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Abstract: This paper aims at achieving real-time optimal speed estimation for an induction motor
using the Extended Kalman filter (EKF). Speed estimation is essential for fault diagnosis in Motor
Current Signature Analysis (MCSA). The estimation accuracy is obtained by exploring the noise
covariance matrices estimation of the EKF algorithm. The noise covariance matrices are determined
using a modified subspace model identification approach. In order to reach this goal, this method
compares an estimated model of a deterministic system, derived from available input–output datasets
(using voltage–current sensors), with the discrete-time state-space representation used in the Kalman
filter equations. This comparison leads to the determination of model uncertainties, which are
subsequently represented as noise covariance matrices. Based on the fifth-order nonlinear model
of the induction motor, the rotor speed is estimated with the optimized EKF algorithm, and the
algorithm is tested experimentally.

Keywords: Kalman filter; noise covariance matrix; subspace model identification; induction motor

1. Introduction

The induction motor (IM) is by far the most widely used motor in industry [1], as this
motor is found in furnaces, conveyors, pumps, and other industrial equipment. Monitoring
and controlling induction motor speed is essential because changes or abnormalities in
motor speed can indicate potential faults or malfunctions. Furthermore, speed estimation is
crucial for fault diagnosis of the IM. Unfortunately, it can be challenging or extremely expen-
sive to use sensors for the speed measurement of IM. In fact, some industrial environments
may have unsuitable conditions for sensor implementation such as high temperatures,
vibrations, or corrosive substances. To overcome these challenges, alternative methods can
be employed for the real-time speed estimation of IM. One commonly used technique con-
sists in estimating the speed from the motor electrical variables only using voltage–current
sensors. This is typically achieved using algorithms or observers such as Sliding Mode
Observers [2], Model Reference Adaptive Systems [3], or the Extended Kalman Filter [4–9].
Among all these methods, the EKF method has attracted significant attention due to its
good estimation accuracy in the presence of noise. In the literature, there are different
studies in which EKF based state/parameter estimation is executed. Those studies can be
divided into two groups. The first group is where EKF is applied, and it is considered that
no mechanical information is available [4–6]. The second group of solutions makes use of
the rotational speed through the equations of motion [7–9]. The latter requires knowledge
of the mechanical parameters such as load torque, inertia varying with the load coupled to
the shaft, and viscous friction. In this paper, we focus on the first group of studies assuming
the lack of information about the mechanical parameters.
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One key feature of the Kalman filter is the requirement to process and measure the
noise covariance matrices. These matrices represent the noise levels in the system and have
a direct impact on filter performance. In fact, incorrect or badly adjusted values of Q and
R can lead to inaccurate estimation of the system state and filter instability. Furthermore,
the parameters of the noise covariance matrices Q and R are usually determined by trial-
and-error procedures, which may not give accurate results. As the distribution of noise is
usually unknown, it is not possible to deduce a generic relationship between the values of
the matrix elements and the EKF performance to yield the best speed estimation results.
The determination of noise covariance matrices is still an open issue in practice. A signifi-
cant part of the literature dedicated to Kalman filter tuning is devoted to the development
of techniques and algorithms for the determination of these covariance matrices. However,
there are a limited number of studies using covariance matrices estimation for the real-time
speed estimation of IM. In fact, researchers focus on investigating the optimization of noise
covariance matrices for induction motor speed estimation. This investigation can be catego-
rized into two main parts: the first group of studies [10,11] uses artificial intelligence-based
methods, which requires expert knowledge and involves a complex design procedure,
whereas the second group [12–19] employs adaptive structures to eliminate the adverse
effect under operating condition variations.

The main contribution of this study is to design a fifth-order IM model, where the IM
speed is included in the model as a state without the help of the equation of motion, and the
noise covariance matrices are estimated. Among all of the Kalman filter tuning techniques
available in the literature, specific attention is paid herein to the noise covariance matrices’
estimation with the modified subspace model identification method [20]. The method
consists in translating the discrepancy between the identified model (determined from
the available input–output datasets) and the discrete-time state-space representation in-
volved in the Kalman filter equations into noise covariance matrices estimates. The model
identification method used in [20] was derived from the subspace model identification
methods [21–24] and adapted to estimate a discrete linear time invariant state space model.
The main motivation for selecting this class of methods is the strong and inherent link
between the subspace identification methods and Kalman filtering [25].

In this paper, a noise covariance matrices estimation with a modified subspace model
identification method is employed in order to achieve the best EKF performance in real-time
speed estimation. In order to reach this goal, the paper is organized as follows: Section 2
presents the dynamic model of the induction motor and the extended dynamic model
of the IM to be used in the EKF. Section 3 details the design of the EKF to estimate the
motor speed. Section 4 presents the noise covariance matrices estimation procedure by
using a modified subspace model identification method. Section 5 is devoted to the
application of the modified subspace model identification method to rotor speed estimation.
Section 6 compares the experimental performance of the trial-and-error-process method
and the modified subspace model identification method used to determine the noise
covariance matrices of the EKF in the case of rotor speed estimation. Finally, Section 7 gives
the conclusions.

2. Dynamic Model of Induction Motor

In order to estimate the real-time motor speed using EKF, the mathematical model
of the three-phase induction motor is developed. Because three-phase systems involve
complex quantities and calculations, the analysis of the three-phase induction motor is sim-
plified using the Clarke transformation. In this way, the three-phase quantities (a, b, c) are
transformed into two-phase quantities (α, β), which are aligned with the stator (stationary
reference frame) [26].

Figure 1 shows the equivalent circuit of the IM in the stationary reference frame [27].
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Figure 1. Single-phase equivalent circuit in the stationary reference frame.

In this equivalent circuit, Rs and L1s are the stator resistance and inductance, re-
spectively; Rr and L1r are the rotor resistance and inductance referring to the stator side,
respectively; Lm is the mutual inductance; ωr is the rotor speed; vsα, vsβ are the measured
stator voltages, and isα, isβ are the stator currents in the stationary reference frame; vrα, vrβ

are the rotor voltages, and irα, irβ are the rotor currents in the stationary reference frame;
λsα(t), λsβ(t) are the stator flux, and and λrα(t), λrβ(t) are the rotor flux in the stationary
reference frame.

Figure 1 shows the electrical and magnetic energy exchanges present in the induction
motor, which allow us to derive the mathematical equations.

First, let us introduce a state-space representation of IM dynamics, assuming that the
IM speed is a known parameter

ẋ(t) = Ax(t) + Bu(t), (1a)

y(t) = Cx(t), (1b)

where x(t) stands for the state vector, y(t) is the output vector, and u(t) is the input
vector, with

x(t) = [isα(t) isβ(t) λrα(t) λrβ(t)]
T , (2)

y(t) = [isα(t) isβ(t)]
T , (3)

u(t) = [vsα(t) vsβ(t)]
T , (4)

A =


−Kr

Kl
0 LmRr

L2
r Kl

pLmωr
2LrKl

0 −Kr
Kl

− pLmωr
2LrKl

LmRr
L2

r Kl
Lm
τr

0 − 1
τr

− p
2 ωr

0 Lm
τr

p
2 ωr − 1

τr

, (5)

B =


1
Kl

0
0 1

Kl
0 0
0 0

, (6)

C =

[
1 0 0 0
0 1 0 0

]
, (7)

where p is the number of poles, τr = Lr/Rr is the rotor time constant, Kr = Rr + Lm
2Rr/Lr

2,
and Kl = (1 − Lm

2/Lr/Ls)Ls, with Ls = L1s + Lm and Lr = L1r + Lm.
As mentioned above, the rotor speed ωr in Equations (1a) and (1b) is considered as

a known parameter. If the speed measurement is not available, the rotor speed has to be
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estimated. To this end, an extended induction motor model including the rotor speed as
state variable is developed [4,5]. The rotor speed is then considered both as a state and a
parameter, leading to a nonlinear IM model defined as

ẋe(t) = fe(xe(t), u(t)), (8a)

y(t) = Cexe(t), (8b)

where fe is the nonlinear function of the states and inputs defined as

fe(xe(t), u(t)) = Aexe(t) + Beu(t), (9)

with
xe(t) = [isα(t) isβ(t) λrα(t) λrβ(t) ωr(t)]

T , (10)

u(t) = [vsα(t) vsβ(t)]
T , (11)

Ae =


−Kr

Kl
0 LmRr

L2
r Kl

pLmωr(t)
2LrKl

0

0 −Kr
Kl

− pLmωr(t)
2LrKl

LmRr
L2

r Kl
0

Lm
τr

0 − 1
τr

− p
2 ωr(t) 0

0 Lm
τr

p
2 ωr(t) − 1

τr
0

0 0 0 0 0

, (12)

Be =


1
Kl

0
0 1

Kl
0 0
0 0
0 0

, (13)

and
y(t) = [isα(t) isβ(t)]

T , (14)

Ce =

[
1 0 0 0 0
0 1 0 0 0

]
. (15)

Because this extended IM model is nonlinear, the EKF algorithm is used in order to estimate
the rotor speed.

3. EKF Algorithm for Rotor Speed Estimation

To estimate the rotor speed in real time with the EKF, the continuous-time state
equations developed previously in (8a) and (8b) are discretized with a sampling period Ts,
using the Euler approximation method [28] as follows.

x̂k+1 = Fx̂k + Guk, (16a)

ŷk = Hx̂k, (16b)

where
x̂k = [isα,k isβ,k λrα,k λrβ,k ωr,k]

T ,

yk = [isα,k isβ,k]
T ,

uk = [vsα,k vsβ,k]
T ,

and
F = I + AeTs, (17a)

G = TsBe, (17b)

H = Ce, (17c)

with
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F =


1 − Kr

Kl
Ts 0 Lm Rr

L2
r Kl

Ts
pLmωr,k

2Lr Kl
Ts 0

0 1 − Kr
Kl

Ts − pLmωr,k
2Lr Kl

Ts
Lm Rr
L2

r Kl
Ts 0

Lm
τr

Ts 0 1 − 1
τr

Ts − p
2 ωr,k Ts 0

0 Lm
τr

Ts p
2 ωr,k Ts 1 − 1

τr
Ts 0

0 0 0 0 1

,

G =


Ts
Kl

0
0 Ts

Kl
0 0
0 0
0 0

,

H =

[
1 0 0 0 0
0 1 0 0 0

]
.

In order to take into account the uncertainties and discrepancies between the mathe-
matical model and the real system being observed, the process noise wk and measurement
noise vk are introduced into the state-space representation as

x̂k+1 = Fx̂k + Guk + wk, (18a)

yk = Hx̂k + vk. (18b)

The covariance matrices of the process noise wk and measurement noise vk can be defined as

E

[[
vi
wi

][
vT

j wT
j

]]
=

[
R S
ST Q

]
δij, (19)

where δij is the Kronecker delta function.
Using conventional equations of the EKF algorithm [29], the induction motor speed is

estimated as follows
x̂−k+1 = Fx̂+k + Guk, (20a)

P−
k+1 = Jk+1P+

k JT
k+1 + Qk, (20b)

Kk = P−
k HT

k (HkP−
k HT

k + Rk)
−1, (20c)

x̂+k+1 = x̂−k+1 + Kk+1(yk+1 − ŷk+1), (20d)

P+
k+1 = (I − Kk+1Hk+1)P−

k+1, (21)

where the notations − and + stand for before and after the new measurements, Pk is the
error covariance matrix, Kk is the Kalman filter gain, ŷk is the estimated output, and Jk is
the Jacobian matrix used in the EKF to handle nonlinearities, defined as

Jk =
∂F
∂x

|x=x̂+k
, (22)

with

Jk =


1 − Kr

Kl
Ts 0 Lm Rr

L2
r Kl

Ts
pLmωr
2Lr Kl

Ts
pLm

2Lr Kl
Tsλβr

0 1 − Kr
Kl

Ts − pLmωr
2Lr Kl

Ts
Lm Rr
L2

r Kl
Ts − pLm

2Lr Kl
Tsλαr

Lm
τr

Ts 0 1 − 1
τr

Ts − p
2 ωr Ts − p

2 Tsλβr

0 Lm
τr

Ts
p
2 ωr Ts 1 − 1

τr
Ts − p

2 Tsλαr

0 0 0 0 1

.
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4. Noise Covariance Matrices Estimation with a Modified Subspace Model
Identification Approach

As mentioned earlier, using the Kalman filter requires defining the process and mea-
surements covariance matrices. These matrices are essential for quantifying the noise levels
and model uncertainties. Gererally, the parameters of the noise covariance matrices Q and
R are determined by a trial-and-error-process that can be challenging. In fact, improper or
poorly calibrated values of Q and R can lead to inaccurate estimations of the system states.

In order to relieve this inconvenience, the noise covariance matrices can be estimated.
Among all of the tuning techniques available in the literature, specific attention is paid
herein to the noise covariance matrices estimation with a modified subspace model identifi-
cation approach [20].

The solution proposed in this approach consists of

1. Identifying state-space matrices Ad, Bd, Cd, and Dd and state sequence X̂ f ,N with
f , N ∈ N+

∗ from the available input–output data using the subspace model identifica-
tion method. The identified state sequence X̂ f ,N can be defined as

X̂ f ,N =


X̂ f

X̂ f+1
...

X̂ f+N−1

 ∈ Rnx×N , (23)

with X̂ f ,N ∈ Rnx ;
2. Comparing the identified state-space model with the deterministic part of the model

used in the Kalman filter. To this end, both models have to have the same basis.
Therefore, we enact a basis change using the transformation matrix T, which can be
computed as

Γ f (F, H)T = Γ̂ f (Ad, Cd), (24)

where Γ f (F, H) is the observability matrix of the model used in the Kalman filter
defined as

Γl(F, H) = [HT (HF)T · · · (HFl−1)T ]T , (25)

and Γ̂ f (Ad, Cd) is the observability matrix of the identified model using the subspace
model identification method defined as

Γ̂l(Ad, Cd) = [CT
d (Cd Ad)

T · · · (Cd Al−1
d )T ]T . (26)

Once T̂ is estimated with a Moore Penrose pseudo inverse, the state sequence X̂ f ,N
can be moved into the “good” state basis as follows

ˆ̂X f ,N = T̂X̂ f ,N . (27)

3. Computing the residuals as

[
Q̂ f ,1,N−1
R̂ f ,1,N−1

]
=

[
ˆ̂X f+1,N

Yf ,1,N−1

]
−

[
F G
H 0

][ ˆ̂X f ,N−1
U f ,1,N−1

]
, (28)

where ˆ̂X with f , N ∈ N+
∗ represents the state sequence estimate in the “good” state

basis performed with the subspace model identification method, and Q̂ f ,1,N−1 and
R̂ f ,1,N−1 are residuals used to estimate the covariance matrices Q and R.

4. Transforming these discrepancy measurements into covariance matrix estimates. This
part will be detailed next.
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4.1. Subspace Model Identification

According to [30], consider the minimal system

xk+1 = Adxk + Bduk + Kek, (29a)

yk = Cdxk + Dduk + ek, (29b)

with ek as a white-noise sequence that is uncorrelated with uk.
By taking the instrumental-variable matrix ZN equal to

ZN =

[
U0,l,N
Y0,l,N

]
, (30)

where U0,l,N and Y0,l,N with l, N ∈ N+
∗ are the block Hankel matrices constructed from the

input–output data, and by considering the following least-squares problem

[
L̂u

N L̂z
N
]
= arg min

Lu ,Lz

∣∣∣∣∣
∣∣∣∣∣Yl,l,N −

[
Lu Lz][Ul,l,N

ZN

]∣∣∣∣∣
∣∣∣∣∣
2

F

, (31)

which is solved by a QR factorization
U f ,l,N
U0,l,N
Y0,l,N
Yf ,l,N

 =

R11 0 0
R21 R22 0
R31 R32 R33

Q1
Q2
Q3

, (32)

it can be shown [30] that

R32R−1
22

[
U0,l,N
Y0,l,N

]
= Γ f (Ad, Cd)X̂ f ,N . (33)

Via the following singular value decomposition

R32R−1
22

[
U0,l,N
Y0,l,N

]
= υΣνT , (34)

we obtain an estimate of the observability matrix as follows

Γ̂ f (Ad, Cd) = υΣ1/2, (35)

whereas
X̂ f ,N = Σ1/2νT . (36)

As mentioned earlier, the state sequence X̂ f ,N has to be in the “good” state basis
corresponding to the state-space realization used in the Kalman filter (F, G, H). Thus, we
enact a basis change using Equation (24).

Knowing the estimated state sequence ˆ̂X f ,N , we can quantify the discrepancy between
this prior information and the model used in the Kalman filter using Equation (28).

4.2. Noise Covariance Matrices Estimation

We can now determine accurate estimates of the covariance matrices Q and R using
the residuals computed in Equation (28), as follows [21].[

R̂ Ŝ
ŜT Q̂

]
= lim

N→∞

1
N

[
Q̂ f ,1,N−1
R̂ f ,1,N−1

][
Q̂T

f ,1,N−1 R̂T
f ,1,N−1

]
. (37)
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5. Induction Motor Speed Estimation with Noise Covariance Matrices Estimation

As discussed earlier, the speed induction motor estimation using EKF requires a
dynamic state space model, as presented in Equations (8a) and (8b). This dynamic model,
which includes the rotor speed as the state space, is non-observable. Alternatively, the noise
covariance matrices estimation with the modified subspace model identification approach
presented previously requires an observable model.

As a solution, we propose to identify only the dynamic model, which does not include
the rotor speed as the state variable, as described by Equations (1a) and (1b). This fourth-
order model leads to the determination of the covariance matrices Q1 and R1 of the system
noise and measurement noise, respectively.

In order to determine the covariance matrices of the dynamic model, which is able
to estimate the rotor speed, the measurement noise covariance matrix R is the same as
the fourth-order model beacause it depends only on the measurements, unlike the system
noise covariance matrix, which depends on the estimated states.

Thus, in the new system noise covariance matrix, we only have to adjust the parameter
µ as shown below.

Q =


q11 q12 q13 q14 0
q21 q22 q23 q24 0
q31 q32 q33 q34 0
q41 q42 q43 q44 0
0 0 0 0 µ

, (38)

where the parameters qny with n number of rows and y number of columns are determined
with a modified subspace model identification approach.

6. Results and Discussion

To justify the need for the automated tuning of the EKF, the speed estimation algorithm
of the extended Kalman filter tuned by a trial-and-error-process was tested on our test
bench, as presented below.

6.1. Experimental Setup

The experimental test setup designed to assess the EKF algorithm was composed of
a squirrel-cage induction motor, with 4 kW, 220 V, 50 Hz, and two poles. This motor was
controlled by an AC drive, coupled to a permanent magnet synchronous generator (PMSG)
operating as a generator and producing a resisting torque, thus representing the load
(Figure 2).

Figure 2. Experimental system.
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The induction motor parameters were given by the manufacturer as

Rs = 1.47Ω; Rr = 0.78Ω; L1s = 5.16H;

L1r = 0; Rm = 917.71Ω; Lm = 90.139H.

To validate the accurate estimation of the rotor speed using the EKF algorithm, an en-
coder of 1024 points placed at the end of the machine shaft provided the rotor position at
each sampling instant, allowing the measurement of the real-time motor speed. In addition,
the system integrated sensors to measure the phase voltages and currents, which represent
the inputs and outputs of the motor, respectively. These sensor measurements were crucial
for providing the necessary data inputs to the EKF algorithm to iteratively refine and
enhance the estimation of the rotor speed. The hardware infrastructure supporting this
setup included a DS1104 board as an interface between the physical components of the
system and the simulation environment in MATLAB/Simulink2023a. The sampling period
was Ts = 10−3 (s).

6.2. Experimental Results

The covariance matrices used in the EKF algorithm, tuned by a trial-and-error method
until satisfactory estimation performance was obtained, were

Q =


λ 0 0 0 0
0 λ 0 0 0
0 0 λ 0 0
0 0 0 λ 0
0 0 0 0 µ

, (39)

with λ = 2 and µ = 20,

R =

[
10−3 0

0 10−3

]
, (40)

and the error covariance matrix was initialized as

P =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. (41)

Figures 3 and 4 show the estimated currents isα and isβ, respectively, using the trial-
and-error method, whereas Figure 5 shows the estimated speed of the EKF using the
trial-and-error method.

As we can see in the above figure, the estimated speed was very noisy. This can be
justified by the µ coefficient, which was very large.

In order to minimize the effect of the noise in the estimated speed, the coefficient µ
had to be reduced. However, a smaller value of µ led to the inaccurate estimation of the
motor speed. In fact, the process noise covariance matrix Q represents the uncertainty in
the system dynamics and reflects the model accuracy in predicting the state evolution of
the system. The values of the elements in the process noise covariance matrix determine
how much the filter trusts the predicted state versus the measured state. Higher values
indicate higher uncertainty in the system, leading to more reliance on the measurements.
Furthermore, the error between the estimated and measured speed was more significant in
the time interval of 80 ≤ t ≥ 85 s.
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Figure 3. isα estimation using EKF tuned by a trial-and-error method—first test.
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Figure 4. isβ estimation using EKF tuned by a trial-and-error method—first test.
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Figure 5. Motor speed estimation using EKF tuned by a trial and error method—first test.

A second attempt was made to estimate the speed with the same noise covariance
matrices used in the first test (Figures 6–8).
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Figure 6. isα estimation using EKF tuned by a trial and error method—second test.
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Figure 7. isβ estimation using EKF tuned by a trial-and-error method—second test.

As shown in Figure 8, the speed estimation using the same covariance matrices was
inaccurate in the time interval of 50 ≤ t ≥ 70 s. Therefore, the noise matrices must be
modified each time.
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Figure 8. Motor speed estimation using EKF tuned by a trial and error method—second test.
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Consequently, manual tuning of the EKF using trial-and-error-process was proven
to be inefficient. It is time-consuming and requires significant effort from an experienced
operator. Moreover, it involves the configuration of multiple parameters of the noise
covariance matrices.

To overcome this difficulty, the noise covariance matrices were determined using a
subspace model identification approach.

Figure 9 gives the block diagram of the experimental setup used to estimate these
noise covariance matrices.

Figure 9. The block diagram of the experimental setup for noise covariance matrices estimation.

As shown in the above block diagram, a speed setpoint was provided. Since the model
used for estimating the rotor speed is nonlinear, and the subspace model identification
method requires a linear time-invariant state-space representation, the nonlinear model
was linearized around the known nominal rotor speed.

In addition, system identification requires exciting the inputs and outputs of the
system (voltages and currents, respectively). To this end and from the same test bench,
a pseudo random binary sequence (PRBS) was applied as the desired speed (Figure 10) and
varied around the nominal speed (2920 rpm).
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Figure 10. Pseudo random binary sequence exciting the motor voltages and currents used in the
subspace model identification.

Excited voltages and currents were then used to identify a discrete-time linear state
space of the system.

The identification efficiency was evaluated by comparing the identified and actual
currents (system outputs) as shown in Figures 11 and 12.
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Figure 11. Actual and identified isα.
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Figure 12. Actual and identified isβ.

The best fits obtained by comparing the identified and actual currents were 78.73% for
isα and 79.73% for isβ.

In fact, mathematical models are often simplified approximations of reality and may not
always capture all the details of the system’s behavior or take into account the nonlinearities.

The noise covariance matrices were then determined using the modified subspace
model identification

Q1 =


2.46 0.08 −1.96 −3.88
0.08 0.81 2.420 −1.58
−1.96 2.42 9.97 −0.87
−3.88 −1.58 −0.87 10.14

 (42)

R =

[
2.51 −3.90
−3.90 12.21

]
. (43)

We can now reconstruct the process noise covariance matrix as

Q =


2.46 0.08 −1.96 −3.88 0
0.08 0.81 2.420 −1.58 0
−1.96 2.42 9.97 −0.87 0
−3.88 −1.58 −0.87 10.14 0

0 0 0 0 µ

. (44)
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Using the identified process noise covariance matrix Q and measurement noise covari-
ance matrix R to estimate the rotor speed of the same test bench described before, and by
varying the µ coefficient until a satisfactory result was determined, as in the manual tuning
method, the resulting estimations are presented in (Figures 13–15).
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Figure 13. isα estimation with EKF using noise covariance matrices estimation—first test.
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Figure 14. isβ estimation with EKF using noise covariance matrices estimation—first test.

Accurate speed estimation was obtained for µ = 40.
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Figure 15. IM speed estimation with EKF using noise covariance matrices estimation—first test.

The speed estimation error decreased compared to the trial-and-error process tuning.
We then applied the same noise covariance matrices to the second test (Figures 16–18).
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Figure 16. isα estimation with EKF using noise covariance matrices estimation—second test.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-10

0

10

20

30

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-10

0

10

20

18.5 18.55 18.6 18.65 18.7

-4

-2

0

2

4

84.5 84.55 84.6 84.65 84.7

-10

0

10

45 45.05 45.1 45.15 45.2

-2

0

2

Figure 17. isβ estimation with EKF using noise covariance matrices estimation—second test.
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Figure 18. IM speed estimation with EKF using noise covariance matrices estimation—second test.

As we can see, the identified noise covariance matrices were valid for both tests, unlike
the trial-and-error-process method, where the noise covariance matrices had to be set
each time.

Furthermore, Figure 19 shows a comparison between the measured speed, the esti-
mated speed using manual tuning, and the estimated speed using the modified subspace
identification approach of the first test.
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Figure 19. Estimation speed comparison between manual and automated EKF tuning.

As shown, the effect of noise was minimized using automated tuning of the covari-
ance matrices.

Finally, the table below provides a comparison between the mean square error of the
estimated speed for both the trial-and-error process method and the automated tuning of
the EKF (Table 1).

Table 1. Mean square error of estimated speed.

EKF Tuning First Test Second Test

Trial and error process 0.18 0.18
Automated tuning 0.002 0.01



Sensors 2024, 24, 1744 17 of 22

The mean square error between the actual rotor speed and the estimated speed is
defined as

E =
1
n

n

∑
i=1

(si − ei)
2, (45)

where n is the number of samples, s is the actual speed, and e is the estimated speed.
It is observed that the estimation significantly improved for both the first and second test.

6.3. Performance Evaluations of Covariance Matrices Identification under Varied Speed and
Load Conditions

Previously, we proposed identifying the noise matrices using a linearized model
around the nominal speed indicated on the nameplate. However, to test the accuracy of this
method in measuring the speeds and its limitations, additional experimental trials involving
two scenarios were conducted; the first scenario involved varying the speed far from the
nominal point, while the second scenario involved varying the load during operation.

6.3.1. First Scenario

We determined the noise covariance matrices by introducing speed variations far from
the nominal point.

The rotor speed of both test 1 and 2, presented previously, was then estimated using
these noise covariance matrices.

The identification of the noise covariance matrices worked regardless of the excitation
protocol used, whether it was near the nominal speed at 2285 rpm or far from it at 1088 rpm,
for both tests 1 and 2 (Figures 20–23). However, identifying the covariance matrices around
the nominal speed led to better speed estimation.

Speed variations around 30% of the nominal speed (1088 rpm).
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Figure 20. IM speed estimation using identified noise covariance matrices, obtained by speed
variations around 1088 rpm—first test.
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Figure 21. IM speed estimation using identified noise covariance matrices, obtained by speed
variations around 1088 rpm—second test.

Speed variations around 70% of the nominal speed (2285 rpm).
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Figure 22. IM speed estimation using identified noise covariance matrices, obtained by speed
variations around 2285 rpm—first test.
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Figure 23. IM speed estimation using identified noise covariance matrices, obtained by speed
variations around 2285 rpm—second test.
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6.3.2. Second Scenario

The rotor speed of both test 1 and 2 was estimated using the identified noise covariance
matrices at the following settings.

Similar to the identification of the covariance matrices using the speed variation far
from the nominal speed, identifying covariance matrices using the motor operation at dif-
ferent loads levels yielded poorer results (Figures 24–27). This can be explained by the use
of the Kalman filter model based on operation at the nominal point. At full load, the system
operates closer to its intended performance, leading to more accurate measurements.

Operating at 40% of the nominal load.
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Figure 24. Estimation of the speed using the identified noise covariance matrices, acquired during
operation at 40% of the load—first test.
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Figure 25. Estimation of the speed using the identified noise covariance matrices, acquired during
operation at 40% of the load—second test.
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Operating at 70% of the nominal load.
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Figure 26. Estimation of the speed using the identified noise covariance matrices, acquired during
operation at 70% of the load—first test.
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Figure 27. Estimation of the speed using the identified noise covariance matrices, acquired during
operation at 70% of the load—second test.

7. Conclusions

In this paper, a modified subspace model identification method is used to determine
the noise covariance matrices of the EKF in order to estimate the IM rotor speed. The method
involves exciting the voltages and currents using PRBS to estimate a discrete state-space
model of the IM. This model is then compared to the discrete-time state-space representation
involved in the Kalman filter equations. The resulting discrepancy is finally transformed
into covariance matrix estimates. Because the subspace state-space system identification
requires an observable model, the fourth-order induction motor model is first identified.
This model is then used to determine the system noise covariance matrices of the fifth-order
model. These estimated matrices are finally used in the EKF algorithm to estimate the rotor
speed. The method was tested experimentally, and accurate speed estimation was obtained.
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