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Abstract: Wireless sensor networks (WSNs) are gaining traction in the realm of network commu-
nication, renowned for their adaptability, configuration, and flexibility. The forthcoming network
traffic within WSNs can be forecasted through temporal sequence models. In this correspondence,
we present a method (TSENet) that can accurately predict the traffic in the cellular network. TSENet
is composed of transformers and self-attention network. We have designed a temporal transformer
module specifically for extracting temporal features. This module accomplishes this by modeling
the traffic flow within each grid of the communication network at both near-term and periodical
intervals. Simultaneously, we amalgamate the spatial features of each grid with information from
its correlated grids, generating spatial predictions within the spatial transformer. Furthermore, we
employ self-attention aggregation to capture dependencies between external factor features and
cellular data features. Empirical assessments performed on a genuine cellular traffic dataset offer
compelling evidence substantiating the efficacy of TSENet.
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1. Introduction

In recent years, the swift progress in distributed computing and micro-electromechanical
systems (MEMS) has propelled wireless sensor networks into numerous domains, encompass-
ing military [1], intelligent architecture [2], and industrial sectors [3,4]. To observe diverse
phenomena like network traffic, sensors are equipped with sensing, computing, communica-
tion, and additional functionalities.

With the continuous development of wireless communication technologies, higher
requirements are being imposed on wireless communication networks. Among these
requirements, accurately predicting the future change trend of key performance indicators
of wireless cells holds crucial significance. It profoundly impacts the network planning,
network optimization, and network energy-saving practices of mobile communication
operators.

Predicting the change trend of the key performance index of the wireless cell is very
important for the mobile communication operator, which can help the operator to plan
the network. By accurately predicting future KPI changes, operators can properly plan
network resource allocation, ensure stable network connection during peak hours, and
avoid congestion and service quality deterioration. By learning the change trends of
performance counters, operators can adjust network parameters and configurations in a
timely manner to optimize network performance and provide better user experience. For
example, according to the prediction result, the operator may decide whether to increase
the number of base stations, adjust the power allocation, or change the channel allocation
policy, thereby increasing the network capacity and coverage area.
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In recent studies, Yu et al. [5] tackled the challenge of cellular data prediction with
STEP, a spatiotemporal fine-grained mechanism utilizing GCGRN. The deep graph convo-
lution network outperformed existing methods, offering efficiency and reduced resource
consumption in cellular networks. Santos et al. [6] evaluated DL and ML models for
short-term mobile Internet traffic prediction. LSTM exhibited excellent performance across
diverse clusters in Milan. Hardegen et al. [7] presented a pipeline using deep neural
networks (DNNs) to predict information of real-world cellular data flows. Unlike tra-
ditional binary classifications, their system quantizer predicted flow features into three
classes.They emphasized the potential for flow-based routing scenarios. Furthermore,
Dodan et al. [8] proposed an efficient Internet traffic prediction system using optimized
recurrent neural networks (RNNs). They addressed the challenges in large-scale networks,
emphasizing the need for scalable solutions to anticipate traffic fluctuations, avoid conges-
tion, and optimize resource allocation. Experimental outcomes showcased the enhanced
efficacy of their RNN-based methodology compared to conventional approaches such as
ARIMA and AdaBoost regressor.

In the realm of deep learning methodologies, both convolutional neural networks
(CNNs) [9] and recurrent neural networks (RNNs) [10] stand as foundational structures
for modeling temporal information. Cellular communication data exhibit temporal peri-
odicity in their spatial distribution, bearing distinct characteristics [11,12]. Consequently,
contemporary deep learning models aim to integrate temporal and spatial information in
cellular data. Zhang et al. [13] came up with STDenseNet, a convolutional neural network
approach for cellular data prediction. In RNN models, elements in the input sequence
are processed sequentially, leading to inefficiencies in handling lengthy sequences. Con-
versely, methodologies primarily reliant on CNNs may fall short in fully capturing spatial
dependencies between adjacent features. Additionally, approaches leveraging RNNs for
extracting prolonged temporal relationships exhibit inherent weaknesses. These constraints
may result in an insufficient description of continuous and temporal features.

In response to these challenges, we present a model named TSENet, founded on the
principles of transformers and self-attention. Initially introduced in 2017 within the realm
of natural language processing, the transformer architecture boasts a parallel encoder–
decoder architecture, later extended to various domains. Primarily, we harness and tailor
its robust sequential modeling capabilities. Concretely, we devise a time-sequence module
(TSM) and a spatial-sequence module (SSM), adept at simultaneously and accurately ex-
tracting temporal and spatial features within short time intervals. Subsequently, we employ
self-attention mechanisms to amalgamate the model’s prowess in capturing dependencies
between external factors and cellular traffic characteristics. Our comprehensive experi-
ments conducted on a bespoke dataset aim to substantiate the efficacy of our approach.
Subsequent analyses and discussions delve into a nuanced exposition of the TSENet model.

In summary, the primary contributions of this study can be delineated as follows:
(1) We pioneer the introduction of a spatiotemporal traffic forecasting model, christened
TSENet, which harmoniously integrates external elements. This model, predicated on har-
nessing spatiotemporal features, takes into account the nuanced characteristics of external
factors. (2) By employing attention mechanisms, TSENet adeptly captures the multifaceted
global spatiotemporal correlations within cellular traffic networks. Notably, TSENet ex-
tracts both enduring and fleeting temporal features, culminating in the establishment
of a spatial nexus model among nodes. (3) Through the incorporation of self-attention
mechanisms, TSENet effectively excavates the intricate interdependencies between external
factors and cellular traffic, thereby further elevating the predictive precision of TSENet.

2. Related Work
2.1. Wireless Sensor Networks

Network sensing focuses on capturing the dynamic state and performance metrics
of the cellular network itself, such as signal strength, latency, and packet loss. On the
other hand, environmental sensing involves monitoring external factors like weather con-
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ditions, interference, and population density. The features extracted from both network
and environmental sensing contribute to the comprehensive set of parameters used for
accurate network traffic estimations. Wireless sensor networks epitomize the avant-garde
paradigm in ubiquitous computing, embodying the fusion of sophisticated sensor technolo-
gies and wireless communication. The structural backbone of these networks comprises
diminutive yet potent sensor nodes. Communication among these sensors unfolds through
wireless protocols, fostering seamless interconnectivity between nodes [14]. This mirrors
the traditional single-receiver WSN (refer to Figure 1, left segment). However, this singular
receiver scenario lacks scalability. Due to the substantial number of nodes, the collector
accumulates more data, impeding the network’s scalability when it reaches capacity. This
is a frequent scenario, especially with multiple receivers in a network (depicted on the
right side of Figure 1) [15]. This decentralized approach exhibits advantages in terms
of scalability, fault tolerance, and load distribution. In practical applications, wireless
sensors serve diverse purposes in the realm of cellular traffic monitoring. Krishnasamy
et al. [16] provided an overview of wireless sensor networks, comprising multiple sensors
with sensing and communication functionalities. These sensors both receive and transmit
data to designated nodes. The core purpose of a sensor node is to monitor environmental
conditions, process the acquired data, and then transmit it to an analysis center. Sensor
deployment locations are typically nonuniformly designed, often installed randomly in
irregularly shaped specific locations based on their transmission range. Hence, it is impor-
tant that the deployed algorithms can be adapted to each different geographical area. In
essence, deploying wireless sensors facilitates the analysis of traffic patterns, detection of
anomalous behavior, optimization of cellular networks, and predictive modeling.

Figure 1. (a) Single-receiver WSN. (b) Multiple-receiver WSN.

2.2. Network Traffic Prediction

Network traffic prediction has been the subject of prolonged inquiry. ARIMA [17]
and Holt–Winters (HW) [18] are both univariate time series models. ARIMA leverages
autoregressive, difference, and moving average components, with the component order
determined by Akaike or Bayesian information criteria. Kim et al. [19] introduced the
integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) as a
nonlinear model for network traffic prediction to study traffic arrival processes in various
network topologies, including IoT and VANETs. The results suggested that INGARCH was
a suitable and tractable model for network traffic prediction, performing competitively or
superiorly to other statistical models, particularly in data-insufficient scenarios compared
to deep neural networks. In contrast to statistical models, ST-GPKL models often show
superior capabilities [20]. Xia et al. [21] applied RF and LightGBM to the network traffic
prediction model. Zhang et al. [22] employed a model based on Gaussian functions and a
weighted EM method to optimize UAV deployment for reduced power consumption in
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downlink transmission and mobility. Traffic prediction in machine learning often relies on
supervised neural networks like MLP and RNN in time series forecasting (TSF) approaches,
demonstrating high accuracy with limited complexity [23]. Non-TSF methods explore
inferring traffic volumes from flow count and packet header fields, showing lower but
acceptable error rates, motivating further research in ensemble learning for enhanced
accuracy and automation of network management activities. Related work in machine
learning traffic prediction involves addressing challenges related to ground truth (GT),
emphasizing the scarcity of labeled data in dynamic environments like network traffic.
Strategies such as PCA and active Learning are explored to overcome this limitation [24].
In recent years, neural networks have emerged as potent tools, attaining significant success
across various prediction domains, notably in traffic prediction challenges. Basic yet pivotal,
the feed-forward neural network serves as the cornerstone for cellular traffic prediction,
incorporating hidden layers and diverse activation functions like tanh, sigmoid, and ReLU
to enhance learning capabilities. However, for spatial–temporal prediction challenges, a
flattening calculation is required, potentially leading to a lack of spatial information and a
decline in prediction performance.

2.3. Transformer

In recent years, endeavors rooted in the transformative power of transformers have
burgeoned across domains such as computer vision, signal processing [25], and bioinfor-
matics [26], yielding superlative outcomes in these realms. An array of studies has been
conducted to unravel the potential of transformer networks in forecasting network traf-
fic, demonstrating their superiority over conventional machine learning methodologies.
Wen et al. [27] proffered a transformer-based model meticulously designed for the prediction
of short-term traffic congestion. This model, when juxtaposed against traditional machine
learning methods like LSTM [28], exhibited a pronounced prowess. Qi et al. [29] expounded
upon the performer model, an innovative transformer-based predictive methodology for
clustering voluminous time series data, showcasing conspicuous efficacy in comparison to
conventional methods such as random forest and SVM. Chuanting Zhang et al. [30] pre-
sented a groundbreaking framework for wireless traffic prediction, termed federated dual
attention (FedDA). FedDA facilitates collaborative training among multiple edge clients to
cultivate a high-fidelity predictive model, eclipsing state-of-the-art methods with substantial
enhancements in average mean squared error performance. Rao et al. [31], leveraging deep
learning techniques, undertook an exhaustive exploration of challenges and recent strides
in cell load balancing. Feng et al. [32] propounded an end-to-end framework christened as
DeepTP, meticulously designed for predicting traffic demands from mobile network data
through the prism of deep learning techniques. DeepTP not only demonstrated a superiority
over other cutting-edge traffic prediction models by exceeding them but also adeptly captured
the spatiotemporal characteristics and external factors’ influence for a more precise predictive
outcome.

Despite achieving commendable milestones in internet traffic prediction, further explo-
ration is requisite regarding the application of cellular traffic data models based on wireless
sensor networks. Diverging from prior endeavors, the utilization of self-attention mecha-
nisms has been employed to congregate the extraction of external factors and dependencies
in network traffic features, thereby judiciously harnessing external influences. Moreover,
we employ the transformer architecture to capture temporal and spatial information within
concise intervals. Through the efficacy of multi-head self-attention mechanisms, we adeptly
discern spatial relationships effectively interlaced between grids. This novel structure holds
promise in mitigating, to some extent, the limitations inherent in existing methodologies.

3. Method

In this paper, we use the self-attention mechanism to aggregate external factors and
dependencies in network traffic features and use a transformer to capture temporal and
spatial information in concise intervals. Through the effectiveness of multi-head self-
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attention mechanism, we can skillfully identify effective interlaced spatial relationships
between grids. This section describes the TSENet framework, including its spatial-sequence
module, time-sequence module, external factor module, and fusion output module.

3.1. The Proposed TSENet Framework

This article introduces TSENet, which comprises four primary modules: the time-
sequence module, spatial-sequence module, external-factor module, and fusion output
module, as illustrated in Figure 2. The time-sequence module and spatial-sequence module
are designed based on the fundamental structures of the transformer. The TSM extracts
recent temporal trends in cellular traffic Mc(t) and periodic features in Mp(t). The cal-
culation block fuses them into temporal features. Concerning spatial feature modeling,
the multi-head attention mechanism in a series of networks can effectively capture spatial
relationships between network features. Real-time spatial features are captured in the SSM.
The EFM is designed using a self-attention structure to extract external factor features.
These three types of features complement each other, resulting in the generation of the final
prediction through the FOM. The transformer enables elements of the input sequence to
contribute to the result, incorporating target sequence prediction values in the decoding
layer, thus achieving more effective predictions using additional information.

Figure 2. Overview of the proposed TSENet.

3.2. Spatial-Sequence Module

In the SSM, the cellular traffic data of the pertinent network serve as elements within
the input sequence. We use a multi-head attention structure in order to engender spatial
predictions. It processes information from each network and its related networks. For
each network, analyzing its relationship with all other networks yields a considerably
extensive grid sequence. Indeed, only a subset of networks significantly influences the
traffic states of others. Hence, we select the L networks most correlated with the current
network (inclusive of the network itself). The chosen traffic data from Mc(t) is linked to a
new sequence, Ms(t) ∈ RH×L×J , serving as input to the spatial-sequence block, wherein L
is the length of the spatial array, and J denotes the dimension of each array.

(1) Grid arrangement: We sort each grid according to its correlation with other grids and
select the top L largest grids. The value of L can be chosen based on experimental
results. We employ the Pearson correlation coefficient to assess the correlation. The
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correlation between two grids A and B with equal traffic sequence lengths is calculated
by the covariance of the variables and the product of their standard deviations:

RA,B =
cov(A, B)

σAσB
. (1)

We concatenate the incoming data Ain(t) ∈ RH×J and outgoing data Aout(t) ∈ RH×J

to form a matrix of dimensions H × 2J. Subsequently, the correlation matrix P(t) ∈
RH×H is computed according to Equation. Pi,j signifies the relevance between the i
and j grids at the t interval.

(2) Spatial sequence: As illustrated in Figure 2, the source sequence and the initial se-
quence serve as the principal inputs to the essential transformer. In natural language
processing (NLP), the elements of the sequence involve more informative word em-
beddings, but the array of cellular traffic data results in the scarcity of information.
We choose the two complementary input arrays to ensure the predictive performance
of the transformer. The proximity matrix Mc(t) signifies the cellular communica-
tion states close to the target interval. The Ms(t) designed by Mc(t) encompasses
real-time spatial features for the sequence with a length of L, serving as the source
array, and Mc(t) ∈ RL×1×J is taken as the initial array with a length of 1, yielding the
output of the SSM, Yspatial(t) ∈ RL×J . We omit positional encoding because there is
no chronological order between spatial networks.

3.3. Time-Sequence Module

As depicted in Figure 2, the TSM employs two temporal transformers to individually
acquire features from near-term and periodic continuous time. The calculation block utilizes
a ⊕ operation and an SSM to aggregate these two features into a predictive time sequence.

(1) Closeness sequence: To harness additional information from the input data, Mc(t)
is extended as the source sequence of the proximity sequence. During the enhance-
ment procedure, we use the correlation matrix Pt to select the topmost U correlated
networks for each grid. We combine the selected data and the grid data and create a
scalar with dimension L × J × (1 + U), where U is a parameter determined through
experimentation. This process enhances both the temporal features within the se-
quence elements and introduces a few space information in the original sequence,
thereby enhancing the accuracy of predictions.
In the closeness sequence, the averaging of the second dimension of Mp(t) ∈ RL×G×J

yields an initial sequence of dimensions L× J × 1. We employ these averaged historical
data as indicators for the traffic data levels in future time intervals. The closeness
sequence produces the proximity time prediction, denoted as Yc(t) ∈ RL×J .

(2) Periodic sequence: The periodic sequence is akin to the proximity sequence but lacks
critical information. We employ Mp(t) ∈ RL×G×J as the original sequence, with
Mc(t) ∈ RL×1×J serving as the initial sequence for the temporal sequence, thereby
utilizing the compact time information included in Mc(t) to complement the period
sequence. The outcome of the periodic time prediction is expressed as Yp(t) ∈ RL×J .

The time-sequence module mixes Yc(t) and Yp(t) up into the final temporal prediction
Ytime(t) ∈ RL×J .

3.4. External-Factor Module

The quantity of base stations (BSs), points of interest (POIs), and social activities within
a specific region serves as a direct indicator of users’ capacity to request telecommunication
services. By leveraging the geographical location details of each community, we can derive
a mapping of their locations through the processing of respective geographical information.
This facilitates the capture of information related to the distribution of POIs. Furthermore,
preprocessing steps enable the extraction of the social activity level from the dataset.
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As illustrated in Figure 3, we utilize a self-attention mechanism to capture the feature
representation of exterior factor ( f ∈ BSs, POIs, Socials). Mapping the input M f to distinct
feature spaces, with query Q f = Cq M f ∈ Rzk×0, key K f = Ck M f ∈ Rzk×0, and value
Vf = Cv M f ∈ Rzv×0, where {Cq, Ck, Cv} represents a set of 1 × 1 convolutional weights,
and zk and zv denote channel numbers.

Figure 3. Structures of the external-factor module.

Utilizing matrix multiplication to compute the similarity scores for each pair of points
yields:

f =
QT

f K f
√

zk
∈ RO×O. (2)

The similarity between point i and point j can be expressed as:

fi,j =

(
MT

f ,iC
T
q

)(
Ck M f ,j

)
√

Zk
. (3)

where M f ,i and M f ,j are feature scalars of shape zk × 1. Subsequently, the index of similarity
is column-normalized:

αi,j =
exp( fi,j)

∑N
k=1 exp( f j,k)

, i, j ∈ {1, 2, . . . , N}. (4)

The aggregated feature at position i is computed as the weighted sum of all positions:
Xi = ∑N

j=1 exp(α(Cv M f ,j)), where Cv M f ,j ∈ Rzv×1 represents the jth column of the value
Vf . Thus, in the fully connected layer, the input X ∈ Rzv×O results in the output vector
w f ∈ RpO×1. Finally, the vector is reshaped into an output W f ∈ Rp×O. w f = σ(CeX + a f ),
W f = Resahpe(w f ), where Ce and a f constitute the learnable parameters of the fully
connected layer.

3.5. Fusion Output Module

From the above analysis, it can be discerned that the traffic data of the community
are not only related to the continuous flow data but also associated with the time periods.
Initially, we integrate the relevant features Z to capture this relationship. Subsequently,
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multiple DenseBlocks are employed to extract fused features, as illustrated in Figure 4. We
obtain the predicted M̂ through a sigmoid activation function.

Figure 4. Structures of the fusion output module.

Z = concat
(

Yspatial , Ytime, W f

)
. (5)

M̂ = σ(DenseBlock(Z)). (6)

4. Experiment
4.1. Dataset and Experimental Settings

Performing performance prediction by collecting engineering parameter data and
performance indicator data of the target radio cell using the target performance indicator
prediction algorithm can help obtain a performance prediction result of the target radio
cell. By selecting a site of a mobile communication operator in an area as a research object,
engineering parameters of a wireless cell in the area were obtained, including the longitude
and latitude of the site, site height, site type, azimuth, downtilt, power, bandwidth, and
antenna model. We collected performance indicator data of cells in a region through
the network management platform of a mobile carrier, including physical resource block
utilization, downlink radio resource control user connection number, uplink radio resource
control user connection number, and traffic volume. Employing min-max normalization,
all data were scaled to the interval [0, 1], subsequently rescaled to their original values for a
comparative assessment against the ground truth.

All training and testing processes were performed on an RTX 3080 (manufactured
by NVIDIA in Santa Clara, CA, USA) with 10 GB of memory. The training process used
the Adam optimizer. TSENet employed the widely used polynomial learning rate decay
strategy to minimize the MSE loss during training. The initial learning rate was 0.01. The
learning rate decayed by factors of 10 at 50% and 100 at 75% of epochs. The primary
TSENet model was trained with a batch size of 16, while smaller models (batch size of 32)
underwent 500 epochs. Within the convolutional module, the last layer incorporated a
1 × 1 filter with a sigmoid activation function, aiming to minimize the mean squared error
loss during the training process. Additionally, the remaining layers were equipped with
3 × 3 filters comprising 16 kernels and ReLU activation functions.

The evaluation and comparison were conducted through the use of the normalized
root-mean-square error (NRMSE), mean absolute error (MAE), and regression score (RS).
A smaller value for the MAE and NRMSE, or a value closer to 1 for R2, signifies superior
performance.

4.2. Inner Parameters of Transformers

We performed distinct ablative experiments, systematically varying the embedding
dimension d and the number of heads h for each transformer. Table 1 presents the ulti-
mate internal parameters of each transformer, while Section 4.4 provides comprehensive
experimental outcomes for diverse input sequence combinations across transformers.
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Table 1. Parameters of different transformers.

Transformer d h Source Sequence Initial Sequence

Spatial 64 8

Augmented

Ms(t)

Average of

Mc(t)

Closeness 256 8 Mc(t) Mp(t)

Period 128 8 Mp(t) Mc(t)

4.3. Analysis of Useful Temporal Features

In the TSM, we adeptly employed both hourly and daily data to extract temporal
features, encompassing the recent and epochal aspects of time. Within our experimental
domain, we further formulated a weekly dataset, denoted as Mt(t), derived from the
original matrix. We analyzed diverse time series to identify crucial temporal features
for predicting cellular traffic on the TSM. Results in Table 2 demonstrate that combining
proximity and daily periodic time features yielded the most effective outcomes. Longer
cycle sequences tended to introduce disruptions to predictions, thereby reducing forecasting
accuracy.

Table 2. Different combinations of time converters.

Combination MAE NRMSE R2

Mc (hourly) 11.3955 0.55332 0.81508

Mp (hourly) 10.5194 0.57136 0.81226

Mc + Mp 10.4823 0.55282 0.81539

Mc + Mt (weekly) 17.6349 0.86621 0.57041

Mp + Mt 17.6375 0.77772 0.63955

Mc + Mp + Mt 17.4319 0.74192 0.67187

4.4. Analysis of Useful Spatial Features

In our model, each transformer necessitates two sequences as inputs. To enhance
precision, we conducted experiments with varied combinations of input sequences. In
Figure 5, the optimal inputs for each transformer are depicted. Spatial transformers
leverage traffic data from pertinent grids and Mc(t) to capture spatial information and
self-information. Enclosed transformers and periodic transformers benefit from input
sequences that incorporate recent and cyclical characteristics.

Figure 5. (a) MAE values when different transformers employed distinct initial sequences, (b) MAE
values for SSM and enclosed transformers with varied K and Q.
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4.5. Experiment Analysis

We conducted experiments on our in-house dataset of cellular network traffic to con-
trast the proposed TSENet against alternative models, and the assessment outcomes are
illustrated in Table 3. As shown, ARIMA exhibited an elevated MAE and RMSE on the
dataset compared to alternative models, primarily because it disregarded other dependen-
cies and concentrated solely on temporal features. SLTM’s performance was inferior to
deep learning approaches but surpassed statistical methods. HSTNet exclusively attended
to temporal attributes, overlooking external factors such as BS information and POI dis-
tribution. Similarly, STDenseNet neglected external factors. Although TWACNet utilizes
convolution-based networks, its performance fell short of ConvLSTM-based methods. STC-
Net employs ConvLSTM-based networks but lacks the incorporation of self-attention and
correlation layers for improved feature extraction. The aforementioned techniques heavily
rely on networks for uncovering latent information, potentially inadequately modeling
continuous spatiotemporal features. Compared to other methods, TSENet achieved the
best performance. The TSENet model took 2765 s to complete 10 epochs during the train-
ing phase. On one side, the TSM and SSM amplify the capacity to capture continuous
spatiotemporal features. Furthermore, TSENet introduces a self-attention mechanism,
aggregating the capability to capture dependencies between extracted external information
and network traffic information.

Table 3. Experimental results of the RMSE and MAE.

Methods MAE NRMSE R2

ARIMA 21.19 0.8364 0.3574

LSTM 15.341 0.7613 0.7275

DenseNet 13.243 0.6241 0.7830

TWACNet 11.22 0.6198 0.8021

HSTNet 10.930 0.5549 0.8295

STCNet 10.898 0.5766 0.8271

TSENet (Ours) 9.758 0.51858 0.84302

4.6. Validation of Key Components

(1) Augmentation of data: When setting Q to zero, it is equivalent to omitting data
augmentation from the TSM. As discerned from Figure 5, the augmentation of data
enhanced the predictive outcomes, with the minimum value of MAE observed when
Q was set to 15.

(2) Grid selection: Setting K to one is comparable to removing grid selection from the
set-top box. As evidenced in Figure 5, grid selection markedly enhanced predictive
performance. Optimal performance was achieved when selecting 20 grids.

(3) Spatial features in the SSM: In order to substantiate the significance of extracting
spatial features, we conducted experiments solely utilizing the TSM. The outcomes of
TSENet (TSM only) presented in Table 4 underscore the efficacy of capturing spatial
relationships. Additionally, we utilized a graph convolutional network (GCN) [33] in
lieu of the SSM to represent spatial features in TSENet, assessing the spatial modeling
efficacy of the SSM through experiments. The results in Table 4 demonstrate that
incorporating the SSM yielded better performance compared to a GCN, enhancing
the overall model performance.

(4) Temporal fusion with the SSM: We also trained TSENet (without SSM fusion), where
SSM was excluded from TSM. As illustrated in Table 4, TSENet (excluding SSM fusion)
demonstrated superior performance in anomalous scenarios, confirming the spatial
transformer’s effectiveness in capturing real-time spatial dependence.
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Table 4. Transformer-based verification of key components.

Methods MAE NRMSE R2

TSENet (TSM only) 10.3499 0.54258 0.82695

TSENet (with GCN) 10.9125 0.57528 0.80473

TSENet (w/o SSM in fusion) 9.9268 0.53369 0.83329

TSENet 9.758 0.51858 0.84302

5. Conclusions

This paper introduced a novel TSENet to simultaneously explore spatial sequences,
temporal sequences, and external factor information. TSENet treats cellular data across
grids within a defined time interval as a spatial sequence, facilitating the modeling of real-
time spatial correlations globally. Additionally, incorporating a self-attention mechanism,
this method integrates the capability to capture dependencies among external factors and
network traffic features. Experimental results showed the efficacy of TSENet, affirming the
utility of the transformer architecture in cellular traffic prediction. This suggests that our
proposed approach can enhance the accuracy of cellular network traffic forecasting. Future
endeavors will involve developing more efficient transformers, unearthing additional
valuable external information, and further refining predictions.
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