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Abstract: The utilization of downhole optical cables has significantly enhanced the efficiency and
reliability of oilfield production operations; however, the challenging high-temperature and high-
pressure conditions prevalent in oil-gas fields markedly reduce the service lifespan of these optical
cables. This limitation severely impedes their application and further development in subterranean
environments. In this study, a qualitative analysis was conducted on the structural materials utilized
in two types of optical cables to identify these materials and assess the high-temperature tolerance and
aging resistance properties of the optical fibers incorporated within. It was discovered that hydrogen
infiltration into the subterranean optical cables predominantly accounts for their operational failure.
To address this issue, an optical loss testing platform was established, facilitating the execution of a
high-temperature and high-pressure hydrogen permeation aging experiment on the optical fibers,
allowing for the evaluation of the hydrogen resistance capabilities of the two types of optical fibers.
The findings from this study provide a theoretical foundation and methodological guidance for the
optimization of optical fibers, aiming to enhance their durability and functional performance in
adverse environmental conditions encountered in oil-gas field applications.

Keywords: downhole optical cables; hydrogen penetration; hydrogen loss; aging of optical fibers

1. Introduction

In confronting the challenge of low oil prices and aiming to reduce costs while improv-
ing quality and efficiency, the global oil industry is advancing toward digitalization and
intelligence. This shift necessitates the economic and efficient acquisition of downhole infor-
mation from oil-gas wells. The advancements in optical fiber communication and sensing
technologies have significantly enhanced the reliability and cost-effectiveness of downhole
measurement and control systems. Optical fiber, with its attributes of immunity to elec-
tronic interference, corrosion resistance, ease of installation, and compact size, is ideally
suited for the permanent monitoring of well conditions. Consequently, downhole multi-
parameter monitoring using optical fiber has become the preferred method for information
acquisition and well condition monitoring in the realm of intelligent well technology.

The high-temperature and high-pressure conditions prevalent in downhole envi-
ronments, especially those containing hydrogen, present a formidable challenge to the
long-term deployment of optical fibers. Due to the inherent low strength of the fiber, it is
combined with various reinforcement structures such as organic gels, polymer materials,
and metal reinforcements to construct optical cables suitable for use. Previous studies
have demonstrated that temperature significantly influences the stability of fiber optic
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signal transmission [1–4]. In the 1980s, it was observed that optical fibers would expe-
rience signal attenuation when operated in environments containing hydrogen. Ning
Ding et al. [5] conducted a theoretical analysis of the diffusion mechanism of hydrogen,
confirming a hydrogen-induced loss and providing a foundation for the long-term reliable
application of optical cables. Wang Derong et al. [6] examined the relationship between
the vibration absorption loss of hydrogen molecules, time, temperature, and hydrogen
partial pressure, as well as the effect of fiber optic ointment on hydrogen loss in optical
cables. Xiao Xiaoming et al. [7] introduced methods to prevent hydrogen loss in optical
cables and to recover from such losses. Wang Lintang et al. [8] reviewed the mechanisms
and sources of hydrogen loss in optical fibers, offering crucial guidelines for the detection
and assessment of hydrogen loss, thus laying the groundwork for evaluating hydrogen-
induced attenuation in optical fibers. More recently, Stolov et al. investigated the impact of
hydrogen-rich environments on fibers with cores made of pure silica and fluorine-doped
and germanium-doped materials [9]. The coating of the fiber, which significantly influences
its strength, has been the subject of extensive research and development, employing vari-
ous materials such as aluminum, gold, and polyimide (PI) to enhance its resilience in the
demanding conditions encountered in well environments [10]. Furthermore, advancements
have been made in polyimide curing techniques aimed at enhancing the performance of
carbon/polyimide-coated optical fibers in hydrogen-rich atmospheres [11]. However, much
of the research conducted thus far has not extensively covered the long-term reliability
and adaptability of optical fibers within the confined and extreme conditions of down-
hole environments, particularly lacking a comprehensive understanding of the anti-aging
properties of optical cables subjected to high-temperature and high-pressure hydrogen
permeation [12–16]. The primary challenge affecting the lifespan of optical fibers, namely,
the signal attenuation in fiber optic sensing elements, remains insufficiently addressed. This
issue is predominantly due to the increase in optical loss caused by the high temperature
and hydrogen degradation of the fiber [17–20]. The infiltration of hydrogen into the core of
both single-mode and multi-mode fibers can lead to significant complications, most notably
extensive attenuation across a broad wavelength spectrum, which compromises the fiber’s
efficiency in data transmission or sensing applications.

In this paper, considering the downhole environmental conditions such as high tem-
perature, high pressure, and hydrogen exposure, an environmental durability test involving
high-temperature and high-pressure oil–gas–water mixtures is conducted on optical cables.
Furthermore, the optical fibers undergo a high-temperature and high-pressure hydrogen
permeation aging process, during which their attenuation is assessed. By analyzing the loss
of optical fiber power under varying conditions of temperature, pressure, and hydrogen
partial pressure, the aging behavior of the optical fibers can be elucidated. The insights
gained from this investigation can serve as valuable guidance for the design, manufactur-
ing, and operational deployment of underground optical cables, ensuring their reliability
and performance in harsh downhole environments.

2. Test Sample Selection and Performance Analysis

The standard optical cable and optical fiber for oil wells are selected, as shown in
Table 1 and Figure 1. The refractive index distribution of different optical fibers is shown in
Figure 2.
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Table 1. Specifications of Optical Cable Samples for Oil wells.

Optical Cable Cross-Sectional Diagram
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Inspection Item Unit Standard Requirements Results of Inspec-
tion 

fiber length and atten-
uation 

SMF 
(orange) 

length m / 1002 
attenuation@1310 nm dB/km ≤0.5 0.327 
attenuation@1550 nm dB/km ≤0.4 0.187 

MMF 
(blue) 

length m / 1002 
attenuation@1310 nm dB/km ≤4.0 2.480 
attenuation@1550 nm dB/km ≤2.0 0.667 

fiber unit 
outer diameters mm 2.4 ± 0.05 2.40 
wall thickness mm 0.2 ± 0.02 0.20 

aluminum coating 
outer diameters mm 4.4 ± 0.05 4.38 
wall thickness mm 1.0 ± 0.05 0.98 

protective layer steel 
pipe 

outer diameters mm 6.35 ± 0.05 6.34 
wall thickness mm 0.89 ± 0.05 0.89 

ovality mm ±5% outer diameter 0.02 

welding integrity of 
protective layer steel 

pipe 

weld fiber photos / 

The microstructure of the 
weld should be full, sym-

metrical in shape, and 
without welding and 

forming defects. 

See attached Figure 
1 

beading % 

The outer diameter ex-
pansion value is not less 
than 30%, and there is no 

cracking in the weld. 

Expanding to 38%, 
the weld has no 

cracking. 

flattening mm When H ≤ 4.21 mm, there 
is no cracking in the weld. 

When H = 2.13 mm, 
there is no cracking 

in the weld. 

curling % 

The hemming width is 
not less than 15% of the 

outer diameter, there is no 
cracking in the weld. 

Edge curling up to 
40%, weld no crack-

ing 

reverse flattening / 

After the sample is com-
pletely flattened, there are 
no defects such as cracks 

at the weld. 

pass 

eddy current testing / Should meet the ac-
ceptance level EH4 

pass 

breaking force / kN ≥8 12.9 
remaining length / ‰ ≥3.0 3.5 

unit weight / kg/km 245 ± 3 243 
boundary dimension / mm 8.8 × 8.8 8.6 × 8.7 

optical fiber cable 
length / m / 500 
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fiber length
and

attenuation
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(orange)

length m / 1002

attenuation@1310 nm dB/km ≤0.5 0.327

attenuation@1550 nm dB/km ≤0.4 0.187

MMF
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length m / 1002
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aluminum
coating

outer diameters mm 4.4 ± 0.05 4.38

wall thickness mm 1.0 ± 0.05 0.98
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welding
integrity of

protective layer
steel pipe

weld fiber photos /

The microstructure of the weld
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shape, and without welding
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See attached Figure 1

beading %
The outer diameter expansion
value is not less than 30%, and
there is no cracking in the weld.

Expanding to 38%, the
weld has no cracking.

flattening mm When H ≤ 4.21 mm, there is no
cracking in the weld.

When H = 2.13 mm,
there is no cracking in

the weld.

curling %
The hemming width is not less
than 15% of the outer diameter,
there is no cracking in the weld.

Edge curling up to
40%, weld no cracking

reverse flattening /
After the sample is completely
flattened, there are no defects

such as cracks at the weld.
pass
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level EH4 pass

breaking force / kN ≥8 12.9

remaining
length / ‰ ≥3.0 3.5

unit weight / kg/km 245 ± 3 243

boundary
dimension / mm 8.8 × 8.8 8.6 × 8.7
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cable length / m / 500



Sensors 2024, 24, 1655 4 of 12Sensors 2024, 24, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 1. Microscopic Photographs of Optical Cable Welds. 

  
(1) Type I (2) Type II 

Figure 2. The Refractive Index Distribution of Different Optical Fibers. (a) The refractive index dis-
tribution along the diameter direction of a single-mode fiber along the cleavage plane; (b) The re-
fractive index distribution along the diameter direction of a multi-mode fiber along the cleavage 
plane. 
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degree of fiber aging. In this testing process, a stable light source is employed to output 
the optical signal of a specific wavelength, mode, and power. The optical power meter is 
then used to measure the received power. The output power of the stable light source is 
specified as 5 ± 0.2 dBm. For Type I fiber, which is a multi-mode fiber, the selected test 
wavelengths are 850 nm and 1300 nm, and it is categorized as “normal temperature fiber.” 
For Type II fiber, which is a single-mode fiber, the selected test wavelengths are 1310 nm 
and 1550 nm, and it is classified as “high-temperature fiber.” It is noted that the welding 
loss is relatively small, approximately around 0.05 dB. 

The fiber optic hydrogen penetration test scheme and process are as follows: 
The hydrogen permeation testing apparatus used in this study is a custom-designed 

hydrogen permeation reactor specifically for this test. By adjusting the temperature and 
hydrogen pressure of the reactor and controlling the hydrogen permeation time of the 
optical fiber, the purpose of accelerating the hydrogen permeation of the fiber is achieved. 

The hydrogen permeation apparatus is a 5-meter-long stainless steel closed-tube hy-
drogen permeation testing high-pressure autoclave reactor. The schematic diagram of the 
testing apparatus is shown in Figure 3. In addition to the hydrogen permeation chamber, 
the comprehensive hydrogen permeation apparatus also includes auxiliary equipment 
such as a nitrogen cylinder, hydrogen cylinder, pressure pump, booster pump, bursting 
valve, and temperature control box. 

The inner diameter of the high-pressure autoclave is 20 mm, with a total length of 5 
m. It consists of two 2.5-meter-long stainless steel pipes connected by flanges and sealed 
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3. Test Process

The optical power loss (∆P) before and after fiber aging is utilized to quantify the
degree of fiber aging. In this testing process, a stable light source is employed to output
the optical signal of a specific wavelength, mode, and power. The optical power meter is
then used to measure the received power. The output power of the stable light source is
specified as 5 ± 0.2 dBm. For Type I fiber, which is a multi-mode fiber, the selected test
wavelengths are 850 nm and 1300 nm, and it is categorized as “normal temperature fiber”.
For Type II fiber, which is a single-mode fiber, the selected test wavelengths are 1310 nm
and 1550 nm, and it is classified as “high-temperature fiber”. It is noted that the welding
loss is relatively small, approximately around 0.05 dB.

The fiber optic hydrogen penetration test scheme and process are as follows:
The hydrogen permeation testing apparatus used in this study is a custom-designed

hydrogen permeation reactor specifically for this test. By adjusting the temperature and
hydrogen pressure of the reactor and controlling the hydrogen permeation time of the
optical fiber, the purpose of accelerating the hydrogen permeation of the fiber is achieved.

The hydrogen permeation apparatus is a 5-meter-long stainless steel closed-tube
hydrogen permeation testing high-pressure autoclave reactor. The schematic diagram of
the testing apparatus is shown in Figure 3. In addition to the hydrogen permeation chamber,
the comprehensive hydrogen permeation apparatus also includes auxiliary equipment
such as a nitrogen cylinder, hydrogen cylinder, pressure pump, booster pump, bursting
valve, and temperature control box.
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The inner diameter of the high-pressure autoclave is 20 mm, with a total length of
5 m. It consists of two 2.5-m-long stainless steel pipes connected by flanges and sealed with
graphite rings. There are holes at both ends of the high-pressure autoclave for vacuum
pumping and pressurization, with the other end sealed, and the sample placed in the
middle section.

The fiber optic hydrogen permeation test involves a series of operations: collecting the
optical fiber, loading the sample, placing it into the high-pressure autoclave, undergoing
the aging process, and finally sampling. The initial steps involve acquiring samples that
meet the experimental objectives, including obtaining specified lengths of optical cables or
pure optical fibers. Due to the tendency of pure optical fibers to curl, careful unwinding is
required after a transfer, especially challenging to obtain a 5-m-long segment of pure optical
fiber. Due to the fragility of pure optical fibers and their susceptibility to damage, the fibers
must be packaged in stainless steel tubes before the hydrogen permeation process to ensure
the integrity of the fibers. Once encased in stainless steel, the samples are sealed with
aluminum foil and glass fiber cloth for protection and then placed in the central portion of
the high-pressure autoclave for experimentation. Optical cable samples protected by an
external stainless steel layer are typically stored in a coiled state. To facilitate the insertion
of these samples into the reactor, they must be extended as much as possible. Additionally,
these samples are wrapped in a layer of polypropylene (PP) plastic packaging, which must
be removed before the experiment begins. Neglecting this step could result in the plastic
melting at temperatures around 200 ◦C, potentially affecting the experimental process.

During the pressurization and heating process, it is essential to raise the temperature
to the target level before pressurizing. Pressurizing before heating will cause the pressure
to increase beyond the target temperature. Conversely, during the depressurization and
cooling process, it is essential to first lower the temperature and then reduce the pressure.
During the sampling process, careful handling of the optical fiber is crucial as they are
fragile and easily damaged. Subsequently, the pure optical fiber should be coiled and
stored, and loss testing should be conducted. Extracting optical fiber from optical cables
requires caution as the internal lubricant on the fibers has strong adhesive properties, and
the length of the cable makes it impossible to extract the fiber completely. Therefore, it is
necessary to cut the external stainless steel layer of the cable in sections rather than cutting
it completely to ensure the integrity of the optical fiber. Following this procedure enables
the complete extraction of the optical fiber sample.

To investigate the impact of a hydrogen environment on fiber optic losses, two types
of optical fibers were selected for real-time monitoring of hydrogen-induced losses. The
real-time loss values were specifically monitored at wavelengths of 1240 nm and 1380 nm.
The wavelength of 1240 nm serves as a representative absorption wavelength for hydrogen
molecules, where a higher value indicates a higher concentration of hydrogen molecules
dissolved through diffusion in the fiber core. On the other hand, the wavelength of
1380 nm represents the characteristic absorption wavelength of -OH, indicating a higher
value signifies a greater presence of -OH formed by the combination of non-bridging
oxygen with hydrogen in the fiber core. The loss results are illustrated in Figure 4. Analysis
of the spectral loss detection results of the two types of optical fibers reveals that with the
passage of time, the peak values of the characteristic wavelengths at 1240 nm and 1380 nm
gradually increase. This observation suggests that as the hydrogen loading time extends,
hydrogen progressively diffuses into the fiber core.
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Figure 4. Spectrum loss test results of different optical fibers in a pure hydrogen environment.

On this basis, fiber aging and hydrogen loss tests under different conditions were
carried out; the optical fiber aging conditions can be seen in Table 2.

Table 2. Optical fiber aging conditions.

Total Pressure (MPa) Partial Pressure of H2 (MPa) Temperature (◦C) Time (h)

10 1

200 96

10 2
20 2
30 2
40 2
2 2
10 2 150 96
10 2 250 96
10 2 200 48
10 2 200 192
10 2 200 288

4. Fiber Aging and Hydrogen Loss Test

In this experiment, the aging process of optical fiber was accelerated through high-
temperature hydrogen pressure to investigate the signal loss during aging. The optical
power loss of the fiber before and after aging was used as the evaluation index.

Table 3 presents the variation in fiber loss with respect to the core length under aging
conditions of pure H2, 2 MPa, 200 ◦C, and 96 h. Type I fiber refers to a multi-mode fiber
with test wavelengths of 850 nm and 1300 nm, while Type II fiber refers to a single-mode
fiber with test wavelengths of 1310 nm and 1550 nm. As shown in Figure 5, the loss of both
types of fiber increases with the increase in core length, indicating that longer fiber aging
leads to greater loss under the same conditions. In the pure H2 environment, Type I fiber
exhibits a lower hydrogen loss compared to Type II fiber. Additionally, the test wavelength
of the optical signal also influences the loss. For the same fiber type, higher wavelengths
such as 1300 nm and 1550 nm result in greater sensitivity and higher loss. To maintain
consistent conditions, a fiber length of 5 m was used in subsequent experiments.

Table 3. Hydrogen loss under pure H2, 2 MPa, 200 ◦C, and 96 h aging conditions.

Length of Optical Fiber (m)
Type I Type II

850 nm 1300 nm 1310 nm 1550 nm

1 0.01 0.16 0.11 0.1
5 0.47 1.06 0.38 0.27
10 1.48 2.08 3.51 3.25
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Table 4 and Figure 6 illustrate the hydrogen loss after aging under different total
pressures (H2 partial pressure 2 MPa) at 200 ◦C for 96 h. As the pressure increases, the loss
of both types of fibers increases, reaching a peak at 30 MPa, after which the loss starts to
decrease, but the overall change is not significant. It can be inferred that the hydrogen loss
in the fibers is most severe at 30 MPa. With an increase in total pressure, the permeation
rate of hydrogen accelerates. However, since the partial pressure of hydrogen remains
unchanged, the difference in loss between each sample is not significant. The smaller loss
observed in Type I fiber indicates better resistance to hydrogen permeation. Furthermore,
for the same type of fiber, the loss increases with the increase in the wavelength of the
optical signal, which is consistent with the previous results.

Table 4. Different total pressure (H2 partial pressure 2 MPa), 200 ◦C, and hydrogen loss after
96 h aging.

Pressure (MPa)
Type I Type II

850 nm 1300 nm 1310 nm 1550 nm

10 0.35 0.36 1.24 1.48
20 0.32 0.37 1.4 1.88
30 0.78 0.77 1.43 1.9
40 0.58 0.65 1.36 1.84
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Table 5 and Figure 7 present the hydrogen loss under aging conditions of total pressure
at 10 MPa, H2 partial pressure at 1 MPa and 2 MPa, at 200 ◦C for 96 h. It is observed that
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with an increase in H2 partial pressure, the losses of both Type I and Type II fibers increase,
although the loss value for Type I fiber remains relatively low.

Table 5. Hydrogen loss table after aging at 200 ◦C and 96 h for different H2 partial pressures.

Pressure (MPa)
Type I Type II

850 nm 1300 nm 1310 nm 1550 nm

1 0.26 0.23 1.08 0.99
2 0.55 0.46 2.53 2.67
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Table 6 and Figure 8 depict the hydrogen loss under aging conditions of total pressure
at 10 MPa, H2 partial pressure at 2 MPa, and different aging temperatures (150 ◦C, 200 ◦C,
250 ◦C) for a duration of 96 h. It is observed that with an increase in temperature, the loss
of both types of fibers increases. Furthermore, at a high temperature of 250 ◦C, there is an
accelerated aging trend, possibly due to the temperature-induced acceleration of surface
hydrogen aging reactions, leading to an increased fiber loss. In comparison, Type I fiber
maintains a loss value between 0.7 and 0.95, while the loss of Type II fiber exceeds 5. This
indicates that Type I fiber exhibits better temperature resistance.

Table 6. Hydrogen loss table after aging 96 h under different temperatures at a total pressure of
10 MPa and a H2 pressure of 2 MPa.

Temperature (◦C)
Type I Type II

850 nm 1300 nm 1310 nm 1550 nm

150 0.21 0.19 0.41 0.4

200 0.47 0.45 1.33 1.44

250 0.89 0.93 5.11 5.05

Table 7 and Figure 9 present the hydrogen loss under aging conditions of total pressure
at 10 MPa, H2 partial pressure at 2 MPa, and aging temperature at 200 ◦C for various aging
durations. It is evident that with prolonged aging time, the loss of both types of fibers
increases. Moreover, aging becomes more pronounced as time progresses, likely due to the
significant increase in surface hydrogen concentration with extended time, thus accelerating
the occurrence of surface hydrogen loss. In comparison, Type I fiber still exhibits relatively
good performance in terms of loss under these conditions.
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Time (h)
Type I Communication Optical Fiber Type II Communication Optical Fiber

850 nm 1300 nm 1310 nm 1550 nm

48 0.24 0.27 0.53 0.51

96 0.47 0.45 1.33 1.44
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5. Ointment-Coated Fiber Test

The fiber gel serves as a filler between the exposed portion of the fiber and the cable
protective layer, providing protection to the bare fiber in two significant ways: firstly,
effectively preventing moisture ingress, and secondly, acting as a cushioning layer against
external mechanical impacts, maintaining the fiber in a free, low-stress state and buffering
mechanical movements such as vibration and bending.
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Both Type I and Type II fibers are immersed in the fiber gel environment and subjected
to aging under high-temperature conditions inside a furnace. The experimental conditions
remain consistent across all tests, with an atmospheric pressure of 250 ◦C and aging
durations of 12 h, 24 h, 36 h, and 48 h. A control group without fiber gel is also established,
with a duration of 24 h.

The same type of optical gel was applied to two types of optical fibers and subjected
to heating under different aging conditions in a furnace to investigate the patterns. Table 8
presents the hydrogen loss under varying aging times at atmospheric pressure and a
temperature of 250 ◦C with the protection of the same optical gel. Figure 10 illustrates the
hydrogen loss after 24 h of aging (at atmospheric pressure in air at 250 ◦C) with and without
optical gel wrapping as control groups. A comparison of fiber loss with and without optical
gel shows that the gel provides a certain level of protection, significantly reducing fiber loss.
Figure 11 displays the hydrogen loss of fiber loss under different aging times (optical gel,
atmospheric pressure in air at 250 ◦C), indicating a decrease in the protective effectiveness
of the optical gel with increasing aging time, leading to continuous fiber loss. Additionally,
from Table 8, it can be observed that the fiber loss after 48 h with optical gel is significantly
lower than the fiber loss after 24 h without optical gel, demonstrating that the optical gel
continues to protect the fibers even after 48 h of aging. Furthermore, it is noticeable that the
fiber loss of Type I fibers consistently remains significantly lower than that of Type II fibers,
indicating the superior high-temperature resistance of Type I fibers over Type II fibers.

Table 8. Hydrogen loss table of atmospheric air aged at 250 ◦C for different times.

Ointment Time (h)
Type I Type II

850 nm 1300 nm 1310 nm 1550 nm

- 0 0.14 0.12 0.21 0.24
Y 12 0.15 0.16 0.28 0.27
Y 24 0.21 0.29 0.37 0.40
N 24 0.99 0.87 1.53 1.64
Y 36 0.27 0.33 0.53 0.57
Y 48 0.37 0.39 0.59 0.61
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6. Conclusions

This study conducted high-temperature and high-pressure hydrogen permeation
aging tests on optical fibers, and the results showed that, under pure H2 aging conditions,
the attenuation of both types of fibers increased with the increase in fiber length. In a pure
H2 environment, Type I fibers exhibited lower hydrogen-induced losses compared to Type
II fibers. Under different total voltage aging conditions, the losses of both types of fibers
increased with increasing pressure, reaching a peak at 30 megapascals, and then began to
decrease. The attenuation of both Type I and Type II fibers increased with increasing H2
partial pressure, indicating a significant influence of H2 concentration on fiber loss. An
enhanced H2 partial pressure accelerated the permeation of hydrogen atoms into the fibers,
resulting in increased fiber loss.

With increasing temperature and prolonged exposure time, the losses of both Type I
and Type II fibers increased, but the hydrogen permeation loss of Type I fibers was superior
to that of Type II fibers. Wrapping the same type of optical gel on the surfaces of both
types of fibers and subjecting them to atmospheric pressure heating and aging experiments
demonstrated that the optical gel provided a certain level of protection and significantly
reduced fiber loss.

This paper lays the foundation for the optimal selection of fibers and related materials.
By conducting aging tests on optical cables and fibers, the resistance performance of the two
types of fibers to high-pressure and high-temperature hydrogen permeation was evaluated.
These evaluations provide valuable insights into the design, processing, manufacturing,
utilization, and maintenance of underground optical cables.
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