)Lclass + LMMD (13)

where α represents the relative weight balancing between the distillation error of the teacher
model and the classification error of the student model.

4. Experimental Validation and Analysis

To verify the effectiveness and applicability of the proposed model under the scenario
of cross-device situations and incomplete inter-class data, two engineering case studies of
different degrees of cross-device variations were conducted. One involves the verification
case of different bearing models, while the other spans from laboratory bearings to real-
world operational bearings, further confirming the versatility of the proposed algorithm.

4.1. Experimental Samples and Network Structure Parameters

The network structures of the deep variable-scale ResNet teacher model, shallow
ResNet student model, and fault classification module in the proposed KD-ResNet-DA
method are outlined in Table 1, Table 2 and Table 3, respectively. The teacher model has a
floating-point operation count (FLOP) of 225,609,728.0 and 2,274,496.0 parameters, while
the student model has FLOPs of 34,932,736.0 and 268,864.0 parameters. Compared to the
teacher model, the student model reduces the computational complexity by one-sixth and
the parameter count by one-eighth.

To validate the proposed model under cross-device scenarios with incomplete inter-
class data, incomplete inter-class sample sets were constructed for each validation case.
Each set consists of 300 healthy state samples, each composed of 2048 sampling points,
with only 5 fault samples selected from each of the remaining fault states. The experimental
parameters, including learning rate, training iterations, etc., are listed in Table 4.
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Table 1. The network structure of KD-ResNet-DA teacher model.

Serial Number Layer Type Kernel Size Stride Padding Output

1
Convolution 7 2 3 [batch_size, 64, 512]

Pooling 3 2 1 [batch_size, 64, 256]

Residual unit 1
Convolution 1 1 0

[batch_size, 256, 256]Convolution 5 1 2

Residual unit 2
Convolution 1 1 0

[batch_size, 256, 256]Convolution 5 1 2

Residual unit 3
Convolution 1 1 0

[batch_size, 512, 128]Convolution 3 1 1

Residual unit 4
Convolution 1 1 0

[batch_size, 512, 128]Convolution 3 1 1

Residual unit 5
Convolution 1 1 0

[batch_size, 1024, 64]Convolution 1 1 0

Residual unit 6
Convolution 1 1 0

[batch_size, 1024, 64]Convolution 1 1 0

Table 2. The network structure of KD-ResNet-DA student model.

Serial Number Layer Type Kernel Size Stride Padding Output

1
Convolution 7 2 3 [batch_size, 64, 512]

Pooling 3 2 1 [batch_size, 64, 256]

Residual unit 1
Convolution 1 1 0

[batch_size, 512, 128]Convolution 3 1 1

Residual unit 2
Convolution 1 1 0

[batch_size, 1024, 64]Convolution 3 1 1

Table 3. The network structure of fault classification module.

Name Type Number of Neurons Output

Feature Reduction
Adaptive average pooling - [batch_size, 1024, 2]

Fully connected 2048–1024 [batch_size, 1024]
Fully connected 1024–512 [batch_size, 512]

Fault Classification Softmax - [batch_size, C]

Table 4. Experimental parameter settings.

Parameters Values

Learning rate 1 × 10−4

Number of training iterations 100
Batch size for training 64

Gaussian kernel σ value set [0.25, 0.5, 1, 2, 4]
Temperature factor T 2

4.2. Cross-Device Case Validation
4.2.1. Dataset Illustration

In this case study, two different models of bearings are selected for experimental
validation. The source domain dataset A is derived from the publicly available bearing
fault dataset from Case Western Reserve University (CWRU) [32], featuring SKF6205 deep
groove ball bearings with a fault size of 0.5334 mm operating at 1772 r/min and sampled
at 12 kHz. The target domain dataset B originates from the bearing seat vibration signal
dataset from Qilu Normal University (QLNU), as illustrated in Figure 4. The selected model
is UCPH206 ball bearings with a fault size of 1 mm operating at 900 r/min and sampled at
51.2 kHz. The selection of vibration acceleration sensor type is chosen as an accelerometer
sensor. The motor power ranges from 0.5 kW to 5 kW, and the maximum load for the
electric brake is 100 Nm. The health status labels for both datasets are presented in Table 5.
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Table 5. Health status labels for cross-model case study.

Fault Mode Label Fault Mode

Normal-C 0 Normal-Q
Inner race fault (IRF-C) 1 Inner race fault (IRF-Q)

Outer race fault (ORF-C) 2 Outer race fault (ORF-Q)
Ball fault (BF-C) 3 Ball fault (BF-Q)

4.2.2. Experimental Results and Discussion

Initially, the source domain dataset A is fed into the knowledge distillation framework
of the proposed KD-ResNet-DA method. The variable-scale ResNet teacher model is
utilized to extract fault features from the source domain dataset for training. The testing
results on the source domain dataset are illustrated in Figure 5. It can be observed that the
accuracy of the teacher model in the KD-ResNet-DA method is 100.00%.
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Subsequently, based on the fault soft labels obtained from the teacher model, the
constructed QLNU bearing target domain dataset with incomplete inter-class data is
inputted into the student model of the proposed KD-ResNet-DA method for training
and testing. The experimental results are depicted in Figure 6. It is evident that the
accuracy of the student model in the target domain reaches 99.50%. This preliminary
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validation confirms the effectiveness of the proposed model under the scenario of cross-
device incomplete inter-class data.
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4.3. Cross-Device Case Study: From Laboratory Bearings to Real-World Bearings
4.3.1. Dataset Illustration

In this case study, experiments are conducted to validate the proposed method using
laboratory bearings and real-world bearings installed in motors. The source domain dataset
A comprises vibration signal samples from faulty bearing seats collected from the rotating
machinery fault simulation test bench shown in Figure 4. The selected bearing model is
a UCPH206 ball bearing with a fault size of 1 mm rotating at 900 r/min and sampled at
51.2 kHz. The target domain dataset B consists of vibration signal samples from motors
with faulty bearings collected from the same rotating machinery fault simulation test bench
depicted in Figure 4. The selected bearing model is a 6205 deep-groove ball bearing with a
fault size of 3 mm rotating at 1500 r/min and sampled at 51.2 kHz. The health status labels
for both datasets are presented in Table 6.

Table 6. Health status labels for cross-device case study.

Fault Mode Label Fault Mode

Normal 0 Normal
IRF 1 Front inner race fault (FIRF)
ORF 2 Front outer race fault (FORF)
BF 3 Front ball fault (FBF)

Cage fault (CF) 4 Front cage fault (FCF)

4.3.2. Discussion of Experimental Results

To validate the superiority of the proposed KD-ResNet-DA method and explore the
contributions of the teacher model considering soft labels, domain adaptation loss, and
multi-scale ResNet, three sets of ablation experiments were designed for comparative
analysis. The descriptions of each experimental group are as follows: 1. ResNet-DA: The
distillation loss provided by the teacher model in the target loss function is removed. 2. KD-
ResNet: The loss of probability distribution distance at the feature level is removed. 3. KD-
CNN-DA: The shortcut connection in the multi-scale residual network model is removed,
and a one-dimensional convolution with a kernel size of 3 is used to replace the original
multi-scale convolution in the model. To ensure fairness in the ablation experiments,
the network parameters of the three comparison algorithms are kept consistent with KD-
ResNet-DA (Figure 7).
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Next, based on the fault soft labels obtained from the teacher model, the established
target domain inter-class incomplete dataset is input into the student models of the KD-
ResNet-DA method and the three comparison methods for training and testing. The
experimental results of KD-ResNet-DA, ResNet-DA, KD-ResNet, and KD-CNN-DA in the
ablation experiments are shown in Figure 8. The accuracies of KD-ResNet-DA, ResNet-DA,
KD-ResNet, and KD-CNN-DA are 97.60%, 87.40%, 86.00%, and 90.80%, respectively, with
only the proposed KD-ResNet-DA method achieving an accuracy higher than 95.00%. This
preliminarily proves the effectiveness of the KD-ResNet-DA method in the presence of
cross-device inter-class incomplete data and validates the contributions of the distillation
loss provided by the teacher model, the loss of probability distribution distance at the
feature level, and the multi-scale residual network model proposed in this study.
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Figure 9 presents a bar chart of “mean accuracy ± standard deviation” of the various
algorithms in the ablation experiments, illustrating the accuracy and robustness of each
algorithm. It can be observed that the proposed KD-ResNet-DA method exhibits the
highest diagnostic accuracy, maintaining an accuracy of over 95.00% in the presence of
cross-device inter-class incomplete data. The remaining three methods are ranked by
accuracy as KD-CNN-DA, ResNet-DA, and KD-ResNet. The proposed KD-ResNet-DA
method also demonstrates the highest diagnostic robustness, with a standard deviation
of around 0.20% even in the presence of cross-device inter-class incomplete data, while
the remaining three methods are ranked by robustness as ResNet-DA, KD-ResNet, and
KD-CNN-DA. Combining with the accuracy curve comparison chart of the four methods
in Figure 10, further analysis of the convergence speed and stability of each method can
be conducted. It can be observed that all four methods begin to converge around the 20th
iteration. Among them, the proposed KD-ResNet-DA method exhibits the best convergence
speed and stability. The ResNet-DA method, which removes the distillation loss of the
teacher model, quickly reaches around 90% accuracy in the early iterations, but then
gradually stabilizes after a significant drop in accuracy. This indicates that the teacher
model in the knowledge distillation framework provides more stable and essential fault
information for training the student model on target domain data. Both the KD-ResNet
method, which removes the loss of probability distribution distance at the feature level, and
the KD-CNN-DA method, which removes the multi-scale residual network model, exhibit
varying degrees of fluctuations during training, especially KD-CNN-DA’s convergence is
relatively slow and the fluctuation amplitude is larger. This suggests that the feature-level
domain adaptation method can extract domain-invariant features between source and
target domains, thereby improving the model’s robustness, and the shortcut connections in
the ResNet model can excavate more domain-invariant features from the source and target
domain data, respectively.
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4.3.3. Comparison with Other Classical Algorithms

Building upon the analysis of the aforementioned cross-condition experimental re-
sults, a comparison is made with mainstream advanced algorithms in the recent literature
regarding cross-device scenarios with incomplete inter-class data. These include data
augmentation methods based on SMOTE and GAN, domain adaptation methods based on
MMD and CORAL, and domain-adversarial neural networks (DANN). The comparative
diagnostic accuracy results are presented in Table 7. Notably, the proposed KD-ResNet-DA
method achieves an average accuracy of 96.25%, significantly higher than the other algo-
rithms listed in the table. This further underscores the effectiveness and superiority of the
proposed method in scenarios involving incomplete inter-class data across different devices.

Table 7. Comparative results of the proposed method with other classical algorithms.

Diagnosis Methods Accuracy

SMOTE 64.18%
GAN 76.62%

CORAL 82.84%
DANN 89.38%

KD-ResNet-DA 96.25%

4.3.4. Impact of Distillation Loss Weight on Diagnostic Results

In the knowledge distillation model, parameter α is used to balance the relative
importance between the teacher and student model predictions, serving as a crucial hy-
perparameter in the proposed method’s target loss function. Typically ranging between
0 and 1, it denotes the proportion of importance between the teacher and student models.
By adjusting the value of α, the balance between the two models can be fine-tuned to better
transfer the knowledge from the teacher model to the student model. When α approaches 0,
more weight is assigned to the student model, allowing it to focus more on the hard labels
relevant to the fault task during training. Conversely, when α approaches 1, more weight is
given to the teacher model, enabling the student model to pay greater attention to the soft
labels provided by the teacher model, thereby achieving smoother and more generalized
prediction results.

Figure 11 illustrates the impact of different α values on the diagnostic results of KD-
ResNet-DA. Generally, the choice of α needs to be adjusted according to the specific task and
dataset, as different settings may yield different effects. Therefore, in this case, experiments
were conducted to investigate the influence of the distillation loss weight on the diagnostic
results. As shown in Figure 11, the accuracy increases as the value of α increases. The
KD-ResNet-DA model achieves optimal accuracy when α values are 0.6 and 0.7. However,
as it approaches 1, the model’s accuracy rapidly decreases. This further confirms that both
classification loss and distillation loss contribute to the model’s performance gains.
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5. Conclusions

The intelligent fault diagnosis method proposed in this study, based on knowledge
distillation and domain adaptation residual networks, demonstrates a scientific rationale
and practical utility. By addressing the issue of incomplete inter-class data in cross-device
scenarios, it overcomes the contradiction between diagnostic accuracy and computational
resources during model deployment. Training the teacher model using frequency domain
data and introducing soft labels with a temperature factor enables the extraction of domain-
invariant features from the source domain data, providing valuable information for the
model. Subsequently, by computing the distillation error and classification error, along
with measuring the probability distribution distance loss using a multi-kernel Gaussian
kernel function, high-performance fault diagnosis can be achieved while maintaining a
smaller model size.

Although this study operates under the premise of identical sample labels between
the source and target domains, this assumption does not hinder the effectiveness of the
proposed method in practical applications. In future research, the team will further focus on
addressing open-set fault diagnosis issues to enhance the applicability and generality of the
method, thereby contributing significant scientific value to the advancement of intelligent
fault diagnosis across devices.
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