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Abstract: To satisfy the preference of each driver, the development of a Lane‑Keeping Assistance
(LKA) system that can adapt to individual drivers has become a research hotspot in recent years.
However, existing studies have mostly relied on the assumption that the LKA characteristic aligned
with the driver’s preference is consistent with this driver’s naturalistic driving characteristic. Nev‑
ertheless, this assumption may not always hold true, causing limitations to the effectiveness of this
method. This paper proposes a novel method for a Driver‑Adaptive Lane‑Keeping Assistance
(DALKA) system based on drivers’ real preferences. First, metrics are extracted from collected natu‑
ralistic driving data using action point theory to describe drivers’ naturalistic driving characteristics.
Then, the subjective and objective evaluation method is introduced to obtain the real preference of
each test driver for the LKA system. Finally, machine learning methods are employed to train a
model that relates naturalistic driving characteristics to the drivers’ real preferences, and the model‑
predicted preferences are integrated into the DALKA system. The developedDALKA system is then
subjectively evaluated by the drivers. The results show that our DALKA system, developed using
this method, can enhance or maintain the subjective evaluations of the LKA system for most drivers.

Keywords: lane‑keeping assistance system; driver adaption; subjective and objective evaluation;
naturalistic driving characteristic; machine learning

1. Introduction
Advanced Driver Assistance Systems (ADAS) are designed to enhance both driving

safety and comfort. Lane‑Keeping Assistance (LKA) is one type of ADAS that prevents
the hazards resulting from unintended lane departure. However, during the design pro‑
cess of ADAS, insufficient consideration is given to the differences in preferences among
drivers. Existing literature has shown that drivers of different genders, ages, and driving
experiences have different levels of acceptance regarding ADAS [1,2].

One approach to addressing this issue is to offer mode selection for drivers. For in‑
stance, in the case of Adaptive Cruise Control (ACC), various time headwaymodes—such
as short, normal, and long—could be made available, allowing drivers to choose the mode
that best suits their preferences via the human–machine interface. Although this approach
can help customize ADAS for individual drivers, there are also some potential challenges
to consider. For instance, when a driver lacks enoughADAS experience, hemay be unsure
which mode would best satisfy his preference. On the other hand, the number of ADAS
modes provided may be severely limited, which can restrict driver choice and make it
difficult to find the most suitable mode. As a result, driver‑adaptive ADAS that can au‑
tomatically satisfy the preferences of different drivers has become a research hotspot in
recent years.

The current primary approach for developing driver‑adaptive ADAS is to learn and
mimic the naturalistic driving characteristics of the current driver, aiming to make sys‑
tem characteristics satisfying the driver’s preference. Naturalistic driving characteristics
are the behavior and performance exhibited during a driver’s manual driving process, i.e.,
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when not using ADAS [3,4]. The development methods of driver‑adaptive ADAS mainly
include approaches based on classification characteristics and those based on individual
characteristics. Classification‑based methods involve categorizing drivers into different
groups based on their naturalistic driving characteristics, followed by configuring distinct
ADAS features for each group. Specifically, drivers are classified into categories such as
“conservative”, “normal”, and “aggressive” based on metrics from driving data, such as
lateral position and speed within the lane [5] and time to lane‑crossing [6,7]. Some studies,
not relying on metrics, directly employ non‑parametric methods like Gaussian mixture
models [8] for driver classification. After classification, personalized ADAS characteris‑
tics are tailored to different driving characteristic groups using methods like fuzzy rule
tables [5] or averaging within‑group driving data [8]. Individual‑based methods involve
configuring ADAS characteristics for each driver based on their individual driving char‑
acteristics. By utilizing parameters from models fitted during a driver’s car‑following be‑
havior [9], dynamic expected driving range during lateral driving [10], or parameters from
Gaussian Mixture‑HiddenMarkovModels [11,12], personalized system characteristics for
ACC, LKA, and other ADAS are set for each driver. These studies enable ADAS to effec‑
tively replicate the driver’s unique driving characteristic, thereby achieving differentiated
ADAS.

However, whether the characteristics of the LKA system that are most preferred by
the driver should align with his own naturalistic driving characteristics has become a key
question. Some literature found thatwhen adriver usesADAS, the system characteristic he
prefers may not be completely consistent with his own naturalistic driving characteristic.
Some literature [13] compared the braking process of a driver during naturalistic driving
and an autonomous driving vehicle when approaching a zebra crossing. It was observed
that if the system characteristic was aligned with this driver’s naturalistic driving style,
such a characteristic was often not rated as the safest and most cooperative by this driver.
In the literature [14], which is focused on the overtaking process of autonomous driving
vehicles, it was found that some drivers preferred the process that differed from their own
driving styles. As for the LKA system, in our previous study [15], we utilized subjective
and objective evaluation methods to quantify the differences in subjective ratings when
drivers used an LKA system that aligned with their own driving characteristics compared
to their real preferred LKA system. We found that among the 24 drivers participating in
our test, 62.5% of them believed that the LKA system, which aligned with their individual
driving characteristics, exhibited a significant difference compared to the LKA system they
really preferred. Therefore, the method of aligning the characteristics of ADAS with the
driver’s individual naturalistic driving characteristics may result in these characteristics
not fully satisfying the drivers’ real preferences. In one study [16], an online personalized
preference learning method was proposed based on driver preference feedback queries
and Bayesian approaches, and it could quickly and accurately learn the preferences ofmost
subjects. However, the driver preferences are assumed to be a simple linear function of
some fixed driving characteristics, which may not be true.

In this paper, we focus on the LKA system and present a novel method for develop‑
ing a Driver‑Adaptive Lane‑Keeping Assistance (DALKA) system. This method can be
employed to initialize the driver preference model in the study [16], making the driver
preference model closer to the real preferences of the drivers. Additionally, the method
proposed in this paper can be applied in situations where online preference queries for
drivers are not feasible. The main contributions of this paper are as follows:
• Extracting metrics for describing naturalistic driving characteristics based on action

point theory (hereafter, these metrics will be referred to as “naturalistic driving char‑
acteristic metrics”);

• Introducing subjective and objective evaluationmethods to obtain the test drivers’ real
preferences to the LKA system, making model training possible;

• Instead of having the LKA systemdirectlymimic the driver’s naturalistic driving char‑
acteristics, employing machine learning models to train a model using the driver’s
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individual driving characteristics and their real preferred LKA system characteristics
and integrating the model‑predicted drivers’ real preferences into the LKA system.
The remaining content of this paper is organized as follows. Section 2 introduces the

development method of DALKA. Section 3 describes the experimental platform and pro‑
cess. Section 4 presents the drivers’ real preferences, which were used to train the model,
and the predictive performance of the model. Section 5 explains how the predicted pref‑
erences are integrated into the LKA system, along with the results of the validation ex‑
periments. Section 6 gives a summary of the entire paper and potential issues for further
research.

2. Methods
2.1. Research Roadmap

The implementation roadmap of the proposed DALKA system is illustrated in
Figure 1. In this implementation path, we follow the approach of configuring the LKA
system parameters based on the analysis of naturalistic driving data. However, to better
align the system characteristics with drivers’ real preferences, we introduce the “Driver
Preference Prediction Model (DPPM)” in the implementation roadmap. In the DALKA
system described in this paper, we do not conduct research on the environment percep‑
tion module. The key focus of this study will be on the naturalistic driving data analysis
module, DPPMs, and the LKA decision and control module.
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Figure 1. The implementation roadmap of the DALKA system.

The development roadmap for the DPPMs is illustrated in Figure 2. To train the
DPPMs, it is necessary to obtain the test drivers’ real preferences for the LKA system dur‑
ing the model training phase. The real preferences, along with the driver’s naturalistic
driving characteristic metrics, are used as training samples to train the DPPM.
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2.2. Lateral Naturalistic Driving Characteristic Analysis Method
Naturalistic driving characteristics are the driving behaviors and performance dur‑

ing the driver’s manual driving process (as stated before). It can provide an intuitive in‑
sight into the driving behavior of an individual driver [17]. Common analysis methods for
naturalistic driving characteristics mainly include the descriptive statistics method [6,10],
the parameter estimation method [18,19], and the non‑parameter estimation method [20].
The descriptive statistics method refers to using basic statistical metrics such as the mean
and standard deviation of various variables during a driver’s naturalistic driving process
to describe each characteristic. This method is easy to apply, and the metrics have clear
significance. However, the metrics extracted by this method heavily rely on experience,
and overly simple statistics may struggle to precisely capture specific aspects of a driver’s
driving characteristics. The parameter estimation method refers to initially describing the
naturalistic driving process using a driver model with clear physical meanings. Subse‑
quently, different model parameters are estimated for different drivers, serving as metrics
to characterize distinct naturalistic driving characteristics. However, due to potential de‑
ficiencies in the driver model, its predictive accuracy may be compromised, leading to
inaccuracy when describing the naturalistic driving process. On the other hand, the non‑
parameter estimationmethod aims to enhancemodel accuracy by using a black‑boxmodel
to describe the naturalistic driving process and estimate model parameters. This method
achieves higher predictive accuracy for driving processes but lacks clear physicalmeanings
for model parameters, limiting its applicability in describing naturalistic driving character‑
istics. Considering these factors, we extend the traditional descriptive statistics method to
overcome its limitations of single‑dimensional metrics and shallow quantification of driv‑
ing characteristics. By applying action point theory, we enhance the descriptive statistics
method.

2.2.1. Traditional Descriptive Statistics Method
In this study, we collected the lateral offset, steering wheel angle, steering wheel

torque, yaw rate, and their first and second derivatives with respect to time as basic vari‑
ables during the naturalistic driving process. Statistical metrics of these basic variables
were computed for all of the driving data to serve as metrics of naturalistic driving. These
metrics are categorized into three aspects: basic metrics, steering returning metrics, and
frequency‑domain metrics. Basic metrics include the mean, standard deviation, 5th per‑
centile, and 95th percentile of basic variables. Steering returning metrics, based on the
analysis in ref. [10], including steering returning frequency fθst−peak (the number of steer‑
ing wheel angle peak points per unit time), lateral offset returning frequency fypeak (the
number of lateral offset peak points per unit time), as well as the variance of lateral off‑
set s2

y−lane−stpeak and lateral offset speed s2
vy−lane−stpeak at the steering wheel angle peak

points. Frequency‑domain metrics include fFFT−θst and fFFT−y, representing the frequen‑
cies corresponding to the amplitude peaks after Fourier‑transforming the steering wheel
angle and lateral offset, respectively.

2.2.2. Descriptive Statistics Method Based on Action Point Theory
The action point theory was first proposed in the study of longitudinal car‑following

processes. In contrast to modeling the driver, the action point theory is based on the direct
analysis of driving processes and driver control behaviors. Action points have a clear phys‑
ical meaning, making it more straightforward to apply in the analysis of driving character‑
istics [21]. In ref. [22], the relationship between the relative longitudinal distance and rela‑
tive velocity of two vehicles in the longitudinal car‑following process is utilized to propose
several key indicators reflecting action points, including SDV (the threshold of speed dif‑
ference at large distances), CLDV (the threshold for recognizing small speed differences at
short, decreasing distances), OPDV (the threshold for recognizing small speed differences
at short, increasing distances), andAX (the desired distance between the front of successive
vehicles in a standing queue). In ref. [23], considering the delay between driver‑executed
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actions and the vehicle’s longitudinal speed response, the relationship graph between ac‑
tuator signals (such as accelerator pedal pressure) and relative velocity is introduced, pro‑
viding a closer approximation to the driver’s action points.

We apply action point theory in longitudinal driving to the lateral naturalistic driving
process, extracting action points for the lane‑keeping process based on the steering wheel
angle and lateral offset. The specific extraction process is the same as themethod described
in ref. [15].

The three action points during the lane‑keeping process in naturalistic driving are
illustrated in Figure 3, specifically:
• Lane‑Keeping Steering Starting Point, LKSSP:

The moment when the driver initiates steering to bring the vehicle back to the center
of the lane, typically when perceiving a risk of deviating out of the lane;

• Lane‑Keeping Lateral Maximum Deviation Point, LKMDP:

The moment following LKSSP when the lateral offset of the vehicle reaches its peak.
At this moment, the vehicle’ tendency to deviate toward outside of the lane is stopped, and
the driver no longer perceives a risk of lane departure;

• Lane‑Keeping Steering Ending Point, LKSEP:

Lane‑Keeping Steering Ending Point (LKSEP): The moment after LKMDP when the
lateral offset returns to zero or when the velocity relative to the lane (referred to hereafter
as “lane‑relative velocity”) becomes zero. At this point, the driver steers the vehicle back
to the lane center, marking the conclusion of one lane‑keeping process.
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Figure 3. Apiece of data of lane‑keeping process and action points: (a) Lateral offset data; (b) Steering
wheel angle data.

Based on these action points, we segmented naturalistic driving data to extract specific
processes that better reflect lateral driving characteristics. The process between LKSSP and
LKMDP is defined as the Risk‑Perception Process. During this process, due to the contin‑
uous trend of the vehicle deviating from the lane, the driver focuses on perceiving the risk
of lane departure. The process between LKSSP and LKSEP is defined as Returning Process.
In Returning Process, the driver steers the wheel to correct the vehicle’s position back to
the center of the lane. We also use lateral offset, steering wheel angle, steering wheel angu‑
lar velocity, yaw rate, and their first and second derivatives as basic variables. The mean,
standard deviation, 5th percentile, and 95th percentile of these variables are calculated as
naturalistic driving characteristic metrics for Risk‑Perception Process and Returning Pro‑
cess specifically.

Additionally, in ref. [15], based on the relationship between lateral offset and lane‑
relative velocity at LKSSP, parameters of a fitted line are used as metrics, reflecting the
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driver’s sensitivity to lane‑relative velocity in risk perception. Furthermore, statistical met‑
rics, including the mean, standard deviation, 50th percentile, and 95th percentile, are cal‑
culated for lateral offset and lane‑relative velocity at LKSSP.

2.3. Method for Obtaining Drivers’ Real Preferences
In traditional design method of subjective and objective evaluation tests, whether

based on system models or actual vehicles, diverse system characteristics for subjective
evaluation (referred to as “evaluation samples”) are generated by altering internal system
parameters. However, this approach is constrained bymodel or mechanical structure limi‑
tations, resulting in a limited scope covered by these characteristics. Therefore, we adopted
themethodused in ref. [24], which does not rely on a systemmodel. Sample designmetrics,
which reflect system characteristics and have the potential to influence driver perception,
are directly chosen. Subsequently, diverse evaluation samples are generated by varying
the numerical values of each sample design metric. This method ensures a wide distribu‑
tion of evaluation samples, contributing to an enhanced relationship between subjective
and objective evaluations. In this section, we begin by analyzing the working process of
LKA system. Subsequently, we present the method for constructing evaluation samples.
Finally, we showcase the subjective evaluation questionnaire and objective metrics em‑
ployed in the experiments.

2.3.1. The Working Process of LKA System
In order to comprehensively describe the characteristics of the LKA system, we divide

the working process of the LKA system into different sub‑processes. When the vehicle
gradually deviates from the lane and reaches a certain distance from the lane boundary,
the LKA system intervenes based on certain intervention rules. It applies torque to the
steering wheel to correct the vehicle back to the center of the lane.

Therefore, as shown in Figure 4, the LKA system’s working process can be divided
into the following phases:
• Intervention timing: This refers to the situation at the moment when LKA system

initiates its intervention tLKA−st;
• Intervention process: This refers to the process from the moment when the LKA sys‑

tem initiates its intervention tLKA−st to the moment when the LKA system ends its
intervention tLKA−ed due to the vehicle returning to the center of the lane.
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2.3.2. Method for Constructing Evaluation Samples
The LKA intervention timing determines under what conditions the LKA system

should start to intervene in the vehicle’s pose. The most common LKA intervention strate‑
gies are those based on the Distance to Lane Crossing (DLC) threshold [25]. Subsequently,
strategies based on the Time to Lane Crossing (TLC) threshold were proposed to adapt
to the different lane‑relative velocities [26–28]. However, TLC‑based strategies face chal‑
lenges in situations where the vehicle is close to the lane boundary but parallel to the lane
direction. To address this issue, combined strategies that use both DLC and TLC for in‑
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tervention have been proposed [7,29]. Although different studies have adopted various
design rules, they are generally based on DLC and TLC. Furthermore, TLC can be derived
from DLC and the lateral velocity of the vehicle relative to the lane direction, which is de‑
noted as the lane‑relative velocity vy−lane. Therefore, we can select the DLC threshold and
lane‑relative velocity vy−lane as sample design metrics for LKA intervention timing.

In the LKA intervention process, the system initially corrects the vehicle’s heading
to make it parallel to the lane. At this point, the vehicle has no tendency to deviate fur‑
ther from the lane, and the lateral offset reaches maximum. Subsequently, the system
controls the vehicle back to the center of the lane. Therefore, there are three key points
in the LKA intervention path: the starting point (x1,y1), the point of maximum lateral
deviation (x2,y2), and the endpoint

(
x3,y3

)
. Once these three key points are determined,

the intervention path is planned based on two Bezier curves, P1(t) and P2(t). The smooth
cubic Bezier curve is generated by adding two additional curve control points (x11,y11),
(x12,y12), (x21,y21), (x22,y22) between adjacent key points, as shown in Figure 5a.
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However, representing the LKA intervention path with coordinates of these control
points may not be intuitive. Therefore, we transformed the coordinates of these points
shown in Figure 5a into the variables shown in Figure 5b, which have clearer physical
meanings, as shown in Equation (1).

The variables in Equation (1) can be chosen as sample design metrics. However, be‑
fore this, some variables that are not suitable as sample design metrics due to information
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redundancy or experimental constraints need to be excluded. We can transform the initial
lateral offset y0 and initial yaw angle φ0 into the initial lane‑relative velocity vy−lane.

x1 = 0,y1 = y0
x11 = d1 + cos(φ0),y11 = y0 + d1sin(φ0)
x12 = dis1 − d1,y12 = y0 + yoffset
x2 = dis1,y2 = y0 + yoffset
x21 = dis1 + d1,y21 = y0 + yoffset
x22 = dis2 − d2,y22 = 0
x3 = dis2,y3 = 0

(1)

We can keep the total longitudinal distance dis of the LKA intervention process and
exclude dis1 with high correlation, then convert yoffset (the maximum distance further de‑
viating toward the outside of the lane relative to y0) into r (the ratio between the minimum
distance from the lane boundary during the intervention process DLCmin and the distance
from the lane boundary at LKA intervention DLC0), thus avoiding instances of deviating
out of the lane in certain scenarios. The formula for calculating r is as shown in Equations
(2) and (3).

r =DLCmin/DLC0, (2){
DLCmin = 1

2 (wlane −wvehicle −wmark)− y0 − yoffset
DLC0 = 1

2 (wlane −wvehicle −wmark)− y0
, (3)

As shown in Figure 5b, in Equation (3), wlane is the width of the lane, wvehicle is the
width of the vehicle, wmark is the width of the lane mark, y0 is the initial lateral offset of
LKA intervention process, and yoffset is the maximum distance further deviating toward
the outside of the lane relative to y0.

Finally, we can eliminate the Bezier curve control arm lengths d1 and d2, which have
little impact on the path shape. In conclusion, the sample design metrics for the LKA in‑
tervention process are as follows: the initial lane‑relative velocity vy−lane, the total longitu‑
dinal distance dis, and the ratio r between DLCmin and DLC0.

We employed the uniform design method in experimental design to achieve an even
distribution of metrics across various samples. This method eliminates the necessity for
numerous repetitive experiments and demonstrates a certain robustness to variations in
the model [30]. The uniform experimental design table Un(qs) contains approximate op‑
timal combinations of metric values under different numbers of experiments n, values of
metrics q, and quantity of metrics s [30]. We employed uniform experimental design tables
U9

(
92) and U9

(
93) to derive the sample characteristics of the LKA system for intervention

timing and intervention process, respectively, as shown in Tables 1 and 2.

Table 1. Value of metrics under different evaluation samples for LKA intervention timing.

No. DLCth
Unit: m

vy‑lane
Unit: m/s

1 0.0 0.15
2 0.1 0.10
3 0.2 0.05
4 0.3 0.20
5 0.4 0.45
6 0.5 0.35
7 0.6 0.25
8 0.7 0.50
9 0.8 0.40
10 0.9 0.30
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Table 2. Value of the metrics under different evaluation samples for LKA intervention process.

No. vy‑lane
Unit: m/s

dis
Unit: m r

1 0.20 90 0.3
2 0.35 85 0.7
3 0.50 80 0.2
4 0.15 75 0.6
5 0.30 70 0.1
6 0.45 65 0.5
7 0.10 60 0.0
8 0.25 55 0.4
9 0.40 50 0.8

2.3.3. The Subjective Questionnaires for LKA System and Objective Metrics
Relevant research has previously proposed subjective evaluation questions related to

driver perception in LKA intervention timing [28,29] and LKA intervention process [31,32].
In this study, we integrated evaluation questions from these studies, eliminating redun‑
dancy to form a comprehensive subjective assessment questionnaire regarding the LKA
intervention timing and the LKA intervention process. The subjective evaluation ques‑
tions, scoring ranges, and optimal scores are outlined in Table 3.

Table 3. The subjective evaluation questions, scoring range, and optimal scores for LKA system.

Category Subjective Evaluation Question Scoring Range Acceptable Range Optimal Score

LKA intervention timing Q1: Is the intervention timing
acceptable? [−4,4] [−1,1] 0

LKA intervention process
Q2: Is the process of vehicle returning
to road center acceptable? [−4,4] [−1,1] 0

Q3: During the intervention, is the
minimum distance to lane line
acceptable?

[−4,4] [−1,1] 0

Sample designmetrics are only used for constructing evaluation samples. To establish
a subjective and objective evaluationmodel, objectivemetrics still need to be extracted. The
extracted objective metrics are presented in Table A1.

2.4. Method for Training Driver Preference Prediction Model
Utilizing natural driving metrics of drivers to predict their preferences for LKA sys‑

tem is fundamentally a regression problem. Random Forest (RF) is a Bagging‑style ensem‑
ble learning method based on decision trees or regression trees. Given the difficulty of
obtaining extensive experimental data through subjective evaluation tests, among various
machine learning methods, RF stands out for its advantages in controlling model overfit‑
ting and requiring a smaller amount of data. Additionally, the method’s importance rank‑
ing based on node impurity provides excellent support for model analysis. Therefore, we
choose RF method to train the model in predicting driver preferences, referred to as the
Driver Preference Prediction Model (DPPM). The modeling approach of Random Forest
can be referenced from [33].

3. Tests
3.1. Test Conditions and Procedure

We focused on the research of lateral natural driving characteristics and the LKA sys‑
tem. In order to eliminate the influence of different drivers’ longitudinal speed control
abilities on their steering control during naturalistic driving and the perception of the LKA
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system, we ensured that drivers did not need to control the longitudinal speed during the
experiments. A constant speed of 80 km/h was set for the experiments.

The procedure of the lane‑keeping data‑collection test is outlined in TableA2. The sub‑
jective evaluation tests were divided into three tests for each working process of the LKA
system. The procedures for each test of LKA working processes are shown in Table A3.

3.2. Test Platform
Our experiments were conducted on a fixed‑base driving simulator. It consists of

three main components: a steering feedback simulation device consisting of a Steering‑
Force‑Feedback Actuator (FFA) system, a rapid prototyping controller for vehicle dynam‑
ics, an EPS model, and LKA controller computations, as well as a computer with a screen
for generating virtual reality environments and simulating traffic flow.

The overall architecture and a physical illustration of the driving simulator are shown
in Figure 6.
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3.3. Test Drivers
We recruited test drivers for naturalistic driving data‑collection tests and subjective

evaluation tests. These drivers had a certain experience and understanding of the LKA
system. We primarily selected researchers with more than 3 years of driving experience
engaged in relevant research projects and engineers from automotive companies. Driver
information is shown in Table 4.

Table 4. Driver information.

No. of Driver Job Age
Unit: Years

Driving Experience
Unit: Years

1 Researcher 25 4
2 Researcher 24 5
3 Researcher 24 4
4 Researcher 26 4
5 Researcher 25 5
6 Engineer 38 10
7 Engineer 30 3
8 Other 25 3
9 Other 35 8
10 Engineer 25 4
11 Researcher 24 3
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4. Result
4.1. Driver’s Real Preference for the LKA System

In this section, the results of drivers’ real preferences with regard to LKA intervention
timing and the LKA intervention process will be presented. Firstly, we establish models
comparing subjective evaluations and objective metrics. Subsequently, the obtained mod‑
els are analyzed to identify the key metrics that influence drivers’ subjective evaluations.
These metrics are applied to the subsequent LKA decision and control module. Finally,
drivers’ real preferred values for these metrics can be obtained based on optimal subjec‑
tive ratings.

4.1.1. Driver’s Preference Regarding LKA Intervention Timing
For LKA intervention timing, a linear model can effectively represent the relationship

between a driver’s subjective evaluation and objective metrics DLC0 and vy−lane0. The
models of different drivers can all be uniformly expressed as Equation (4):

Q1 = β2 × DLC0 + β1 × vy−lane0 + β0 = β2

(
DLC0 +

β1
β2

× vy−lane0 +
β0
β2

)
, (4)

In the equation, DLC0 and vy−lane0 are the objective metrics, as shown in Table A1.
The coefficients β0, β1, and β2 are model parameters, which vary for different drivers and
represent their preferences.

By setting Q1= 0 (which corresponds to the highest satisfaction rating given by the
drivers, as shown in Table 3), we can derive the following equation:

DLCth = fβ0,β1,β2

(
vy−lane

)
= −β1

β2
× vy−lane −

β0
β2

(5)

From Equation (5), it can be found that the LKA intervention timing that the driver
feels is most satisfactory is not a specific value of either DLCth or vy−lane alone. Instead,
it depends on the specific relationship between these two metrics, which is determined
by the coefficients in Equation (5). Therefore, we introduce two new metrics to denote the
keymetrics that heavily influence drivers’ preferences: the virtual boundary offset distance
offsetVB and the virtual boundary crossing time TLCVB, as shown in Equation (6):

offsetVB = −β0/β2, TLCVB = −β1/β2 (6)

Equation (5) can be rewritten as

DLCth = foffsetVB,TLCVB

(
vy−lane

)
= TLCVB × vy−lane + offsetVB (7)

By setting Q1= 0, we can derive the preferred values of offsetVB and TLCVB for 10
drivers, as shown in Table 5.

Combining Table 4, we can explore the relationship between age and drivers’ prefer‑
ences for LKA intervention timing, as shown in Figure 7. It can be observed that although
the relationship between age and preference is not very clear, drivers aged 30 and above
tend to prefer a larger (i.e., safer) offsetVB, as indicated in Figure 7a. On the other hand,
drivers in the age group of 24 to 26 tend to prefer a smaller (i.e., more aggressive) offsetVB.
In this age group, only one driver prefers a larger offsetVB (0.66 m), while the rest prefer
an offsetVB below 0.50 m. Regarding TLCVB, drivers aged 30 and above tend to prefer a
smaller TLCVB, indicating that these drivers are not sensitive to lateral speed (i.e., they do
not prefer LKA to intervene earlier as the deviation speed increases). This may be because
these drivers prefer a larger offsetVB, indicating that their focus is more on the position of
the vehicle deviating from the lane rather than the lane‑relative velocity. However, overall,
the relationship between drivers’ preferences for LKA intervention timing and age is not
clear. It is challenging to predict drivers’ preferences just based on age.
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Table 5. Driver’s preferences for LKA intervention timing.

No. of Driver OffsetVB
Unit: m

TLCVB
Unit: s

1 0.31 0.68
2 0.66 0.62
3 0.32 0.77
4 0.42 0.70
5 0.39 1.08
6 0.74 0.30
7 0.66 0.65
8 0.35 0.39
9 0.89 0.39
10 0.26 0.60
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Figure 7. The relationship between drivers’ ages and their preference for LKA intervention timing:
(a) offsetVB; (b) TLCVB.

4.1.2. Driver’s Preference for LKA Intervention Process
Regarding subjective evaluation questions of the LKA intervention process Q2 andQ3,

linear models do not yield satisfactory results. Therefore, we employed the RF method for
modeling. The RF models for Q2 and Q3 achieve average Mean Absolute Error (MAE)
values of 0.023 and 0.025 on the test sets, respectively.

During the training of the Random Forest, in the process of building each individual
base regression tree, the impurity of each input (i.e., the objective metrics in this paper) is
calculated. The objective metric with the lowest impurity at each node is selected for parti‑
tioning, resulting in the creation of new subsets for further splitting. Therefore, recording
the impurity of nodes during the training process can serve as a basis for assessing the
importance of each objective metric, allowing for their importance ranking and potential
feature reduction [33]. In regression trees, node impurity is typically measured using the
residual sum of squares (RSS):

RSS = ∑
(xi,yi)∈Dv1

(
yi −

^
yDv1

)2
+ ∑

(xi,yi)∈Dv2

(
yi −

^
yDv2

)2
(8)

where Dv1 and Dv2 are the subsets formed by splitting the node data based on a certain

criterion, and
^
yDv1 represents the mean of the outputs yi in subset Dv1.

Based on the node impurity of objective metrics, the most important objective eval‑
uation metrics can be identified. For Q2, which concerns the driver’s perception of the
vehicle’s motion when it returns to the center of the road, the four important objective
evaluation metrics selected are ωr−mean, θst−mean, DLCmax, and Tp. For Q3, which fo‑
cuses on the driver’s perception of the minimum distance between the vehicle and the lane
boundary, the three important objective evaluation metrics selected are DLCmin, DLCth,
and vy−lane−mean.



Sensors 2024, 24, 1666 13 of 24

The extraction of important objective evaluation metrics based on node impurity can‑
not avoid internal correlations among these metrics, leading to potential information re‑
dundancy. The correlations among these metrics were analyzed. The correlation coeffi‑
cients between θst−mean, DLCmax, and Tp with ωr−mean are 1, −0.96, and −0.91, respec‑
tively. The correlation coefficients between DLCth, vy−lane−mean, and DLCmin are 0.97 and
−0.91, respectively. Consequently, the final set of retainedmetrics isωr−mean and DLCmin.

We utilized a grid search to optimize the value of important objectivemetrics to obtain
preferences. The objective metrics values for the LKA intervention process preferences of
eight drivers are shown in Table 6.

Table 6. Driver’s preferences for LKA intervention process.

No. of Driver ωr‑mean
Unit: deg/s

DLCmin
Unit: m

1 0.45 0.51
2 0.54 0.51
3 0.03 0.36
4 0.11 0.47
5 0.27 0.56
7 0.34 0.27
9 0.34 0.19
11 0.36 0.35

Combining Table 4, we can also explore the relationship between age anddrivers’ pref‑
erences for the LKA intervention process, as shown in Figure 8. There is almost no clear
relationship between age and drivers’ preference for ωr−mean. In Figure 8b, it can be ob‑
served that as drivers′ age increases, their preference for a DLCmin tends to decrease. This
indicates that younger drivers prefer to correct the vehicle′s heading more quickly, lead‑
ing to a larger DLCmin, while older drivers are less inclined to conduct overly aggressive
heading‑correction maneuvers.
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Figure 8. The relationship between drivers’ age and their preferences for LKA intervention process:
(a)ωr−mean; (b) DLCmin.

4.2. Predictive Performance of DPPM
We used 80% of the data from the dataset as the training set and the remaining 20%

as the test set. The predicted values and actual values for offsetVB by DPPM are compared
in Figure 9. The MAE for the training set and the test set is 0.01 m and 0.09 m, respectively.
The predicted values and actual values for TLCVB determined by DPPM are compared in
Figure 10. The MAE for the training set and test set are both 0.01 m.
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Figure 9. The predicted values and actual values for offsetVB: (a) Training set; (b) Testing set.
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Figure 10. The predicted values and actual values for TLCVB: (a) Training set; (b) Testing set.

The predicted values and actual values for ωr−mean by DPPM are compared in
Figure 11. The MAE for the training set and test set are 0.01 deg/s and 0.03 deg/s, re‑
spectively. The predicted values and actual values for DLCmin determined by DPPM are
compared in Figure 12. The MAE for the training set and test set are 0.01 m and 0.04 m,
respectively.
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Figure 11. The predicted values and actual values forωr−mean: (a) Training set; (b) Testing set.
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Figure 12. The predicted values and actual values for DLCmin: (a) Training set; (b) Testing set.
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4.3. Discussion of Results
Although the initial demonstration of the model’s predictive performance in

Section 4.2 throughMAE provides insights, there is still a lack of established indices for de‑
termining an appropriate level of accuracy. In this study, a greater deviation between the
metric’s value predicted by DPPM and the actual value from drivers could result in lower
subjective ratings for the DALKA system. This deviation may potentially extend beyond
the acceptable range shown in Table 3. To address this, we introduced two indices: the
tolerance ∆∗ and the DPPM prediction accuracy Fit∗. ∆∗ represents the range of objective
metric values for which the driver’s subjective ratings are in the acceptable range. Fit∗ is
the proportion of DPPM predictions with absolute errors smaller than ∆∗ across all data
samples, as expressed in Equation (9):

Fit∗ =
1
n

n

∑
i=1

1(|ŷi − yi| < ∆∗) (9)

n is the number of data samples.
^
yi is the value predicted by DPPM for a specific objective

metric of the i‑th data sample, while yi is the actual value. ∆∗ is the tolerance for the met‑
ric. The function 1() is an indicator function, yielding “1” when the condition inside the
parentheses is true, and “0” otherwise.

According to Table 3, drivers are considered within an acceptable range when their
subjective ratings fall within [−1, 1]. Based on the main and objective evaluation models
from Section 4.1, the ranges for input metrics can be determined. The average tolerances
are as follows:

‑
∆offsetVB = 0.26 m,

‑
∆TLCVB = 0.54 m/s. The minimum tolerances are as

follows: ∆min
offsetVB = 0.12 m, ∆min

TLCVB = 0.3 m/s.
As shown in Figure 13, for the prediction of offsetVB, DPPM achieves FitoffsetVB =

92% on the testing set under average tolerance
‑
∆offsetVB and FitoffsetVB = 70% under the

minimum tolerance ∆min
offsetVB. This implies that 92% of the offsetVB values predicted by

DPPM are within the acceptable range for drivers.
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Figure 13. DPPM’s predicted values for offsetVB on the test set compared to the tolerance.

As shown in Figure 14, for the prediction of TLCVB, DPPMachieves a FitTLCVB of 100%
on the testing set under both average tolerance

‑
∆TLCVB and minimum tolerance ∆min

TLCVB.
This implies that all the predicted values of TLCVB by DPPM fall in the acceptable range
of drivers.
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Figure 14. DPPM’s predicted values for TLCVB on the test set compared to the tolerance.
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For subjective andobjective evaluationmodels of the LKA interventionprocess, trained
using RFmodels, predictions for various inputs are obtained by traversing the input space.
This process allows us to determine the input ranges corresponding to outputs within the
[−1, 1] range. The average tolerances are as follows:

‑
∆ωmean = 0.23 deg/s and

‑
∆DLCmin =

0.39 The minimum tolerances are as follows: ∆min
ωmean = 0.08 deg/s and ∆min

DLCmin = 0.05.
As shown in Figure 15, for the prediction of ωr−mean, DPPM achieves Fitωrmean =

100% on the testing set under average tolerance
‑
∆ωmean and Fitωrmean = 85% under the

minimum tolerance ∆min
ωmean. This implies that all the predicted values for ωr−mean by

DPPM fall in the acceptable range for drivers.
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Figure 15. DPPM’s predicted values forωr−mean on the test set compared to the tolerance.

As shown in Figure 16, for the prediction of DLCmin, DPPM achieves FitDLCmin =

100% on the testing set under average tolerance
‑
∆DLCmin and FitDLCmin = 82.5% under

the minimum tolerance ∆min
DLCmin. This implies that the predicted values for DLCmin are all

within the acceptable range for drivers.
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5. System Integration and Validation Test of DALKA
5.1. LKA Decision and Control Module

The LKAdecision and control module consist of state decisionmodule, path planning
and control module, and output torque decision module, as shown in Figure 17.
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We have extracted key metrics influencing drivers’ preferences: offsetVB,
TLCVB, ωr−mean, and DLCmin. Once DPPM predicts values for these metrics, they are
handed over to the LKA decision and control module for implementation. Therefore, to
ensure that the LKA system meets the specified metric value, customization of the LKA
decision and control module was undertaken.

The decision logic is illustrated in Figure 18.
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Figure 18. The decision logic for LKA system.

In the state decision module, a new variable is introduced, which is the steering assis‑
tance torque gain coefficient α, used to represent whether the LKA system intervenes in
control. The decision logic in detail is as follows:

Initially, the system receives the LKA system switch signal from the human–machine
control panel. If the driver deactivates the LKA system, the system enters the off state,
setting α to 0;

1. When the system confirms that the driver has activated the LKA system, it receives
the status “If at least one lane line can be effectively detected” from the environment‑
perception module. If the status is “No,” indicating insufficient conditions for acti‑
vating the LKA system, the system again enters the off state with α set to 0;

2. If the environment‑perception module confirms effective lane line detection, it eval‑
uates the risk of the vehicle deviating from the lane by checking if the current DLC
satisfies Equation (10):

DLC < DLCth (10)

Here, DLCth is the LKA intervention control threshold, calculated as Equation (11):

DLCth = TLCVB × vy−lane + offsetVB (11)

TLCVB and offsetVB are the keymetrics obtained from Section 4.1, influencing drivers’
preferences for LKA intervention timing, computed using DPPM. If Equation (10) is
not met, the LKA system remains standby with α set to 0;
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3. If Equation (10) is satisfied, it is necessary to determine whether the driver has the in‑
tention of actively steering. We adopted themethod proposed in refs. [34,35] to judge
the driver’s intention to steer actively based on the steering wheel torque threshold
Tst, as shown in Equation (12). If Equation (12) is not satisfied, α is set to 0. Otherwise,
the LKA system initiates its intervention, and α is set to 1.

Tst < Tst−max (12)

Regarding the path planning and control module, the path‑planning method uses the
same approach described in Section 2.3.1 when constructing the characteristics of the LKA
intervention process. Regarding path‑tracking control, numerous scholars have conducted
research. Common methods include Linear Quadratic Regulator (LQR) control [36], slid‑
ing mode control [37], robust control [38], and model predictive control [39,40]. One study
[41], considering the roll dynamics and network‑induced delays, proposed a new multi‑
input, multi‑output linear parameter‑varying controller for path‑tracking control. Another
study [42] proposed a strategy based on the path‑tracking preview algorithm and the LQR
controller to improve the lateral stability of the vehicle and address the crosswind issue
during driving. Compared to the above methods, sliding mode control is not only simple
to implement but also robust to external disturbances. Yet another study [43] combined
feedforward control based on the preview model and sliding mode control, which could
control the maximum tracking error of the vehicle on the simulator within 0.1 m. Con‑
sidering that the experiments in this study were conducted on a simulator with minimal
external disturbances, we adopted the method used in ref. [43].

Regarding the logic in the output torque decision module, assuming the current state
is at step k, the torque‑control module receives α from the state‑decision module and
checks if Equation (13) is satisfied.

α ≥ 0.5 (13)

If Equation (13) is met at step k, indicating that the LKA system should be in the
intervention control state with α= 1 at the current step, TkLKout = TkLKin. In this case, the
LKA torque TkLKA at step k is determined, as shown in Equation (14). The final output
torque TLKA of the LKA system at this point equals the lane‑keeping torque TLKin received
from the path‑planning and tracking module.

TkLKA = TkLKout·α = TkLKout = TkLKin (14)

If Equation (13) is not met at step k but was met at the previous step k − 1, it implies
that the LKA system has just transitioned from the intervention control state to standby or
off state at the current step. In this case, α= 0, and TkLKout = Tk−1

LKout, meaning that for step
k, k+ 1, and subsequent steps, TLKout remains constant and equal to Tk−1

LKout, as shown in
Equation (15). The LKA torque TkLKA is determined, as shown in Equation (16).

Tk−1
LKout = TkLKout = Tk+1

LKout = Tk+2
LKout = . . . (15)

TkLKA = TkLKout·α = Tk−1
LKout·α (16)

Furthermore, the slope‑constraint module restricts the rate of change of α, thereby
preventing rapid withdrawal of the LKA torque, which could result in excessive steering
by the driver.

5.2. Validation Test of DALKA System
To validate the effectiveness of the DALKA system, an additional subjective evalua‑

tion test was conducted by inviting 12 drivers who had not participated in the previous
subjective and objective evaluation experiments. A comprehensive subjective evaluation
was used to assess the overall performance of the integrated DALKA system. Ratings were
given on a scale of [1, 5], with an acceptable range of [4, 5]. For comparison, the drivers
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were also asked to provide a comprehensive evaluation of a fixed‑characteristic LKA sys‑
tem. The key metric values for the fixed‑characteristic LKA system were averaged based
on the preferences of drivers, as obtained in Section 4.1. The result is shown in Table 7, and
the comparison of the drivers’ evaluation of these systems is illustrated in Figure 19.

Table 7. Drivers’ subjective evaluations of fixed‑characteristic LKA system and DALKA system.

No. of Driver
Subjective Ratings of

Fixed‑Characteristic LKA System
Unit: ‑

Does the Driver Find the
Fixed‑Characteristic LKA

System Acceptable?

Subjective Ratings of
DALKA System

Unit: ‑

Does the Driver Find the
DALKA System Acceptable?

1 3.67 No 4.08 Yes
2 3.83 No 4.58 Yes
3 4.17 Yes 4.83 Yes
4 4.17 Yes 4.75 Yes
5 4.67 Yes 4.83 Yes
6 4.83 Yes 5.00 Yes
7 4.50 Yes 4.50 Yes
8 5.00 Yes 5.00 Yes
9 4.33 Yes 4.33 Yes
10 4.67 Yes 4.50 Yes
11 4.58 Yes 4.33 Yes
12 4.33 Yes 4.00 Yes

Average 4.40 83% 4.56 100%
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Figure 19. Comparison of drivers’ subjective evaluations of fixed‑characteristic LKA system and
DALKA system.

When using the DALKA LKA system, drivers gave an average subjective rating of
4.56, compared to 4.40 when using the fixed‑characteristic LKA system. Regarding the ac‑
ceptance of the drivers, it can be found that when using the LKA system with averagely
preferred characteristic, 10 out of 12 drivers (83%) gave subjective ratingswithin the accept‑
able range. After experiencing the DALKA system, six drivers showed an improvement
in subjective evaluations, three drivers maintained their subjective evaluations, and three
drivers experienced a slight decline. However, the subjective evaluations of these three
drivers remained within the acceptable range. In summary, subjective evaluations for the
DALKA system from all 12 drivers (100%) fell within the acceptable range.

It can be observed that the DALKA system we developed demonstrates more pro‑
nounced adaptive effects for those drivers whose preference deviate significantly from the
average preference. However, for driverswhose preferences align closelywith the average
preference, the DALKA system may lead to a decrease in subjective evaluation. Nonethe‑
less, as these drivers already give high subjective evaluations for the average preference
characteristics, it does not result in their evaluations falling outside the acceptable range.
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6. Conclusions
Fixed, singular LKA system characteristics struggle to satisfy various preferences of

different drivers. The DALKA system, which mimics drivers’ individual driving charac‑
teristics, addresses the issue of not meeting their real preferences.

The methodology presented in this paper, based on subjective and objective evalua‑
tions, provides a novelmethod ofDALKA systemdevelopment. Firstly, driver preferences
to various LKA system processes are obtained through subjective and objective evaluation
tests. Secondly, naturalistic driving characteristics are analyzed using action point the‑
ory to effectively describe individual lateral driving characteristics. Finally, DPPMs are
built using the Random Forest method to predict LKA system characteristics preferred
by drivers. The results show that, for offsetVB, 92% of the predicted values by DPPM are
within the acceptable range for drivers. For TLCVB,ωr−mean and DLCmin, all the predicted
values for by DPPM fall in the acceptable range for drivers. Also, a validation test was con‑
ducted to verify the performance of DALKA system. It shows that when using DALKA
system based on DPPM, the ratio of the drivers who think it is acceptable increases from
83% to 100%. The DALKA system show significant increases in subjective evaluation for
those drivers whose preference deviate significantly from the average preference.

However, several limitations need to be addressed. The DALKA system develop‑
ment and related experiments in this paper are based on straight‑road conditions. Further
research is needed to explore other conditions such as curves. Additionally, while the
DALKA system designed based on the DPPMmodel improves the acceptance of the LKA
system for most drivers, there is a small group of drivers with reduced evaluation. For
these drivers, it is necessary to explore more factors influencing driver preferences regard‑
ing the LKA system.
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Appendix A
The extracted objective metrics used for subjective and objective model training of the

LKA system are shown in Table A1.



Sensors 2024, 24, 1666 21 of 24

Table A1. Objective metrics of LKA system.

No. Description of Metrics Symbol Unit

1 DLC when LKA initiates intervention DLC0 m
2 Lane‑relative velocity when initiating intervention vy−lane0 m/s
3 TLC when LKA initiates intervention TLC0 s
4 Maximum steering wheel torque change rate

.
Tst−max N·m/s

5 Maximum steering wheel torque Tst−max N·m
6 Average steering wheel torque Tst−mean N·m
7 Maximum steering wheel rotation speed

.
θst−max deg/s

8 Maximum steering wheel rotation angle θst−max deg
9 Average steering wheel rotation angle θst−mean deg
10 Minimum TLC TLCmin s
11 Minimum DLC DLCmin m
12 Maximum DLC DLCmax m
13 Average DLC DLCmean m
15 Maximum yaw rate ωr−max deg/s
16 Average yaw rate ωr−mean deg/s
17 Maximum lane‑relative velocity vy−lane−max m/s
18 Average lane‑relative velocity vy−lane−mean m/s
19 Intervention duration Tp s
20 Maximum steering wheel torque Tst−max N·m
21 Average steering wheel torque Tst−mean N·m·s

The procedure for the lane‑keeping data‑collection test is outlined in Table A2.

Table A2. Procedures of naturalistic driving data‑collection tests.

Test Category Test Procedure

Naturalistic driving data‑collection test

1⃝ Have the driver operate the driving simulator for at least 10
min to familiarize themselves with the test environment.
Inform them in advance about the location of the lane
boundaries to minimize the perceptual differences between the
simulated and real environments.

2⃝ Ask the driver to simulate their real driving process as
closely as possible, but keep the vehicle within the center lane
with continuous traffic flow on both sides of the lane.

3⃝ Data collection is ended after 1 h.

The procedures for each test of the LKA working processes are shown in Table A3.

Table A3. Procedures of subjective evaluation tests for LKA system.

Test Category Test Procedure

Test of LKA intervention timing

1⃝ The vehicle is controlled along the center of the lane. The LKA
system does not initiate intervention as the vehicle remains within the
lane center.

2⃝ Choose one evaluation sample for LKA intervention timing shown
in Table 1. By applying crosswinds in virtual environment, make the
vehicle deviate from the lane with preset vy.

3⃝ Initiate the LKA system intervention when the vehicle deviates to a
certain degree, controlling the vehicle to return to the center of the
lane. Subsequently, end the LKA system intervention and return to
the state of procedure 1⃝.

4⃝ Repeat procedures 1⃝ to 3⃝multiple times, allowing the driver to
fully experience the LKA intervention timing.



Sensors 2024, 24, 1666 22 of 24

Table A3. Cont.

Test Category Test Procedure

5⃝ Let the driver give subjective ratings to the evaluation questions in
Table 3 based on his current experience of LKA intervention timing.

6⃝ Select another LKA intervention timing sample shown in Table 1,
and repeat procedures 1⃝ to 5⃝ until subjective ratings have been
collected for all evaluation samples.

7⃝ Randomly select several evaluation samples for test driver and ask
him to give subjective ratings repletely, ensuring consistent ratings for
same evaluation sample. Repeat this procedure until the driver’s
ratings stabilize.

Test of LKA intervention process

1⃝ The vehicle is controlled along the center of the lane. The LKA
system does not initiate intervention as the vehicle remains within the
lane center.

2⃝ Choose one evaluation sample for LKA intervention process shown
in Table 2. By applying crosswinds in virtual environment, make the
vehicle deviate from the lane with preset vy.

3⃝ Initiate the LKA system intervention when the vehicle deviates to a
certain degree, controlling the vehicle to return to the center of the
lane. Subsequently, end the LKA system intervention and return to
the state of procedure 1⃝.

4⃝ Repeat procedures 1⃝ to 3⃝multiple times, allowing the driver to
fully experience the LKA intervention process;

5⃝ Let the driver give subjective ratings of the evaluation questions in
Table 3 based on his current experience of LKA intervention process.

6⃝ Select another LKA intervention process sample shown in Table 2,
and repeat procedures 1⃝ to 5⃝ until subjective ratings have been
collected for all evaluation samples.

7⃝ Randomly select several evaluation samples for test driver and ask
him to give subjective ratings repletely, ensuring consistent ratings of
same evaluation sample. Repeat this procedure until the driver’s
ratings stabilize.
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