
Citation: Mo, S.; Shi, Y.; Yuan, Q.; Li,

M. A Survey of Deep Learning Road

Extraction Algorithms Using

High-Resolution Remote Sensing

Images. Sensors 2024, 24, 1708.

https://doi.org/10.3390/

s24051708

Academic Editor: Yun Zhang

Received: 15 January 2024

Revised: 26 February 2024

Accepted: 4 March 2024

Published: 6 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

A Survey of Deep Learning Road Extraction Algorithms Using
High-Resolution Remote Sensing Images
Shaoyi Mo 1 , Yufeng Shi 1,* , Qi Yuan 1 and Mingyue Li 2

1 College of Civil Engineering, Nanjing Forestry University, Nanjing 210047, China;
moshaoyi@njfu.edu.cn (S.M.); yq@njfu.edu.cn (Q.Y.)

2 School of Foreign Studies, Nanjing Forestry University, Nanjing 210047, China; mylee@njfu.edu.cn
* Correspondence: yfshi@njfu.edu.cn

Abstract: Roads are the fundamental elements of transportation, connecting cities and rural areas,
as well as people’s lives and work. They play a significant role in various areas such as map
updates, economic development, tourism, and disaster management. The automatic extraction of
road features from high-resolution remote sensing images has always been a hot and challenging topic
in the field of remote sensing, and deep learning network models are widely used to extract roads
from remote sensing images in recent years. In light of this, this paper systematically reviews and
summarizes the deep-learning-based techniques for automatic road extraction from high-resolution
remote sensing images. It reviews the application of deep learning network models in road extraction
tasks and classifies these models into fully supervised learning, semi-supervised learning, and weakly
supervised learning based on their use of labels. Finally, a summary and outlook of the current
development of deep learning techniques in road extraction are provided.

Keywords: road extraction; high-resolution remote sensing images; deep learning; supervised
learning; network model

1. Introduction

There are various types of roads in remote sensing images, such as urban roads,
suburban roads, mountain roads, expressways, overpasses, etc. As the resolution of remote
sensing images continues to improve, high-resolution images contain more information
about the texture, shape, structure, and neighborhood relationships of roads compared
to low- and medium-resolution remote sensing images, enabling more accurate road
information extraction [1]. Extracting road information from high-quality remote sensing
images has always been challenging due to multiple factors. These include complex and
cluttered backgrounds (such as buildings, vegetation, and various road types), diverse
road shapes (which vary in width and length), and poor image perspectives (resulting
from occlusions by clouds and fog, as well as lighting effects). Furthermore, as urban areas
expand, the topological structure of roads becomes exceptionally complex, with numerous
buildings obstructing large portions of road areas [2].

Road extraction is typically regarded as a semantic segmentation task, where road and
non-road labels are assigned to all pixels in an image, achieving binary semantic segmenta-
tion. With the rapid advancement of deep learning, there has been widespread interest in
its powerful data fitting and information processing capabilities. Previous reviews have
focused on the progress of road extraction techniques in remote sensing images. They sum-
marize both traditional and deep learning methods. For instance, Abdollahi et al. [3] sum-
marized road extraction methods in remote sensing imagery as being based on deep learn-
ing techniques, such as DCNN [4], FCN [5], deconvolution [6], and GANs [7]. Lian et al. [8]
further categorized extraction methods into heuristic and data-driven road extraction ap-
proaches. Heuristic methods predominantly employ semi-automatic or fully automatic
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traditional techniques for road extraction, such as snake model-based contour extraction [9],
geodesic path-based approaches [10], dynamic programming-based methods [11], and
template matching [12]. Automated extraction methods include machine learning seg-
mentation algorithms like SVM [13], K-Means [14], and Bayesian classifiers [15], edge
analysis-based methods [16], and map-based techniques [17]. The data-driven module,
based on [3], also adds a summary of graph-based methods [18]. Jia et al. [19] discussed
the applications of active and passive remote sensing technologies in road extraction, in-
cluding high-resolution, hyperspectral, synthetic aperture radar (SAR), and airborne laser
scanning (ALS) technologies, and also provided a summary of the current state and future
prospects of multi-source data fusion. Liu et al. [20] summarized previous data-driven
methods as fully supervised learning methods and introduced weakly supervised and
unsupervised learning methods. Currently, mainstream road extraction network models
can be broadly categorized into fully supervised and semi-supervised (weakly supervised)
extraction. The differentiation between these two learning methods primarily depends on
whether the model requires substantial label data support during training. Fully supervised
learning relies on a large number of pixel-level training labels for model training. This
approach often achieves high-precision segmentation structures, but its generalization
capability is relatively weak, resulting in limited segmentation performance in unknown
scenarios. Moreover, obtaining pixel-level labels often requires a significant amount of
manual annotation work, and these annotated data exhibit a high degree of subjectivity,
potentially impacting the accuracy of road segmentation by the model. Semi-supervised
(weak) learning relies on fewer training label data, which can be in the form of points, lines,
and other weak labels for model training. While semi-supervised (weak) learning generally
lags behind in segmentation performance compared to fully supervised learning, it offers
certain advantages. This approach reduces the dependency on label data, thus alleviating
the burden of manual annotation.

To address issues of insufficient labels and high annotation costs in road extrac-
tion tasks https://www.isprs.org/education/benchmarks/UrbanSemLab/ (accessed on 2
March 2024), this paper classifies network models based on the use of pixel-level labels,
including fully supervised learning, semi-supervised learning, and weakly supervised
learning. In this paper, “road extraction”, “deep learning”, and “remote sensing” were
chosen as searching keywords. The Web of Science (WOS) and Google Scholar databases
were used as literature search tools to primarily retrieve relevant literature from 2020
to 2023. We organized the publicly available datasets mentioned in the retrieved litera-
ture over 40 datasets (2013–2023). This compilation includes 22 publicly accessible road
datasets, with images primarily sourced from Google Earth, OpenStreetMap (OSM), open
APIs, drone imagery, and satellite imagery, covering urban, suburban, rural, and forested
areas. Furthermore, we observed that multiple publicly available road datasets such as
Massachusetts [21], ISPRS1, CasNet [22], DeepGlobe [23], SpaceNet [24], Roadtracer [25],
Ottawa [26], and CHN6-CUG [27] were utilized two or more times between 2020 and
2023, as depicted in Figure 1. In Figure 1, the leftmost column represents the number of
times datasets were used during these four years, while the rightmost column indicates
the number of times corresponding network models utilized the datasets. Additionally,
we conducted research on pre-processing and post-processing work related to remote
sensing images in the relevant literature. For instance, a real-time multi-temporal color
data enhancement technique was introduced for improving Sentinel-1 multi-polarization
and Sentinel-2 multi-spectral imagery datasets [28]. Image quality was enhanced through
the application of the contrast-limited adaptive histogram equalization (CLAHE) algorithm
to mitigate mountain shadow issues [29]. Post-processing tasks included road vectoriza-
tion [30], road information, and label reconstruction [31], among others. Due to space
constraints, this paper primarily focuses on the analysis and discussion of road feature
extraction research based on fully supervised deep learning network models. The structure
of this paper is as follows: Section 1 introduces and briefly elucidates the challenges and
methods in the field of road extraction from remote sensing images. Section 2 delves
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into road feature extraction using fully supervised deep learning network models while
studying the strengths and limitations of these network models. Section 3 explores road
feature extraction through semi-supervised (weak) deep learning. Section 4 presents a com-
prehensive review of road extraction methodologies, conducting a comparative analysis
of diverse models in terms of their performance. Ultimately, we objectively discuss the
limitations inherent in current supervised learning models. Section 5 put forwards future
prospects of road extraction and challenges.
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Figure 1. Public datasets used more than twice from 2020–2023.

2. Road Feature Extraction Based on Fully Supervised Deep Learning Network Models

Mnih [32] first introduced convolutional neural networks (CNNs) into road extraction
tasks. Initially, in the field of deep learning for road extraction, many researchers used
block-based CNN models to process roads within images. For example, finite state machine
(FSM) and patch-based CNN (as shown in Figure 2) methods were employed [33] to track
and extract roads separately. These patch-based CNN models performed excellently in
aerial images with a spatial resolution of 1.2 m but struggled to achieve satisfactory results
in higher-resolution (0.15 m) image extraction. To address this issue, Rezaee and Zhang [34]
improved traditional patch-based CNN methods, enabling them to outperform support
vector machine (SVM) methods in road extraction from high-resolution image datasets (0.15
m spatial resolution). However, patch-based CNN methods overly relied on the sliding
window approach, which involved feature extraction through convolutional and pooling
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layers, followed by backpropagation to fine-tune the final parameters. This resulted in
relatively low extraction efficiency, which was insufficient for meeting the requirements of
practical applications. Additionally, choosing an appropriate sliding window size was a
challenging task. It was not until the emergence of fully convolutional neural networks
(FCNs), that this problem was effectively solved. The FCN model was first introduced into
the field of image segmentation [35], as shown in Figure 3, and it significantly improved
segmentation efficiency. In contrast to traditional patch-based CNN models, an FCN is
capable of pixel-level image classification, meaning it classifies each pixel into a category,
with the output providing the category for each pixel. The FCN replaces fully connected
layers with convolutional layers, achieving end-to-end semantic segmentation. This over-
comes the inefficiency issue of patch-based CNN methods and allows for the extraction
of target semantic information while preserving spatial information [1]. While the FCN
enhanced the CNN by enabling pixel-to-pixel classification, it disregarded the relationships
between pixels. Therefore, subsequent models introduced various attention mechanism
modules to strengthen the relationships between pixels. Furthermore, the FCN’s structure
has offered novel insights into encoder–decoder network architectures.
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2.1. Road Feature Extraction Based on Encoder–Decoder Structure

Following the FCN, network structures based on encoders and decoders have emerged
and been widely applied. Their operation involves multiple downsampling of the original
image by the encoder to obtain multi-level image feature information, followed by upsam-
pling through the decoder to restore spatial information (Figure 4). Models based on this
structure include SegNet [36], U-Net [37], PSPNet [38], LinkNet [39], DeepLab V3+ [40],
and more. Among them, U-Net is one of the most classic networks with a symmetrical
U-shaped encoder–decoder structure, initially applied in medical image segmentation
tasks. This model employs an encoder–decoder structure for multi-scale feature fusion and
pixel-level classification, while utilizing skip connections to acquire spatial information
from the encoder and achieve feature fusion. The U-Net was extended by Chen et al. [41]
to propose the Reconstruction Bias U-Net network. They added the ReLU function and a
maxpooling layer and introduced decoding branches in the decoder to capture multiple
semantic information from various upsampling processes. At present, there is a profusion
of road extraction models based on encoder–decoder structures, encompassing models
like LinkNet, D-LinkNet [42], U-Net and its variants VNet [43], U-Net++ [44], U2-Net [45],
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Dense-UNet [46], Res-UNet [47], MC-UNet [48], and others. While their structures ex-
hibit slight variations, the primary distinctions lie in the encoder and decoder backbone
models, intermediate layers, skip connection layers, and network model optimizations.
In recent years, the rapid development of transfer learning has facilitated model training,
especially when dealing with limited training data, significantly reducing training time
and costs. Many scholars use network models pre-trained on ImageNet, such as VGG [49]
and ResNet [50], as the backbone structure for their models. For instance, the pre-trained
VGG16 from ImageNet was introduced by DeepLab V1 [51], along with the proposal of
spatial convolution (dilated/atrous convolution) to increase the receptive field, addressing
the issue of reduced resolution due to repeated pooling and downsampling. ResNet-50 was
adopted as the backbone structure for PSPNet, which introduced spatial pyramid pooling
(SPP) to gather contextual information from different regions, thereby enhancing its ability
to obtain global information. DeepLab V2 [52] replaced the VGG16 backbone of DeepLab
V1 with ResNet-101 and, inspired by SPP, introduced atrous spatial pyramid pooling (ASPP)
to integrate multi-scale information. The emergence of SPP and ASPP resolved the issue
of needing to resize images before they enter the neural network, especially for fixed-size
inputs like 224 × 224 images. At present, some scholars introduce SPP and ASPP modules
into models to enhance the extraction of road features from images through feature fusion.
Lan et al. [53] and Gao et al. [54] have respectively proposed the GC-DCNN and Tes-
LinkNet models based on the U-Net and LinkNet models. The former introduces the SPP
module into the intermediate layers, while the latter uses the ASPP module. Huan et al. [55]
introduced the SANet model pre-trained with ResNet-50 and introduced the ASPP module
in the encoder. Inspired by dense convolution, Q. Wu et al. [56] introduced the dense and
global spatial pyramid pooling module (DGSPP) into the decoder and encoder to enhance
the network’s perception and aggregation of contextual information. Wei and Zhang [57]
integrated the multi-level strip pooling module (MSPM) into the skip connection layers
to ensure road connectivity by aggregating long-range dependencies from different levels.
LinkNet used ResNet-18 as the encoder backbone and improved segmentation efficiency by
directly connecting the encoder and decoder. D-LinkNet employed the pre-trained ResNet-
34 as the encoder backbone and introduced dilated convolutions in the intermediate layers.
The design of D-LinkNet includes four progressively larger dilated convolution layers,
forming a stacked pyramid pattern, also known as the D-Block, making the output of each
layer the input to the next. This design expands the receptive field while maintaining image
resolution, contributing to its championship in the DeepGlobe 2018 Road Extraction Chal-
lenge. However, there is a potential issue with the dilated convolutions in the intermediate
layers of the D-LinkNet model, as it may lead to the loss of continuous information between
neighboring pixels and introduce some unrelated contextual information, affecting road
extraction’s connectivity and integrity. Therefore, some scholars have enhanced the dilated
convolutions in the intermediate layers of the D-LinkNet model. Gong et al. [58] replaced
dilated convolutions with dense dilated convolutions, enabling multi-scale information
fusion while expanding the receptive field. Wang et al. [59] restructured the D-Block into
the DP-Block, inspired by the pyramid attention network [60]. They introduced global
pooling and designed dense connections between convolutions to fully utilize global and
dense information for enhancing road features. J. Zhang et al. [61], on the other hand,
took inspiration from MobileNet V2 [62] and introduced bottleneck modules (bottleneck
block) within the D-Block, forming D-Blockplus, thereby reducing network parameters and
improving network performance.
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2.2. Road Feature Extraction Based on Feature Fusion

Feature fusion refers to the combination and superimposition of features from different
layers or branches using techniques such as weighting or concatenation. These features
possess distinct characteristics. Low-level features have higher resolution, containing
more positional and detailed information, but due to fewer convolutions, their semantic
information is relatively less and may contain some level of noise. High-level features, on
the other hand, contain richer semantic information but have lower resolution and a less
effective ability to perceive detailed information. Feature fusion employs various strategies,
such as feature concatenation, feature summation (including mean, pooling, weighted
summation, like ASPP and SPP mentioned earlier), element-wise multiplication of feature
elements, skip connections, deconvolution, attention mechanisms, and multi-scale feature
fusion. These methods comprehensively utilize features of different levels and properties,
making them a crucial component in network models.

2.2.1. Feature Fusion Based on Attention Mechanisms

The attention mechanism is a crucial module in deep learning networks and is consid-
ered as an additional neural network that can effectively integrate with neural networks [63].
In road feature extraction research, issues such as fragmented extraction results and poor
connectivity often arise due to obstructions from buildings, trees, or background interfer-
ence with similar textures. In such cases, by appropriately introducing attention modules,
the model can focus more on information at road edges and intersections, leading to more
connected and complete road extraction results.

In recent years, attention mechanisms have gained considerable traction in the domain
of road extraction. Extensive research has delved into self-attention, channel attention [64],
spatial attention [65,66], and hybrid attention mechanisms [67]. The integration of the
multi-head attention mechanism from Transformer [68] into architectures like ConSwin-
Net [69] and Seg-Road [70] has effectively addressed the limitations of conventional CNNs,
markedly enhancing the ability to perceive road texture intricacies and contextual infor-
mation. Modules like the self-attention feature transfer module (SAFM) [71] have further
facilitated comprehensive information integration within models, significantly bolstering
the performance and robustness of road extraction tasks.

The foundational mechanisms of the channel attention module (CAM) and spatial
attention module (SAM) play pivotal roles in road extraction. Networks such as Nested
SE-DeepLab [72] and RALC-Net [1] have overcome challenges in road feature extraction by
leveraging the squeeze-and-excitation (SE) and residual attention (RA) modules. Addition-
ally, the incorporation of serial or parallel attention mechanisms like the convolutional block
attention module (CBAM) [73] and ProCBAM [74] markedly improved the network’s focus
on road information, thereby elevating the performance of road extraction tasks. These
innovative methods and varied applications of attention mechanisms comprehensively
showcase effective strategies for enhancing model performance in road extraction tasks,
enabling more efficient capture of road-related information. We have summarized the
prevalent attention mechanism modules in current road extraction tasks in Table 1.
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Table 1. Attention Mechanisms and Methods.

Model/Method Attention Mechanism Highlight(s)/Strength(s)

ConSwin-Net [69] Multi-Head Self-Attention

Introduction of dual Swin
Transformers and a residual block
within the U-Net network structure,
creating the ConSwin-Net, which
mitigates CNN limitations in
extracting global contextual features,
thereby enhancing the model’s
perception of road texture details and
global information

Seg-Road [70] Self-Attention

Incorporation of a Transformer
structure into the encoder combined
with a convolutional neural network
(CNN) decoder leads to improved
connectivity in road segmentation
and enhanced prediction
result robustness

FSNet [71] Self-Attention

Integration of the self-attention
feature transfer module (SAFM) into
the hidden layers of convolutional
neural networks establishes
relationships between each hidden
layer and its contextual hidden layers.
This facilitates the transfer of hidden
layer feature information to
the original feature map,
resulting in improved road
extraction performance

Nested SE-DeepLab
network [72] Channel Attention (SE)

Introduction of SE module into the
encoder and decoder effectively
merges and retains both shallow and
deep information, addressing model
imbalance issues in narrow
road extraction

DSDNet [29] Channel Attention (SE)

Integration of the SE module into the
encoder of the D-LinkNet network
assists ResNet in feature extraction
for mountain roads

TSE-LinkNet [54] Channel Attention (SE)

Combining the SE module with the
ASPP module during downsampling
enhances topological relationships
between adjacent road pixels
in images

BMDANet [75] Modified Efficient Channel
Attention (MECA)

Utilization of the improved MECA
module enhances the continuity of
road features based on the
characteristics of RSI roads

MSACon [76] Spatial Attention (SAM)

Construction of an MSACon
dual-encoder network with a spatial
attention-based fusion (SAF)
mechanism improves road extraction
by utilizing contextual relationships
between roads and buildings
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Table 1. Cont.

Model/Method Attention Mechanism Highlight(s)/Strength(s)

RALC-Net [1] Spatial Attention (SAM)

Development of a dual-encoder
RALC-Net network with a residual
attention (RA) module integrates
spatial contextual information to
emphasize local semantics, aiding in
the extraction of local road features

GCB-Net [28],
CDG [77],

CADUNet [78]
Global Attention (GA)

Focusing on highlighting high-level
road features to improve
segmentation results

CADUNet [78] Core Attention (CA)

Ensuring the maximum transmission
of road information between dense
blocks and coordinating multi-scale
road information acquisition through
the global attention module

SANet [55] Strip Attention (SAM) Facilitating the fusion of lower-level
and higher-level road features

FE-LinkNet [59] Criss-Cross Attention (CCA)

Enhancing pixel-level representation
capabilities by capturing long-range
contextual information in horizontal
and vertical directions

SegRExt-F [67] Convolutional Block
Attention Module (CBAM)

Improving network focus on images
through concatenation of channel and
spatial attention using CBAM

DU-Net [74] Pro Convolutional Block
Attention Module (ProCBAM)

Enhancing the integration of road
information through ProCBAM with
added SE module

SDG-LinkNet [61] Position Attention Module
(PAM) with D-Blockplus

Introducing the position attention
module (PAM) and global
information recovery module (GIRM)
in parallel for global
information acquisition

Meca-Net [66] Long-Range Context-Aware
Module (LCAM)

Designed to alleviate road occlusion
issues by acquiring long-range
context information through channel
and spatial attention

GAN [79],
MAU-Net [80],
GAMSNet [81],
CM-FCN [82]

Parallel Channel and
Spatial Attention

Enhancing road information
extraction and segmentation
performance through the integration
of parallel channel and
spatial attention

MAU-Net [80]
Feature Fusion based

on Attention
Mechanism (FFBAM)

Introduced a feature fusion
mechanism (FFBAM) for better fitting
multi-scale road information

BMDANet [75] Block Multi-Dimensional
Attention (BMDA) Module

Introduced BMDA for feature
extraction in blocks, integrating them
through channel and spatial attention



Sensors 2024, 24, 1708 9 of 31

Table 1. Cont.

Model/Method Attention Mechanism Highlight(s)/Strength(s)

CMAFE [83]
Cascaded Multi-Scale

Attention Feature
Enhancement (CMAFE)

Coarse feature extraction with dilated
convolution pooling, followed by
boundary enhancement in the
lightweight U-Net network

Rse-Net [84] Multi-Scale Convolutional
Attention Module (CSAM)

Introduced Rse-Net with multi-scale
convolutional attention module,
focusing on boundary information
and expanding the receptive field for
more semantic information

2.2.2. Feature Fusion Based on Multi-Scale Images

The term “multi-scale” refers to images of different resolutions or different levels of
image features (low-level features, high-level features). The purpose of feature fusion is to
explore how to effectively utilize these multi-scale images to obtain more accurate road
feature information [85].

The design of multi-scale feature fusion modules often draws inspiration from parallel
or serial multi-branch network architectures, such as feature pyramid networks (FPNs) [86],
Inception [87], and HRNet [88]. This section provides an overview of the multi-scale feature
fusion modules and methods employed in road image segmentation tasks. Researchers
have utilized supervised learning by combining edge information with image features to
enhance road image segmentation networks. Various module designs have been proposed
to address issues related to extracting road shapes and enhancing connectivity, such as the
multi-scale context augmentation module [89], spatial context module [90], and feature
review module [91]. Some modules are particularly adept at capturing elongated road
shapes, while others focus on enhancing global features. Additional modules aim for
multi-scale feature fusion. Solutions tailored for narrow, continuous, and expansive roads
in high-resolution remote sensing images have also been proposed, incorporating multiple
modules to optimize spatial feature preservation, shape enhancement, and multi-feature
fusion. These innovative modules and methods collectively drive advancements in road
extraction tasks, providing crucial technical support for more accurate identification of road
shapes and improved segmentation outcomes. Due to space limitations, detailed method
characteristics are summarized in Table 2.

Table 2. Multi-Scale Feature Fusion Module and Methods.

Model/Method Multi-Scale Feature
Fusion Module Highlight(s)/Strength(s)

Geographic
Feature-Enhanced

Network [92]

Joint Shared Learning
and Feature Fusion

Enhancing road extraction
connectivity through joint learning of
pixel-level, edge-level, and
region-level road features, followed
by feature fusion

DA-CapsUNet [89] Multi-Scale Context
Augmentation (CTA)

Enlarging the receptive field and
integration of context information
from different scales

BT-RoadNet [90]
Coarse Map Predicting
Module (CMPM) and

Spatial Context Module

Serially connected spatial context
module effectively captures
elongated road shapes
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Table 2. Cont.

Model/Method Multi-Scale Feature
Fusion Module Highlight(s)/Strength(s)

Deep FR TransNet [91] Feature Review (FR)

Evaluating road features of varying
scales, with an emphasis on contour
characteristics, to improve road
profile information

DCANet [93] Discriminative Context-Aware
Feature (DCF) Module

Aligning feature maps across scales to
extract high-frequency information,
with a refine decoder (RD) for spatial
information retention and
feature representation

AF-Net [94] All-Scale Feature Fusion (AF)
Module

Recursive integration of features from
two pathways, leveraging scale
features with varying spatial and
semantic information, to provide
accurate spatial and semantic
information for road extraction

NFSNet [71] Global Feature Refinement
(GFR) Module

Improved semantic information of
feature maps for more detailed
segmentation outputs

ConSwin-Net [69]
Feature-Enhanced Connection
(FC) and Shape-Augmented

Connection (SC)

Enhanced and separate transmission
of structural and textural features to
the decoder, improving overall
model performance

MLEM-NET [95] Multi-Scale Line Enhancement
Module (MLEM)

Utilizing the Hough transform (HT)
to enhance local and global linear
features in remote sensing images

SDUNet [96]
Densely Connected Encoder
Block and Spatial Intensifier

(DULR) Module

Constructing spatial relationships
between features at different
positions and introducing skip
connection layers to preserve the
topological structure

Meca-Net [66] Multi-Scale Feature Encoding
Module (MFEM)

Utilizing convolution kernels of
different scale sizes and aggregating
multi-scale features through a parallel
strategy for recognizing
elongated roads

MSPFE-Net [57] Feature Enhancement Module
(FEM) with Stripe Pooling

Extracting and merging features from
various levels to accomplish
multi-scale feature fusion

LDANet [97]
Feature Expansion Module

and Deep Feature Association
Module

Expanding and merging features to
address challenges posed by narrow
and complex rural roads, improving
feature associations, and promoting
multi-feature fusion

MTMF [98] Canny Operator and HRNet
Improving road image segmentation
through the fusion of edge
information and image features

2.2.3. Feature Fusion Based on Multi-Modal Fusion

Solely relying on optical remote sensing imagery to provide learning information for
network models does not guarantee excellent learning outcomes. This is due to spectral
similarities between buildings and roads and the potential for occlusions caused by tall
buildings and trees. These factors can lead to inaccurate identification and acquisition of
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road feature information by the model, ultimately affecting road extraction results. Addi-
tionally, sensor imaging and lighting conditions can also adversely affect the recognition
and acquisition of road feature information. Recognizing this challenge, researchers have
explored multi-modal data, including multi-spectral (hyperspectral) data, synthetic aper-
ture radar (SAR) [99], light detection and ranging (LiDAR), unmanned aerial vehicle (UAV)
data, GPS trajectory data, and multi-temporal data. The penetrative and oblique observa-
tion properties of synthetic aperture radar (SAR) have been ingeniously leveraged by J.
Zhang et al. [61] to address issues arising from shadows and occlusions caused by vegeta-
tion and buildings in optical remote sensing, providing network models with more detailed
road information. On the other hand, dual-temporal optical remote sensing imagery has
been employed [100] to detect and update road databases. Sensors with high revisit times,
such as Sentinel-1 and Sentinel-2, have been utilized by Ayala et al. [28] to enhance datasets
with multi-temporal multi-spectral and SAR data through color data augmentation.

Multi-modal fusion involves feature integration between different data sources, par-
ticularly for cross-source fusion between GPS trajectory data and remote sensing imagery.
Similarly, we have provided a more intuitive tabular summary of methods related to
multi-modal feature fusion in Table 3.

Table 3. Multi-modal Fusion Module and Methods.

Model/Method Module Name Fusion Data Sources Highlight(s)/Strength(s)

DeepDualMapper [101] Gated Fusion Module (GFM) GPS trajectory data and
remote sensing imagery

GFM was designed to control and
integrate information from both
modalities in a complementary
perception manner

MTMSAF [102] Adaptive Fusion
Module (AFM)

GPS trajectory data and
remote sensing imagery

AFM was utilized to integrate road
features from trajectory data and
remote sensing imagery

CMMPNet [103] Dual Enhancement
Module (DEM)

Cross-source fusion of
images and trajectory data

DEM was introduced to enhance
and complement features from both
images and trajectory data
bidirectionally, applicable for
LiDAR and remote sensing
imagery data

MSFANet [104] Cross-source Feature Fusion
Module (CFFM)

Traditional remote sensing
imagery and

hyperspectral imagery

Hyperspectral and remote sensing
imagery are combined to alleviate
discontinuous outputs and using
CFFM to correct and fuse spectral
features at different scales, reducing
noise and redundancy

Attention mechanisms themselves are models with advantages such as fewer pa-
rameters, faster processing speed, and good performance. Compared to CNNs, attention
mechanisms have lower model complexity, fewer parameters, and lower computational
requirements. Furthermore, attention mechanisms address the issue of non-parallel com-
putation in RNNs [105], as they do not rely on the results of the previous step, enabling
efficient parallel computation. Hence, they have become an important component of feature
fusion in network models. However, it is worth noting that the introduction of attention
mechanisms may lead to model overfitting. If a network model is already complex, incor-
porating attention mechanisms can increase the number of model parameters, potentially
causing overfitting issues. Additionally, fusing different features together may introduce
noise and other challenges. Attention itself is a type of feature, so when integrating it with
other features, careful consideration is needed to assess whether it might negatively impact
the network model’s performance. For multi-modal data, while it provides richer semantic
information to networks, there may be differences in semantics among different modalities.
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Therefore, addressing noise reduction and semantic differences while fusing these features
is an issue to be focused on in the future.

2.3. Road Feature Extraction Based on GANs

In 2014, generative adversarial networks (GANs) were introduced by Goodfellow et al. [106]
operating on an unsupervised learning approach, consisting of a generator G and a dis-
criminator D. The task of the generator is to generate data closely resembling real images,
attempting to “deceive” the discriminator. The discriminator’s role is to determine whether
the data generated by the generator is correct and provide feedback to enhance the genera-
tor’s ability to “fabricate”. This process forms a cycle, continuing until neither can deceive
the other. Essentially, it is a zero-sum game, also known as the Bash game. However,
because the generator does not require training labels, data can be generated too freely,
including images, text, or even sound from noise, which is not ideal for image recognition
tasks. To address this issue, the introduction of some conditions to both the generator
and discriminator was proposed. In the context of image recognition tasks, conditions
could be introduced to the discriminator to make it generate only images. In the same year,
conditional generative adversarial networks (CGANs) [107] were introduced (Figure 5).
CGANs are generative adversarial network models with constraint conditions. Incorporat-
ing variables y into both the generator and discriminator, these variables guide the data
generation process by the generator. The variables y can be labels or even images, marking
a shift of GANs from unsupervised learning towards supervised learning.
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In 2017, the Pix2pix [108] model was introduced, which is based on the structure of
conditional generative adversarial networks (CGAN) for image-to-image transformations,
also referred to as domain adaptation. In this approach, the generator of the model utilizes
a U-Net network, while the discriminator is designed using the PatchGAN architecture.
Many researchers continue to reference this model in current road extraction tasks. For
instance, Yang and Wang [109] followed the structure of Pix2pix and introduced the WGAN-
GP network for rural road extraction. They used both U-Net and BiSeNet as generators,
employing an ensemble strategy to combine their inference outputs for better road vector
generation. The discriminator in their model used PatchGAN. Cira et al. [110,111] applied
the Pix2pix model to post-process road extraction. They improved the integrity of road
surface area extraction by contaminating labels and reconstructing them. In addition,
Abdollahi et al. [7] proposed a deep learning approach using conditional generative adver-
sarial networks (CGANs) for road segmentation in high-resolution aerial imagery. They
utilized an enhanced U-Net model (MUNet) as a generator to segment images and obtain
high-resolution segmented maps of road networks. NIGAN [112], comprising two CGAN
networks, was used for scene selection in mountainous road scenarios. This was caried out
to pre-select areas that contain mountainous road scenes, thereby reducing the workload
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in subsequent segmentation and road extraction tasks. The generator in their model is
based on an encoder–decoder structure, utilizing ResNet-34 as the backbone. Middle layers
incorporate dilated convolutions, which are helpful for extracting small objects like roads
and expanding the receptive field while enhancing global information.

Conditional generative adversarial networks (CGANs) have played a crucial role
in road extraction tasks. They are not only used for road segmentation but also for pre-
processing road extraction, enriching road information in images, and reducing the work-
load for subsequent segmentation networks. Additionally, in post-processing, employing
adversarial training techniques to enhance segmentation results has reduced issues related
to fragmentation while improving road connectivity.

2.4. Road Feature Extraction Based on Cumulative Integration of Multiple Models

In road extraction tasks, ensemble strategies have been increasingly adopted by re-
searchers to combine multiple models serially or in parallel. Integrated models with strong
generalization capabilities, high robustness, and exceptional segmentation performance
have been highly sought after in research endeavors. Parallel strategies (Figure 6) are most
commonly used. For example, Senthilnath et al. [113] employed three relatively mature
network models, FCN-32, Pix2Pix, and CycleGAN [114], for transfer learning. Both Pix2Pix
and CycleGAN are commonly used in domain transfer tasks. The key difference is that
Pix2Pix requires training data to be in pairs, which is challenging to find in the natural
world. The emergence of CycleGAN effectively solves this problem. They proposed the
Deep TEC integrated classifier, which utilizes a parallel strategy to integrate the results of
road segmentation from three models. This approach achieved outstanding integration
performance in extracting urban road networks from drones. Cira et al. [115] combined
improved CNN, VGG, ResNet-50, and Inception-ResNet [116] models in parallel and fused
extraction results using an averaging structure. This strategy aims to leverage the strengths
of each model while minimizing their weaknesses, ultimately resulting in a classifier with
reduced classification error. Chen et al. [117] employed ResNet-50 models with three dis-
tinct convolution kernel sizes for road extraction, integrating the results to form a ResNet-50
training block enriched with high-level information. Li et al. [118] reorganized the layers
of U-Net and duplicated a single submodel N times, creating an ensemble model E con-
sisting of N parallel submodels. Following optimization and prediction, they ultimately
established an E-UNet model with 14 layers. Abdollahi et al. [119] adopted a parallel
approach by linking two improved U-Net models, BCL-UNet (ConvLSTM [120] + U-Net)
and MCG-UNet (BConvLSTM + SE + dense convolutions [121]). They introduced dense
convolutions and compression activation modules in the upsampling layers of the standard
U-Net. They employed bidirectional convolutional long short-term memory (BConvLSTM)
for skip connections, enabling the generation of high-resolution segmentation maps even
in challenging backgrounds while preserving edge information. The graph-based dual
convolutional network (GDCNet) [122] integrates graph convolutional networks (GCNs)
and CNNs. Employing a ResNet-50 backbone that included encoder and decoder con-
volutional neural networks, researchers applied a parallel approach for road extraction,
effectively addressing concerns associated with poor connectivity and discontinuities. This
was achieved by generating complementary spatial–spectral features at both superpixel
and pixel levels and efficiently propagating these features between graph nodes and image
pixels using a graph decoder. Sun et al. [123] employed a parallel network model consisting
of dual branches for road and building extraction. One branch is the multi-resolution
semantic extraction branch, composed of three parallel ResNet networks, used to extract
semantic features of roads and buildings at different resolutions. The other branch is the
Transformer semantic extraction branch, which utilizes a ResNet-18 backbone and features
a Transformer-based encoder–decoder. This parallel strategy successfully addresses the
current limitation of semantic segmentation networks in terms of receptive field by fusing
the output results of the two branches.
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Certainly, a serial strategy employing multiple models for road extraction is also
utilized by some researchers. For instance, a direction-aware residual network, DiRes-
Net [124]. DiResNet comprises a ResNet segmentation network (DiResSeg) based on the
decoding layers with structural supervision and a refinement network (DiResRef) based
on U-Net. The former is dedicated to enhancing the learning of road topology, while the
latter further refines the road segmentation results. Z. Chen et al. [125] drew inspiration
from the AdaBoost classification algorithm and combined multiple lightweight U-Net
models by connecting them in a serial manner, forming AdaBoost-like end-to-end multiple
lightweight U-Nets (AEML U-Nets). Under this serial strategy, the output of the previous
network serves as the input for the next one. To ensure the training quality of each U-Net,
the researchers designed a multi-objective optimization strategy for joint training of all
U-Nets. Finally, the output results of each U-Net are fused to obtain the ultimate road
extraction result.

With the continuous development of deep learning, models are gradually evolving
towards greater depth and width. However, it is important to note that increasing depth
and width does not always lead to improved model performance and can potentially
result in issues like overfitting. In this section, we summarize how scholars leverage the
unique characteristics of different models and employ ensemble strategies to integrate these
models. These characteristics include having fewer model parameters, fast recognition
speed, strong generalization, and expertise in extracting road features in various scenarios.
By combining multiple models, whether they are simple or mature, researchers have
achieved better road feature extraction results than with a single model. Nonetheless, it is
essential to be aware that multiple independent models do not always outperform a deeper
and larger single model. This is because these models are trained independently, and their
training outcomes may vary. In parallel extraction, individual models may perform poorly,
becoming bottlenecks for overall performance. In serial extraction, if the same model is
used for serial processing, it may lead to a series of problems. For instance, determining
strategies to ensure consistent training results for each model and whether an excessive
number of models effectively deepens the model’s depth, potentially leading to gradually
declining performance. These issues are worthy of in-depth consideration and exploration.

2.5. Road Feature Extraction Based on Multiple Tasks

The focus of most current road extraction tasks is primarily on extracting road surfaces.
However, roads encompass various elements, including road centerlines, road edges, road
nodes, and more, all of which are equally important. Consequently, the challenge of
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achieving multi-task road extraction persists. Many researchers are exploring network
models for accomplishing multi-task road extraction in remote sensing images, surpassing
the scope of surface extraction alone (Figure 7).
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In the road surface and centerline extraction tasks, the D-LinkNet model was em-
ployed [126]. Initially, the imagery was coarsely segmented for road extraction. Subse-
quently, the boosting segmentation network (BSNet) based on the ResNet-34 network
architecture was used to enhance the connectivity and accuracy of the coarse segmentation
results. Road intersections simultaneously generated starting points by employing multi-
start point tracking. Finally, an iterative search strategy embedded with convolutional
neural networks (CNNs) was used to track a continuous and complete road network.
Refined extraction of road surfaces and centerlines was achieved by integrating segmenta-
tion, tracking results, semantic information, and topological data. A dual-task end-to-end
convolutional neural network (MRENet) [127] with a dual-branch structure was developed.
These two branches facilitated feature sharing, with the main branch responsible for road
surface extraction, and the other branch utilizing features extracted from the main branch
as conditions for centerline extraction. This information exchange and parameter sharing
approach helped mitigate potential issues arising from insufficient centerline samples. To
address the problem of poor connectivity in road extraction often caused by complex back-
grounds, Lu et al. [128] identified interconnections between different extraction tasks. For
example, the road surface segmentation results influenced the final position of centerlines
and edges, and the integrity of road edges was closely related to road surface connectivity.
Therefore, they proposed a cascaded multi-task (CasMT) road extraction framework to
simultaneously extract road surfaces, centerlines, and edges. This framework fully lever-
aged the interrelationships between these tasks, promoting interconnectivity within the
road network.

To improve the connectivity of road surfaces, additional information about roads,
such as road nodes and intersections, is also extracted by many scholars in multi-task
extraction. D. Chen et al. [129], while using network models to extract road surfaces, also
extract information about road nodes. This node information provides supervision for road
surfaces, contributing to their continuous improvement in connectivity. X. Chen et al. [130]
constructed a node inference branch within the network, modeling road nodes together
with road surfaces, thereby enhancing the topological structure of roads and reducing
surface fragmentation. Roads and intersections are two crucial elements in road net-
work generation. Li et al. [102] using trajectory data and remote sensing images, and not
only extracted road surfaces but also recovered intersection information from road area
features, simultaneously performing road surface and intersection extraction tasks. Addi-
tionally, some researchers apply multi-tasking to segmentation and change detection. M.
Zhou et al. [100] proposed a neural network with dual-task road change detection, called
dual-task dominant Transformer-based neural network (DT-RoadCDNet). This network
takes input from two-phase remote sensing images and can perform both segmentation
and change identification tasks, resulting in two road surface segmentation images before
and after changes and one road change image.
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Roads are not only composed of road surfaces but also include elements such as road
centerlines, road edges, and road nodes. The emergence of multi-task road extraction
has the potential to enhance road information, facilitating better road pipeline planning.
However, in current road extraction tasks, research focused on road centerlines as the
primary extraction task is relatively scarce, with most relying on labeled data provided
by OpenStreetMap (OSM). Road centerlines are not only vital components of roads but
can also serve as weak labels for subsequent tasks based on weak supervision learning.
Additionally, road edges and road nodes are equally crucial. Edges determine the integrity
and continuity of road surfaces, while linear elements consist of nodes. Nodes can be
used as additional information for predicting and inferring road surface breakpoints and
completing linear elements, thus improving road connectivity. They can also serve as
road backbones, facilitating subsequent road vectorization processing. Road networks
evolve and change each year, and electronic maps require timely updates of road networks.
Traditional methods often require substantial human and material resources for field
surveys. Road change detection tasks rely on neural networks and remote sensing images,
automating the extraction of road changes from images, reducing the need for manual
intervention. However, due to limitations in data sources and labels, change detection tasks
still face issues of missed detections and false alarms, necessitating further improvement in
data source quality, label quality, and network model quality.

2.6. Road Feature Extraction Based on Network Optimization

The various strategies employed by research scholars in optimizing the training of
network models are research hotspots, and the primary focus is loss functions. Loss
functions play an indispensable role in the training of network models, as they measure
the difference between the model’s predictions and the ground truth. Model performance
is typically evaluated by calculating the loss value, where lower loss signifies better model
performance, indicating that the model’s predictions are closer to the ground truth.

We find that the dice coefficient loss, binary cross entropy loss, and cross entropy
loss are the most commonly used loss functions. Since road extraction tasks are typically
binary semantic segmentation tasks, binary cross entropy loss is more common than cross
entropy loss. Additionally, in model training, the dice coefficient loss is used to measure
the similarity between predicted results and labels, while binary cross entropy loss is
employed to assess the distance between predicted results and actual labels. For instance,
Lin et al. [72] introduced both of these loss functions into their proposed SE-DeepLab
network and compared their effectiveness in model training. They found that the dice loss
was better suited for their model, significantly enhancing its performance during training
and prediction. Similarly, Lan et al. [53] also argued that the dice coefficient loss is more
suitable for road segmentation tasks because it conducts global assessment, whereas binary
cross entropy loss is pixel-wise. When extreme imbalance exists between foreground and
background, binary cross entropy loss may not effectively address this issue. However, the
dice coefficient loss is sensitive to noise and may overlook boundary information, leading
to poorer road edge segmentation. To address this concern, Zao and Shi [131] proposed an
edge-focused loss, which guides the network to pay more attention to road edge regions.
Additionally, they introduced an enhancement factor that assigns higher loss contributions
to pixels closer to the edges, thereby improving road boundary segmentation.

Different types of loss functions are combined, which is a training strategy used
by the D-LinkNet. The loss functions were integrated by using various combinations of
strategies [58,79,132] to fully exploit their respective advantages in road extraction. For
example, Abdollahi et al. [133] introduced the VNet network model for road extraction
and proposed a new dual-loss function called cross entropy and dice loss (CEDL). This loss
function combines cross entropy (CE) and dice loss (DL) because cross entropy considers
local information while dice loss focuses more on global information. Introducing the CEDL
loss function into VNet can reduce the impact of class imbalance issues, thus improving
road extraction results. Since high-resolution remote sensing images typically include
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complex backgrounds such as occlusion, shadows, and similar textures in the surrounding
terrain, many roads are difficult to identify successfully, leading to a relatively high rate of
omissions. To address this challenge, Lu et al. [128] introduced the hard example mining
(HEM) loss function. This loss function, by jointly using dice and binary cross entropy loss
functions, pays more attention to hard samples, enhancing road recognition and further
improving road completeness.

To address the issue of sample imbalance, the focal loss function has been employed
by some researchers [28,89,134]. Additionally Wei and Zhang [57] combined focal loss
with the dice function. The focal loss function [135] differs from traditional cross entropy
functions by focusing on resolving sample imbalances and confounding pixel categories.
Abdollahi et al. [136] introduced a loss function called median frequency balancing focal
loss weighted (MFB_FL) based on the focal loss function to deal with highly imbalanced
datasets, where positive samples are scarce. The introduction of MFB_FL eases the burden
on simple samples, allowing more time to be spent learning difficult samples, thereby
improving road extraction and road vectorization results. The issue has also been addressed
by some researchers through modifications to the loss function. Yang and Wang [109] added
a spatial penalty term to the loss function to address the typical class imbalance issue in road
extraction. Additionally, the softmax cross entropy loss (SCE), Jaccard, and Lovasz softmax
(LZS) loss functions have been applied in binary road extraction tasks. J. Zhang et al. [61]
combined Jaccard and cross entropy losses in the training of the SDG-LinkNet model to
avoid the problem of single cross entropy easily falling into local optima. Furthermore,
Sushma et al. [137] simultaneously used LZS and boundary loss functions during model
training, with results showing their superiority over the mean squared error (MSE) loss.

With relatively limited research on loss functions in road extraction tasks, an attention
loss function called GapLoss was proposed by Yuan and Xu [138]. This function can be
combined with any segmentation network. Firstly, a binary prediction mask is obtained
using a deep learning network. Secondly, a vector skeleton is extracted from the prediction
mask. Thirdly, for each pixel, eight adjacent pixels with the same value are calculated,
and if the value is 1, the pixel is identified as an endpoint. Fourthly, based on the number
of endpoints within a buffer range, the corresponding weight is assigned to each pixel
in the predicted image. Finally, the weighted average of the cross entropy of all pixels
in the batch is used as the final loss function value. GapLoss was introduced into four
relatively basic network models (PSPNet, U-Net++, SegNet, and MUNet), and the training
results outperformed the use of the three loss functions: dice, binary cross entropy, and
focal. This suggests that GapLoss not only improves the connectivity of predicted roads
but also enhances the accuracy of road predictions. Xu et al. [139], based on the D-LinkNet,
compared twelve well-known loss functions, categorizing them into region-based (such as
dice, Jaccard, and focal), distribution-based (such as binary cross entropy), and composite-
based (such as a combination of dice and binary cross entropy). They found that different
loss functions performed significantly differently under different models. Region-based
loss functions generally outperformed distribution-based ones, while the performances of
region-based and composite-based loss functions were comparable. This indicates that the
choice of the most suitable loss function should be based on the model’s design.

In addition to the utilization of loss functions for optimizing model training, the tradi-
tional batch normalization (BN) layer has been replaced with filter response normalization
(FRN) in the upsampling layer by some researchers [27,140]. With the introduction of this
layer, the model decreases its dependence on random batches, thereby benefiting model
optimization and enhancing training efficiency.

This section primarily introduces the fundamentals of network optimization in road
extraction tasks, with an emphasis on the utilization of loss functions. Additionally, it briefly
mentions adjustments made between different layers of the model to enhance the model’s
training capabilities. Concerning the application of loss functions, binary cross entropy,
dice loss, and their combinations represent the most commonly employed loss functions in
model training. However, due to variations inherent in different models, the performance
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of various loss functions may exhibit differences. Furthermore, it is worth noting that
there is relatively limited in-depth research on loss functions in the road extraction field.
Although dice loss and binary cross-entropy–dice combinations are presently regarded as
more suitable loss functions, the question of whether these loss functions can consistently
perform well in new models that are deeper, wider, and larger warrants consideration.
Therefore, one of the future research directions involves the design of loss functions with
strong generalization capabilities aimed at improving performance on diverse models.

3. Road Feature Extraction Based on Semi-Supervised (Weak) Deep Learning
Network Models

Semi-supervised learning falls within the domain of weakly supervised learning,
combining elements of both unsupervised and supervised learning. It consists of a super-
vised learning part and an unsupervised learning part. Zhou [141] subdivided weakly
supervised learning into three categories: (1) incomplete supervision refers to the situation
where only a portion of the training data are labeled, and the rest are unlabeled. (2) Inexact
supervision refers to the provision of coarse-grained label information in the training data,
which is more common in tasks such as object detection and instance segmentation but
less prevalent in road extraction tasks, where road extraction is typically a binary semantic
segmentation problem. (3) Inaccurate supervision means that the labels in the training data
may contain errors or inaccuracies, which are inevitable in road datasets because road la-
beling typically involves manual annotation. The author proposes corresponding solutions
for these three types of supervision. For incomplete supervision problems, active learning
or semi-supervised learning methods are used. Additionally, multi-instance learning can
be applied to address inexact supervision problems. For inaccurate supervision problems,
learning with label noise strategies is employed, introducing noise to the labels for model
training. In summary, both semi-supervised learning and weakly supervised learning rely
on a small amount of labeled data and a large amount of unlabeled data for training models
and improving performance. In the field of road extraction, researchers have used various
methods to address the issue of limited labeled data. This section will explore this issue
from the perspectives of weakly supervised learning and semi-supervised learning.

3.1. Road Feature Extraction Based on Weakly Supervised Learning

In weakly supervised road extraction tasks, the challenge of acquiring pixel-level
labeled data at a high cost and difficulty is encountered by researchers. Therefore, the
exploration of alternatives such as weak label data, such as point or line annotations,
has become a focus. These data are comparatively easier to obtain and more abundant
than pixel-level labels, making them the preferred choice for researchers. For instance, a
method known as “deep windows” [142] effectively utilizes point annotation data in road
centerline extraction tasks. A block-based road center point estimation model was initially
designed, inspired by the stacked hourglass networks applied in the field of human pose
estimation [143]. This model was then trained using point annotations (indicating the
center points of roads in training blocks) to predict road center points within local blocks.
Subsequently, the direction of the road was estimated using the Fourier spectrum analysis
algorithm. Guided by the CNN model, road center points within blocks were iteratively
tracked and connected along the road’s direction, completing the road centerline extraction.
Building upon this method, Lian and Huang [144] further developed a point-based weakly
supervised road segmentation method for road surface extraction. Point annotation data
were initially utilized to detect road seed points and background points in remote sensing
images. These points were then used to train a support vector machine classifier (SVC)
for classifying each pixel in the image as road or non-road. Simultaneously, a multi-scale
and multi-direction Gabor filter was introduced to estimate the road potential of each pixel
based on the preliminary classification results, taking into consideration the local geometric
and directional features of the road. Finally, an active contour model algorithm based on
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local binary fitting energy (LBF-Snake) was introduced to extract road contours from non-
uniform road potential maps and optimize road regions through simple post-processing.

The weakly supervised road surface extraction method “ScRoadExtractor” was pro-
posed [145]. This method utilizes road centerlines as line drawing label data and combines
remote sensing images with a road label propagation algorithm to generate pseudo-labels.
Holistically nested edge detection (HED) was employed for edge detection within the im-
agery boundary. Additionally, a network model with a dual-semantic branch (DBNet) was
designed for training. The model’s primary branch is based on an encoder–decoder struc-
ture, with ResNet-34 serving as the encoder backbone. The intermediate layer incorporates
atrous spatial pyramid pooling (ASPP). The decoder includes road surface segmentation
and road boundary detection branches, which utilize segmentation and boundary loss
functions to assess the similarity between the segmentation results and pseudo-labels and
the edge segmentation results and edge detection. This enables the network to iteratively
optimize and improve road extraction. M. Zhou et al. [146] observed that in the presence of
background occlusion and spectral confusion in remote sensing images, road edges tend
to appear blurry. Using single-pixel-width line drawing labels alone to approximate the
position of road centerlines does not offer sufficient supervision for road boundary learn-
ing. Consequently, this results in decreased accuracy in road surface segmentation when
employing line drawing supervision methods. They also considered the label propagation
algorithm to be overly complex and, as a result, opted not to use it. Instead, they introduced
a weakly supervised road segmentation network, SOC-RoadNet, based on structural and
directional consistency. SOC-RoadNet utilizes line drawing labels as weak supervision for
road surface extraction from remote sensing images. SOC-RoadNet features a dual-branch
architecture, encompassing a road segmentation branch and a road direction prediction
branch. The road segmentation branch directly learns road surface features from the line
drawing labels, while the direction prediction branch predicts continuous road directions
to enhance road connectivity. Rather than regularizing road boundaries using unreliable
edge maps, SOC-RoadNet improves the accuracy of road boundaries by introducing a
structural consistency loss function. These methods illustrate how to judiciously leverage
point and line annotations to enhance road extraction performance and accuracy within a
weakly supervised learning framework.

3.2. Road Feature Extraction Based on Semi-Supervised Learning

When applying semi-supervised learning to road extraction tasks, three main aspects
are typically addressed. The first involves consistency regularization, often entailing two
branches, each dealing with samples subject to different perturbations. Through loss
functions, the predictions of these two branches are encouraged to remain consistent. This
means that some form of perturbation (e.g., flipping, rotating, cropping, and mirroring)
is applied to unlabeled sample data, and the model’s predictions should exhibit minimal
changes. The second aspect pertains to adversarial training, wherein adversarial strategies
are applied to unlabeled data to align the outputs of unlabeled data as closely as possible
with the distribution of real data. Finally, pseudo-labeling is the third aspect, involving
an initial model training using labeled data. Subsequently, the trained model is utilized
to make predictions for unlabeled data, high-confidence samples (above a pre-defined
threshold) are selected, and their predicted results are used as pseudo-labels. These pseudo-
labeled data are integrated into the labeled dataset, and the model undergoes further
training on this expanded labeled dataset through an iterative process aimed at ongoing
model optimization. In general, these methods are aimed at addressing challenges such as
limited label availability and high annotation costs.

(1) Based on the consistency regularization

When applying semi-supervised learning to road extraction tasks, the three approaches
mentioned above have been utilized by researchers. For instance, the introduction of
the idea of consistency regularization into road extraction was presented [147]. A semi-
supervised semantic segmentation method for fine-grained road scene understanding was
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designed. Four perturbation strategies were employed, encompassing random grayscale,
random blur, random color jitter (brightness, contrast, saturation, etc.), and random Gaus-
sian noise. A dual-branch structure was implemented, with one branch perturbing unla-
beled data and the other branch preserving the original image. The combination of labeled
and unlabeled samples in a U-Net model, with a balanced strategy of supervised and
unsupervised losses, enabled the efficient extraction of road scene information, including
vehicles, road lines, crosswalks, ground markings, and lane widths. This approach not
only improved the classification accuracy of semantic segmentation networks but also
mitigated the negative impact of limited labeled data on network performance. In another
study [148], which focused on consistency regularization in semi-supervised learning,
perturbation schemes were reviewed, and prominent data-level perturbation schemes,
CutMix and ClassMix (a development from CutMix), as well as model-level perturbation
representatives, mean teacher (MT) and cross pseudo-supervision (CPS), were identified.
Inspired by these four perturbation methods, an end-to-end semi-supervised semantic
segmentation framework named “ClassHyPer” was proposed. This framework is based
on the ClassMix structure and simultaneously incorporates MT and CPS perturbations to
form a mixed perturbation strategy. The images subjected to these mixed perturbations
were then processed through a classic FCN with VGG16 as the backbone structure. By
employing various loss functions to calculate sample correlations, ClassHyper exhibited
strong performance on five different urban and road datasets, demonstrating its potential
in enhancing model performance when confronted with limited labeled data.

(2) Based on the consistency regularization and pseudo-labels

The concept of consistency regularization and pseudo-labeling was introduced into
semi-supervised road extraction tasks by You et al. [149], who proposed a novel semi-
supervised remote sensing road extraction method called “FMWDCT”. This method
comprises two key components: dual-network cross training (DCT) and foreground pasting
(FP). The objective of dual-network cross training is to address common challenges in
remote sensing image segmentation tasks, such as limited training data and high annotation
costs. Foreground pasting involves the integration of foreground pixels from labeled images
into unlabeled images, generating mixed input images. This strategy aims to tackle the
issue of imbalanced positive and negative training samples in road extraction tasks. In
FMWDCT, each network includes both an initial network and an enhancement network.
Mixed pseudo-labels are generated by combining high-confidence predictions from the
enhancement network and labeled masks. Subsequently, these mixed pseudo-labels are
employed to guide cross training in another adversarial base network and to facilitate
smoothing updates in the corresponding enhancement network. This approach contributes
to the enhancement of road extraction in situations involving limited labeled data while
harnessing the potential of unlabeled data and pseudo-labeling.

(3) Based on adversarial training and pseudo-labels

The semi-supervised road extraction problem was addressed [150] through the uti-
lization of adversarial training and pseudo-labeling. They introduced an innovative semi-
supervised road extraction network known as “SemiRoadExNet”, which is designed based
on generative adversarial networks (GANs) and comprises a generator and two discrim-
inators. The generator follows an encoder–decoder structure, utilizing ResNet-34 as the
encoder backbone, and introduces channel attention and spatial attention in a serial strategy.
Additionally, multiple dilated convolutions with skip connections are incorporated in the
middle layers. Two discriminators, based on the U-Net architecture, are employed for
different tasks. The working principle of SemiRoadExNet is as follows: first, labeled and
unlabeled images are input into the generator network for road extraction. The generator’s
output includes road segmentation results and their corresponding entropy maps. The
entropy map represents the confidence level for each pixel’s prediction of road or non-road.
Next, two discriminators are utilized to enforce the consistency of feature distributions be-
tween the road prediction maps and entropy maps of labeled and unlabeled data. Through
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adversarial training, the generator is continuously regularized, exploring latent informa-
tion within unlabeled data and enhancing the model’s generalization capability. This
method aims to maximize the utilization of potential information in low-confidence pixels
in pseudo-labels, further enhancing semi-supervised road extraction models, reducing
reliance on labeled data, and improving network performance.

3.3. Road Feature Extraction Based on Semi-Weakly Supervised Learning

A novel approach [151] combines the strengths of semi-supervised and weakly su-
pervised learning, resulting in a method known as semi-weakly supervised learning. In
this context, adversarial training from semi-supervised learning and the utilization of
weak labels (such as road centerlines) from weakly supervised learning were leveraged to
propose a remote sensing image road extraction model named “SW-GAN”. SW-GAN com-
prises two generators and one discriminator. These generators include a fully supervised
generator based on the D-LinkNet model and a weakly supervised generator based on the
Res-UNet model, which incorporates learnable pyramid dilated modules into the middle
and skip connection layers to expand the receptive field. The training dataset includes
both fully supervised and weakly supervised datasets. During the training process, the
fully supervised generator uses both the fully supervised and weakly supervised datasets,
while the weakly supervised generator utilizes only the weakly supervised dataset. The
output of the weakly supervised generator is employed as a feature to augment the fully
supervised generator. To ensure consistency between the fully supervised and weakly
supervised generators on the weakly supervised dataset, a consistency loss function is
designed to encourage both generators to produce results that are as similar as possible. The
discriminator employs an FCN model, aiming to distinguish whether the generated road
network is a pixel-level manually annotated road network or fully supervised synthesized
road network. SW-GAN effectively utilizes a limited amount of fully supervised data and
a substantial amount of weakly supervised data for road network extraction in remote
sensing images, combining the advantages of semi-supervised and weakly supervised
learning and achieving outstanding road extraction results.

4. Discussions

This paper starts from the perspective of supervised learning in deep learning, em-
phasizing the technical intricacies involved in road extraction from remote sensing images,
and categorizes supervised learning into four methods based on the use of pixel-level label
data. The advantages and disadvantages of the four learning methods are listed in Table 4.

For a more comprehensive evaluation of model performances, we primarily assess the
accuracy of the models based on five key metrics, namely intersection over union (IoU),
overall accuracy (OA), Precision, Recall, and F1. IoU indicates the overlap between the
predicted and ground truth road areas in road extraction tasks. OA denotes the accuracy,
signifying the ratio of correctly predicted pixels to the total pixels. Precision reflects the
proportion of accurately predicted road pixels by the model, while Recall measures the
number of roads identified by the model. F1 is the harmonic mean of Precision and Recall.
Simultaneously, we have outlined the performance of several models on the road dataset
of Massachusetts, as depicted in Table 5.

LDANet [97] demonstrates exceptional performance in terms of Recall, Precision, and
F1-Score, showcasing its ability to accurately identify road pixels while effectively reducing
false positives. Furthermore, LDANet boasts an impressively low parameter count of
only 0.2M, positioning itself as an outstanding lightweight model, thereby highlighting a
promising direction for future research and adoption. Seg-Road-I, DU-Net, CM-FCN, and
others exhibit commendable performance across multiple metrics, showcasing elevated
levels of Recall, Precision, and F1-Score. Similar to LDANet, they serve as representatives
of high-performance models in this domain.
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Table 4. Comparison of 4 learning methods.

Learning Type Labeled Data
Usage

Extraction
Accuracy

Generalization
Ability

Prospects for
Future Research Disadvantages

Fully Supervised
Learning

Large amount of
high-quality
labeled data

High accuracy Relatively poor
Excellent results with
sufficient labeled data,
limited generalization

Requires substantial
human effort and cost to
label data. It may overfit
to labeled data and lack
adaptability to unseen
scenarios

Semi-Supervised
Learning

Small amount of
labeled data +
unlabeled data

Lower than fully
supervised

Better than fully
supervised

Potential
improvements through
utilizing both labeled
and unlabeled data

Complexity in designing
algorithms that
effectively leverage both
labeled and unlabeled
data, risk of error
propagation from
weak labels

Weakly Supervised
Learning

Large amount of
weakly labeled

data

Lower than fully
supervised Strong generalization

Promising due to ease
of obtaining weak
labels and better
generalization

Difficulty in ensuring
accuracy due to the noise
or ambiguity present in
weak labels, potential
inconsistency in
labeling quality

Semi-Weakly
Supervised
Learning

Combination of
small amount of

labeled data + large
amount of weakly

labeled data

Moderate accuracy Strong generalization

Opportunity to harness
the benefits of both
labeled and weakly
labeled data

Balancing accuracy from
labeled data with
generalization from weak
labels, potential
challenges in
harmonizing the different
types of labeled data

Table 5. The Performance Comparison of Models on the Massachusetts Dataset.

Method Recall Precision F1-Score OA IoU mIoU Parameters (M)

SegRExt-A [67] 68.29 76.95 - 97.53 56.82 - -
SegRExt-F [67] 63.84 74.88 - 96.62 52.85 - -

MSPFE-Net [57] 75.50 73.11 74.29 - 59.09 - -
LDANet [97] 97.07 97.55 97.31 - 68.34 - 0.20

SemiRoadExNet [150] - - 70.23 - 54.66 - -
Seg-Road-I [70] 92.86 87.34 90.02 - 68.38 83.89 28.67

DU-Net [74] 96.96 97.48 96.72 - - 67.05 -
SR [31] 77.50 80.41 78.93 - - 65.30 -

MECA-Net [66] 78.19 80.63 79.39 - 65.82 - -
GA-Net [130] 76.89 84.10 80.33 - 67.13 -

SDG-DenseNet [61] 77.67 81.86 79.63 - 66.47 - 265.00
SDUNet [96] 75.70 81.20 78.40 - 74.10 - 80.24
MUNet [138] - - 67.40 97.20 - 74.00 -

U-Net++ + Resnext [152] 95.10 94.30 94.70 - -
Deep residual U-Net [153] 80.00 84.00 81.00 - 72.00 - -

CM-FCN [82] 77.87 79.45 78.65 97.98 67.55 - 56.45
CRAE-Net [83] 79.35 80.04 79.52 - 66.27 - 49.18

SGCN [154] 73.91 84.82 78.99 - 81.65 65.28 42.73
Richer U-Net [131] - - - - 58.63 - -

GDCNet [122] 71.21 84.43 - - 62.94 - -
ConSwin [69] 79.17 81.11 80.13 98.15 66.84 - -
RALC-Net [1] - - 74.70 - 59.61

RoadVecNet [136] - - 92.51 - 86.31 - -



Sensors 2024, 24, 1708 23 of 31

Table 5. Cont.

Method Recall Precision F1-Score OA IoU mIoU Parameters (M)

MCG-UNet [119] 86.59 91.18 88.74 - 79.92 -
AEML U-Nets [125] 76.33 81.06 78.62 - 64.77 - -

RVgg19 [155] 91.02 84.98 87.90 - - - -
CADUNet [78] 76.55 79.45 77.89 98.00 64.12 - -

AF-Net [94] - - - - 67.25 - -
E-UNet [118] 81.30 80.71 80.45 97.59 68.56 - -
DCANet [93] 79.54 80.20 79.84 98.09 66.45 82.23 11.1

Deep FR TransNet [91] 78.13 83.72 - 97.48 62.86 -
Prop-GAN [7] 92.92 91.54 92.20 - 87.43 -

DGRN [56] 71.97 - 76.59 - 62.48 - -
CNN-Based [126] 85.88 78.47 - - 78.65 - -

Nested SE-Deeplab [72] - 85.80 85.70 96.70 73.87 - -
DiResNet [124] 79.41 80.38 79.70 98.13 - - -

CDG [77] 71.80 81.41 76.10 - 61.90 - -
VNet+CEDL [133] - - 91.18 - 83.82 - -

ConSwin, DCANet, and DiResNet all have overall accuracy (OA) exceeding 98%.
This high OA indicates that these models exhibit a very high level of accuracy in correctly
classifying road and non-road pixels within the dataset they were evaluated on.

Prop-GAN, DCANet, and Seg-Road-I exhibit high mIoU, with Prop-GAN achieving
the highest mIoU among these models. This signifies their robustness and precision in road
extraction tasks, indicating their capability to accurately identify and extract road information.

In conclusion, we have provided a more detailed summary of the limitations and
challenges associated with current models in the context of road extraction. The following
points encapsulate our findings:

(1) Model Complexity vs. Inference Speed

Complex models generally confer superior accuracy, however, at the potential expense
of increased computational overhead and a higher number of parameters during the
inference phase. Looking forward, achieving a nuanced equilibrium between model
complexity and predictive speed is imperative, particularly in the context of real-time
applications for road extraction.

(2) Generalization vs. Specialization

When confronted with unfamiliar road data, models demonstrating excessive spe-
cialization may encounter challenges, while those characterized by an overly generalized
nature may fail to comprehensively capture the nuanced complexities within specific road
domains. Achieving a judicious balance is crucial for optimizing performance across
diverse road scenarios.

(3) Interpretability vs. Model Performance

Simplified models are often prized for their interpretability, yet they may fall short
of matching the performance of their more intricate counterparts. While road extraction
may superficially appear as a straightforward binary classification task, certain deep neural
networks—especially sophisticated architectures like the Transformer—are frequently
characterized as “black-box” models. This characterization poses challenges in deciphering
their decision making processes and assessing their suitability for deployment in binary
classification tasks. Furthermore, we underscore the notion that employing overly complex
models for ostensibly simple tasks might be construed as an instance of “overengineering”.
Therefore, meticulous consideration is warranted in the selection of models, navigating the
delicate balance between interpretability and performance.
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5. Prospects

Despite significant progress in the field of road extraction from remote sensing images
in recent years, there are still some issues that require further research and development,
summarized as follows:

(1) Obtaining High-Quality Labeled Sample Data

This can be addressed by employing semi-supervised and weakly supervised learning
methods, combining limited labeled sample data with a large amount of unlabeled data.
Although these methods may not achieve the same level of accuracy in road extraction as
full supervision, they provide new approaches to addressing this challenge. Furthermore,
we have observed that there is a relatively limited availability of open road datasets in
complex mountainous terrains when organizing the dataset. Therefore, there is a need to
further expand data resources in this regard.

(2) Differences in Spectral Information Due to Factors Such as Sensors and Solar Angles

Additionally, when dealing with challenges like road occlusion and complex back-
ground information, relatively simple neural networks can be employed to separate road
and non-road areas in advance, thereby enhancing the robustness of the model in subse-
quent recognition tasks. However, it is worth noting that research in areas such as image
denoising and super-high-resolution reconstruction remains relatively limited in the field
of data enhancement.

(3) Utilizing Multi-Modal Data

Currently, the application of multi-modal data in road extraction research is relatively
limited. Multi-spectral (hyperspectral) data provide us with rich spectral information,
while SAR data compensate for the limitations of optical images when dealing with issues
like vegetation occlusion. However, LiDAR data are distinctive, typically in the form
of three-dimensional point cloud data, and there are significant differences in spatial
representation compared to two-dimensional road data. Therefore, further research is
needed in the area of data fusion. Scholars in this field have conducted relatively limited
research, leaving room for further exploration in the future. With the continuous expansion
of crowdsourced data and the advantages of GNSS and other trajectory data, which do not
contain additional environmental information and have minimal interference, they have
played a significant role when combined with optical images. This combination provides
us with complementary information and effectively mitigates issues such as the loss of
road intersection information and incomplete connections. In the future, crowdsourced
datasets from platforms like Google, Amap, Didi, Baidu, and others will further support
and assist road extraction.

(4) Optimization of Fully Supervised Learning Models

From generative adversarial networks (GANs) to conditional generative adversarial
networks (CGANs), and from unsupervised learning to supervised learning, these advance-
ments all emphasize the advantages of supervised learning in road feature extraction to
achieve more ideal road extraction results. Models based on the encoder–decoder struc-
ture are still a popular research direction in the current deep learning field. Introducing
attention mechanism modules in different structures, achieving multi-scale feature fusion,
considering the introduction of Transformer, GCNs, and deep convolutional separation
structures, and even introducing corresponding loss functions based on the model’s charac-
teristics during the training process all contribute to improving the model’s road feature
extraction performance in images. As models move towards greater depth and width, an
increase in model size may lead to an excess of parameters, thereby raising training costs.
Therefore, seeking lighter, more efficient, and more highly generalizable models becomes
an important direction for future research.

(5) Optimization of Semi-Supervised (Weak) Learning Models
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With the emergence of semi-supervised (weak) learning, we have successfully over-
come the challenges of high costs and the difficulty of obtaining labels by using a small
amount of labeled data and a large amount of weakly labeled annotation data. We have
employed various methods and strategies for model training, achieving training results
approximating those of fully supervised learning. However, despite the significant progress
made in semi-supervised and weakly supervised learning, there is still a substantial gap in
accuracy when it comes to road extraction compared to fully supervised learning. Addi-
tionally, there is relatively limited research on models based on semi-weakly supervised
learning. Therefore, future research directions should explore how to fully integrate the
respective strengths of semi-supervised and weakly supervised learning to compensate for
their shortcomings and build more powerful semi-weakly supervised models.

(6) Road Extraction Post-Processing

Road segmentation is not the end of road extraction. After road segmentation, there is
still significant room for the post-processing of road extraction. This is because the quality
of the model’s extraction cannot be solely measured by high or low accuracy. Further
observation is required to assess whether the connectivity of roads in the image is intact
or if there are issues like fragmentation. Relevant post-processing methods can be used
to repair damaged roads and improve the connectivity of poorly connected intersections.
Additionally, attention should be given to specific tasks such as vectorization of roads,
estimation of road areas, and registration of road features with aerial imagery. These tasks
are of great significance to fields such as geographic information systems (GISs), urban
road networks, and electronic map updates. Conditional generative adversarial networks
(CGANs) can be applied not only to road extraction tasks but also provide new avenues
for road extraction post-processing. By utilizing the differences between the generator
and discriminator backbone models and additional conditions like adding noise and
artifacts, they offer extensive opportunities for the future development of post-processing
in this field.
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