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Abstract: Detecting road cracks is essential for inspecting and assessing the integrity of concrete
pavement structures. Traditional image-based methods often require complex preprocessing to
extract crack features, making them challenging when dealing with noisy concrete surfaces in diverse
real-world scenarios, such as autonomous vehicle road detection. This study introduces an image-
based crack detection approach that combines a Random Forest machine learning classifier with a
deep convolutional neural network (CNN) to address these challenges. Three state-of-the-art models,
namely MobileNet, InceptionV3, and Xception, were employed and trained using a dataset of
30,000 images to build an effective CNN. A systematic comparison of validation accuracy across
various base learning rates identified a base learning rate of 0.001 as optimal, achieving a maximum
validation accuracy of 99.97%. This optimal learning rate was then applied in the subsequent testing
phase. The robustness and flexibility of the trained models were evaluated using 6,000 test photos,
each with a resolution of 224 × 224 pixels, which were not part of the training or validation sets. The
outstanding results, boasting a remarkable 99.95% accuracy, 99.95% precision, 99.94% recall, and a
matching 99.94% F1 Score, unequivocally affirm the efficacy of the proposed technique in precisely
identifying road fractures in photographs taken on real concrete surfaces.

Keywords: transfer learning; Random Forest; road information; autonomous vehicle

1. Introduction

Navigating autonomous vehicles reliably on roadways demands robust crack detection
and path planning algorithms. Autonomous vehicles are rapidly gaining traction across
diverse domains, including material transport, environmental exploration, and agricultural
tasks like harvesting, and weeding on roads and crops. Current autonomous vehicle
navigation models usually emphasize steering clear of obstacles, neglecting the influence of
road cracks. Over time, highways incur the formation of cracks that can present substantial
obstacles for autonomous vehicles. Significant cracks might hinder the development of
autonomous vehicles, while minor cracks can lead to deviations from predetermined routes,
thereby enhancing the probability of accidents. In order to overcome these challenges,
it is essential that autonomous vehicle navigation systems integrate crack detection and
protection systems. Drawing inspiration from nature’s remarkable abilities, biomimetic AI
can empower autonomous vehicles to navigate complex environments, including roads
riddled with cracks. By dynamically adjusting running speeds, vehicles can safely traverse
these cracks, ensuring both efficiency and safety. This biomimetic approach paves the way
for smarter, safer roads, revolutionizing autonomous navigation. Sensors in connected and
autonomous vehicles (CAVs) collect tremendous amounts of data. Experts are figuring
out how to use this data to improve CAVs. Machine learning is an effective tool that
has already achieved a great deal with this data, and it will certainly have a significant
role in the future development of CAVs. Friction from vehicles and the weather combine
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to cause pavement cracks. Overlooking them may lead to accidents and costly repairs.
Early crack detection is crucial, but conventional manual approaches are expensive and
time-consuming. Computer vision technologies are being used by researchers to create
automatic ways to find cracks by introducing intelligent automation systems. While the
first models were simple, the more complex versions use techniques like temporal image
comparison, wavelet features, and local binary patterns to track the development of cracks.
This is just the initial stage of the endeavor, where AI will play an essential part in building
more secure and economical roads.

Some researchers have delved into traditional computer vision (CV) algorithms that
use image geometry for wide-ranging crack detection, which are proficient at operating
in environments with noise, poor lighting, and shadows. However, these techniques face
challenges in precisely identifying complex crack patterns or handling uneven intensity.
In contrast, model-based methods excel by utilizing the essential structure of cracks for
more effective detection, especially useful in difficult conditions. These methods are
similar to using a design for identifying cracks, enabling them to identify tiny cracks that
might be overlooked by conventional approaches in shadowy or noisy settings. Despite
their advantages, model-based techniques also have their limitations, particularly when
challenged with intricate crack patterns or varying intensities. While they are more capable
of handling noise and consistently detecting cracks, these specific conditions can still pose
a challenge.

The significance of a crack [1,2] is assessed based on its dimensions, extent, and
placement, thereby demanding the continuous observation of the structural stability and
functionality to ensure the durability of any infrastructure. Conventional crack detec-
tion methods mainly rely on visual inspections, which are time-consuming and demand
substantial manual effort. The effectiveness of these inspections primarily relies on the
inspector’s proficiency, knowledge, and perception. However, these labor-intensive tech-
niques frequently consume a significant amount of time and may result in the delayed
detection of the most important cracks that are approaching disastrous conditions. In
order to address these limitations, recent progress has been made in improving the detec-
tion process through the shift from manual to automated by introducing more advanced
methods. Automation is increasingly relying on deep learning (DL) [3,4] and computer
vision techniques, particularly image processing (IP) and aerial imagery. Automated crack
detection using these images minimizes costs and time for inspections while also improving
the safety and reliability of inspections for concrete constructions.

Concrete cracking is a complex phenomenon that is affected by several components,
including the rate at which it dries, its tensile strength, elasticity, and the level of pressure
it experiences. The presence of excessive water in concrete causes it to shrink and crack
during the drying process, resulting in the formation of different types of cracks such as
plastic shrinkage, map, and diagonal corner cracking. While the majority of damage is
not considered a threat to the structural integrity, there are circumstances where severe
cracks are able to impair it. Researchers have been primarily investigating automatic crack
identification in concrete by employing image-based techniques such as thresholding and
morphological methodologies, in addition to machine learning approaches like convolu-
tional neural networks (CNNs) [5–10]. Despite this innovation, there exists a deficiency
in grasping the impact of poor images on the detection of cracks, as well as the extent
to which image preprocessing can alleviate these concerns. As a result of this gap, there
has been research conducted to investigate the influence of image preprocessing on the
efficacy of pretrained CNN models in detecting cracks. Below are the main contributions of
this paper.

The main challenge [11–15] in detecting road cracks arises from the diverse types of
cracks caused by severe weather and long-term vehicle use. Traditional manual detec-
tion methods are inefficient and often miss cracks, while machine learning (ML) [16–20]
models require manually designed features for crack detection. According to the Federal
Highway Administration (FHWA), there are various crack types like fatigue, longitudinal,
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and transverse, making it difficult to design a universal feature extraction model for effective
automatic detection using machine learning. This limitation has led to the adoption of deep
learning (DL) in road crack detection for autonomous vehicles. Deep learning [21–24], utiliz-
ing sophisticated neural networks such as CNNs, addresses these challenges by processing
extensive visual data from vehicle-mounted cameras. Trained on large datasets, these
models learn to discern intricate patterns and discrepancies indicative of cracks, enabling
real-time detection and analysis of road surface anomalies. This approach not only en-
hances the decision-making capabilities of autonomous vehicles but also ensures timely
reactions to road conditions and upholds safety standards. The application of deep learning
thus significantly improves the vehicles and proficiency in handling varied and complex
road surfaces.

Pavement cracking is a common and major concern, affecting pavement serviceability.
Understanding these cracks helps engineers assess conditions and decide on the right
maintenance or rehabilitation strategies. A thorough understanding of pavement cracking
is key for engineers to accurately assess pavement conditions and choose effective mainte-
nance strategies. This knowledge leads to timely repairs, preventing further damage, and
extends the lifespan of road infrastructure. The study investigated the impact of pavement
structure and surface conditions on deflection measurements using traffic speed deflection
devices. Through non-parametric rank correlation and Random Forest regression analyses,
it was found that pavement type, surface roughness, and distress significantly influence
deflection. The study also discovered a strong link between surface condition indices and
deflection, especially on flexible pavements.

• The paper addresses the critical task of road crack detection, which is vital for inspect-
ing and assessing concrete pavement structures’ integrity, particularly in scenarios
like autonomous vehicle road detection.

• Traditional image-based methods often require complex preprocessing to extract crack
features, making them less practical for real-world scenarios where concrete surfaces
exhibit various forms of noise. This research provides a solution that mitigates these
preprocessing challenges.

• The paper presents an innovative approach that combines a Random Forest machine
learning classifier with a DCNN. This hybrid approach leverages the strengths of both
techniques to enhance crack detection performance.

• The paper identifies an optimal base learning rate of 0.001 through rigorous ex-
perimentation, achieving an impressive maximum validation accuracy of 99.97%.
This rate is crucial for model training and contributes to the overall effectiveness of
the approach.

In the subsequent sections, we will begin by providing a concise overview of previous
efforts in road crack detection in Section 2. Following this, Section 3 will elaborate on
the specifics of our proposed methodology. Section 4 will be dedicated to discussing the
implementation details and performance evaluation of our model. In the forthcoming
sections, we will delineate the discussion, limitations, and strengths of our approach, and a
conclusion for this study.

2. Related Work

Autonomous vehicles [25–30], while able to navigate over small road cracks, risk sig-
nificant path deviations during high-speed maneuvers, potentially causing collisions. It is
crucial for these vehicles to dynamically adjust speeds, such as decelerating near cracks, for
safety and precision. Concurrently, the advancement of computer science, especially deep
learning, has significantly improved road crack detection, a vital aspect of road maintenance.
This technological progress facilitates automated feature analysis, surpassing traditional, error-
prone methods like manual inspection. However, most research [31–40] has focused more on
crack detection and classification, often neglecting the detailed analysis and measurement
of specific crack characteristics [41–44]. Study [45] used laser-scanned range images to clas-
sify roadway cracks with a deep convolutional neural network (DCNN). They evaluated 36
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DCNN architectures and found that a seven-layer DCNN with constant 7 × 7 kernels and
increasing network widths yielded the highest classification performance. The proposed
approach detected cracks consistently and accurately under diverse situations, although
hyperparameter adjustment is still needed for maximum performance.

Over the past few decades, several thoroughly studied techniques have been devel-
oped to address the challenges in navigation and motion planning. These encompass
methods such as learning-based models, neural network models, sampling-based algo-
rithms, and evolutionary computational models, among various others. In [13], improved
the sampling-based rapidly exploring random tree (RRT) algorithm in 2021. This improved
version considers mobile robots’ considering their kinodynamic constraints to produce
a collision-free track. However, sampling-based algorithms usually provide stochastic
consistency and inefficient pathways. Author [34] highlight the exceptional efficacy of
vibration-based methods for detecting and classifying road surface anomalies. Nonetheless,
they acknowledge significant challenges in the reproducibility and consistency of these
methods. These issues primarily arise from limited and complex challenging scenarios,
small sample sizes, and the unavailability of datasets for public use, contributing to the
difficulties encountered in this field. Developed [24] a hybrid fireworks algorithm utilizing
LIDAR-based local navigation, proficient at producing concise, collision-free trajectories
in unstructured settings. However, a notable limitation of this method is its potential
inefficiency in complex or highly dynamic environments, where real-time adaptation
is crucial.

A domain knowledge-based genetic algorithm (GA) for optimal collision-free trajec-
tory generation between a source and multiple targets is introduced by [34]. This GA
integrates four novel domain knowledge-based operators specifically designed for effi-
cient path planning. However, its effectiveness may diminish in scenarios with rapidly
changing environments or unpredictable obstacles due to its reliance on static domain
knowledge. A hybrid approach for path planning in autonomous surface vehicles was de-
veloped by [5,6] using the ant colony optimization (ACO) and artificial potential field (APF)
methods. However, the study lacks a discussion on the computational complexity of this
hybrid algorithm and does not offer a comparative analysis of its efficiency against other
established algorithms. Developed [23] a cost-effective unmanned aerial vehicle (UAV)
equipped with sensors like LIDAR and optics for inspecting concrete pavement structure
cracks [7,8]. Utilizing the SVM algorithm for data classification, this UAV overcomes the
challenges of real-time crack detection [9,10,14,15,17–19] within budget constraints. While
the method’s computational efficiency is a major advantage for low-cost UAVs, the pa-
per does not address how this efficiency might impact the accuracy or reliability of the
inspection results [29–40].

Introducing a novel lightweight MobileNetV2_DeepLabV3 [31] image segmentation
network specifically tailored for crack detection addresses critical concerns regarding as-
sessment reliability, safety, accuracy, and cost-effectiveness. This innovative approach
involves fine-tuning the parameters of the DeepLabV3+ network’s atrous spatial pyramid
pooling (ASPP) module to mitigate interference from common sources of noise, light varia-
tions, shadows, and other environmental factors. This optimization enables more precise
segmentation of long-range objects, enhancing the overall performance and robustness of
the crack detection system.

An intelligent robotic system for autonomous concrete tunnel crack identification and
characterization was developed by [11]. This system provides a comprehensive solution for
identifying and analyzing cracks. Its autonomous navigation and extensive tunnel integrity
enhance the efficiency and thoroughness of the inspection process. However, the paper
does not address any potential limitations of this system, such as constraints in operational
environments or challenges in detecting certain types of cracks. Study [19] developed
Panthera, a robotic platform for road crack segmentation and garbage detection. However,
their study does not address the limitations of using the mobile mapping system (MMS)
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for geotagging defects, nor does it explore the technique’s scalability across larger or varied
pavement types [40–47].

An innovative approach to automated 3D crack detection for structures is presented,
leveraging the fusion of LiDAR and camera data. This method capitalizes on precise
extrinsic sensor calibration to ensure the accurate registration of images and LiDAR point
clouds. By integrating these technologies, the proposed system enhances the detection and
analysis of cracks with unparalleled accuracy and efficiency, offering a robust solution for
structural monitoring and maintenance.

3. Materials and Methods
3.1. Dataset Details

In our investigation [27,28], we harnessed a publicly accessible Kaggle dataset, com-
prising a vast collection of thirty thousand photographs capturing concrete and pavement
surfaces. These images were categorized into two distinct groups: “negative” and “posi-
tive”. Originating from the Nigerian Army University in Biu, Borno, they were acquired
through aerial imagery captured using a DJI Mavic 2 Enterprise drone and ground-level
shots taken with a smartphone, representing a comprehensive perspective. To facilitate
processing and analysis, the dataset was standardized to a resolution of 227 by 227 pixels
and stored in the universally compatible RGB JPEG format. Table 1 details a dataset specifi-
cally for a binary classification problem. Regarding the number of data samples allocated
for training the classification model, for both the “Negative” and “Positive” classes, there
are 12,000 training samples each showing the number of data samples reserved for test-
ing the classification model. Similar to the training data, there are 3000 testing samples
for both the “Negative” and “Positive” classes. There are a total of 24,000 data samples
for training (12,000 “Negative” + 12,000 “Positive”) and 6000 data samples for testing
(3000 “Negative” + 3000 “Positive”). In total, there are 30,000 data samples in this dataset.

Table 1. Dataset distribution with sample of each class.

Example Class Train Test Total
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3.2. Preprocessing and Augmentation

This step involves adjusting the dimensions of all the images in dataset to a standard
size of 224 × 224 pixels. Most pre-trained neural network architectures, such as those in
popular deep learning libraries like TensorFlow, are designed to work with this standard
input size. Data augmentation is a technique used to artificially increase the diversity
of your training dataset by applying various transformations to the images. This helps
improve model generalization and reduce overfitting.
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• Rotation (90 degrees)

Images are rotated by 90 degrees in increments. This means we create additional
training samples by turning the original images 90, 180, and 270 degrees. This helps the
model become invariant to object orientation, making it better at recognizing objects from
different angles.

• Vertical Flip

Images are flipped vertically along the horizontal axis. This mirrors the images
vertically, creating a new set of training samples. It helps the model learn from vertically
inverted images and adds diversity to the dataset.

• Horizontal Flip

Images are flipped horizontally along the vertical axis. This mirrors the images
horizontally, creating another set of training samples. Like vertical flip, it introduces
variations in object orientation.

These augmentation techniques collectively result in an augmented dataset with a
broader range of variations, making the model more robust and capable of handling
diverse inputs. This helps the model generalize better during training. It reduces the risk
of overfitting, where the model becomes too specialized in recognizing the training data
but needs help with new, unseen data. Figure 1 displays sample images of augmented and
resized images.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 23 
 

 

Images are rotated by 90 degrees in increments. This means we create additional 
training samples by turning the original images 90, 180, and 270 degrees. This helps the 
model become invariant to object orientation, making it better at recognizing objects from 
different angles. 
• Vertical Flip 

Images are flipped vertically along the horizontal axis. This mirrors the images ver-
tically, creating a new set of training samples. It helps the model learn from vertically 
inverted images and adds diversity to the dataset. 
• Horizontal Flip 

Images are flipped horizontally along the vertical axis. This mirrors the images hori-
zontally, creating another set of training samples. Like vertical flip, it introduces variations 
in object orientation. 

These augmentation techniques collectively result in an augmented dataset with a 
broader range of variations, making the model more robust and capable of handling di-
verse inputs. This helps the model generalize better during training. It reduces the risk of 
overfitting, where the model becomes too specialized in recognizing the training data but 
needs help with new, unseen data. Figure 1 displays sample images of augmented and 
resized images. 

 
Figure 1. Sample images of augmented and resized images. 

3.3. Transfer Learning 
Transfer learning is a machine learning technique that revolutionizes the training of 

neural networks, particularly in computer vision tasks such as image classification. Unlike 
traditional convolutional neural networks (CNNs), where models are trained from scratch 
on a specific dataset, transfer learning takes a more efficient and practical approach. In 
traditional CNNs, the model learns all its parameters and features from the ground up, 
often requiring an extensive dataset and substantial computational resources. In contrast, 
transfer learning leverages pre-trained neural network models already trained on vast and 
diverse datasets, typically for general image recognition tasks. These pre-trained models 
have acquired a wealth of knowledge regarding feature extraction and hierarchical repre-
sentation learning. Instead of starting from scratch, transfer learning fine-tunes these pre-
trained models on a target dataset or task. By adapting the learned features to the new 
study, transfer learning reduces the labeled data and training time needed to achieve 

Figure 1. Sample images of augmented and resized images.

3.3. Transfer Learning

Transfer learning is a machine learning technique that revolutionizes the training of
neural networks, particularly in computer vision tasks such as image classification. Unlike
traditional convolutional neural networks (CNNs), where models are trained from scratch
on a specific dataset, transfer learning takes a more efficient and practical approach. In
traditional CNNs, the model learns all its parameters and features from the ground up,
often requiring an extensive dataset and substantial computational resources. In contrast,
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transfer learning leverages pre-trained neural network models already trained on vast
and diverse datasets, typically for general image recognition tasks. These pre-trained
models have acquired a wealth of knowledge regarding feature extraction and hierarchical
representation learning. Instead of starting from scratch, transfer learning fine-tunes these
pre-trained models on a target dataset or task. By adapting the learned features to the
new study, transfer learning reduces the labeled data and training time needed to achieve
impressive results. This approach enhances model efficiency and improves performance,
making it a powerful tool for various applications, especially when labeled data are limited.

3.3.1. MobileNet

Developed by [11] and first presented in 2017, MobileNet is a category of efficient
models designed specifically for mobile and embedded vision applications. The key feature
of the architecture is the deployment of depthwise separable convolutions, a method that
effectively decreases the size and computation requirements of the model. MobileNetV1’s
innovative methodology enables it to achieve an optimal balance of efficiency and accuracy,
making it especially well-suited for devices with constrained computational capabilities. Its
optimization for speed and adaptability for deployment on various devices have made it a
preferred choice for real-time applications in mobile settings. The MobileNetV1 architecture
has been extensively utilized in numerous study schemes, highlighting its efficacy and
adaptability in the domain of lightweight deep neural networks.

3.3.2. InceptionV3

Introduced in 2015 by Google, InceptionV3 is a key development in the Inception
series of convolutional neural networks and was further detailed in a 2017 publication.
This model marks a significant evolution in the series, incorporating advancements like
factorized convolutions, label smoothing, and auxiliary classifiers to increase lower-level
learning within the network. Particularly, InceptionV3 employs multiple kernel sizes
in the same layer, allowing it to capture spatial hierarchies more effectively in images.
Designed primarily for complex, large-scale image recognition tasks, InceptionV3 stands
out for its high accuracy. While it offers improved classification performance, it does so
with consideration for computational efficiency, although with a higher computational
requirement than models like MobileNetV1. The effectiveness and improvements brought
by InceptionV3 have led to its widespread application in various research articles focused
on image classification.

3.3.3. Xception

Xception, an abbreviation for “Extreme Inception”, is a convolutional neural network
architecture that builds upon and extends the concepts of InceptionV3. It was first presented
in 2016 and formally introduced in 2017. Xception [3] is distinct for its use of depthwise
separable convolutions. This design choice not only aligns with the Inception model’s
viewpoint but also enhances the network’s depth and efficiency. As a result, Xception
surpasses its prototypes in large-scale image recognition tasks by delivering superior accu-
racy. Although Xception requires more computational power compared to models such as
MobileNetV1, it outperforms other models in situations where superior performance is es-
sential and abundant computational resources are available, demonstrating its effectiveness
in tackling complex image recognition tasks.

3.4. Machine Learning Classifier

Machine learning techniques [12], notably in recent studies, have enhanced the accu-
racy of detecting road surface cracks. Traditional approaches often overlooked varying
illumination conditions affecting the target. One innovative method, IlumiCrack, combined
Gaussian mixture models and CNN object detection models, like YOLO and SSD, to ac-
curately categorize various types of road cracks under diverse lighting. Another study
employed adaptive density-based fuzzy c-means clustering and hybrid wavelet–Walsh
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transform for effective crack detection and classification. These advancements show how
deep learning and consideration of environmental factors significantly improve road dam-
age detection. Authors developed a comprehensive machine learning model for detecting
and classifying road cracks in urban settings. This model follows a process involving image
segmentation, noise reduction, feature extraction using Hough transform and heuristic
equations, and finally, crack classification. It employs various classification algorithms
like neural networks, SVM, decision trees, KNN, bagged trees, and a novel hybrid model.
The hybrid model, in particular, demonstrated enhanced accuracy, achieving an overall
accuracy rate of 93.86% in experimental tests.

Random Forest

The Random Forest algorithm is a popular machine learning method used for both
classification and regression tasks. It operates by constructing multiple decision trees during
training and outputs the mode of the classes (classification) or mean prediction (regression)
of the individual trees. The Random Forest algorithm, an ensemble learning method, is
notably utilized in road crack detection for its accuracy in classification and regression
tasks. This introduced Crack Forest, a framework using random structured forests for
improved road crack detection. This method leverages integral channel features and a new
crack descriptor for enhanced crack representation and noise distinction, demonstrating
superior precision compared to other methods. This high level of precision underscores the
model’s efficiency and potential for application in various research areas. In the field of
road crack detection and classification, the Random Forest algorithm is highly valued for its
effectiveness. This approach is particularly advantageous in handling the complexities of
road surface images, where it aids in accurately identifying cracks. The algorithm’s ability
to manage various data features and its robustness against overfitting make it a preferred
choice for classifying and detecting road cracks in diverse and challenging environments.

3.5. Ensemble Learning

Ensemble learning is a machine learning technique that combines multiple models
to improve the accuracy and robustness of the predictions. Ensemble learning in crack
detection utilizes multiple learning algorithms or models to enhance the accuracy and
robustness of identifying cracks, a crucial aspect in structural health monitoring and
civil engineering. This approach is particularly beneficial because different models have
varying strengths in detecting cracks under diverse conditions, thus improving overall
performance. Ensemble methods are more robust against noise and variability in crack
appearances, ensuring better generalization to unseen data by balancing individual model
biases. They are particularly adept at handling complex crack patterns, reducing the
variance of predictions, and offering higher adaptability to different types of cracks and
conditions like lighting and background.

The key benefits of employing ensemble learning in road crack detection include a
significant increase in detection accuracy, a reduction in false positives and negatives, and
enhanced scalability and flexibility. By aggregating predictions from multiple models,
ensemble methods effectively balance weaknesses of individual models, leading to more
stable and reliable performance. This adaptability and scalability make ensemble learning
an invaluable tool in ensuring structural integrity and safety across various engineering
applications, where accurate crack detection is paramount.

3.6. Proposed Architecture

Our methodology begins with thorough data preparation, involving collecting and
dividing a diverse set of labeled road images into training, validation, and testing subsets.
In cases where computational resources are limited, or the available training data need
enhancement, TL becomes invaluable. TL empowers us to leverage models pre-trained on
extensive benchmark datasets, thereby elevating classification accuracy when dealing with
smaller datasets. Recent years have witnessed TL’s effectiveness and promise in various
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imaging applications. What sets our work apart is its application of TL in the context of
road information categorization (crack vs. non-crack) for autonomous vehicles. Utilizing
TL in crack image classification enables us to harness patterns and insights derived from
extensive training on diverse benchmark datasets, ensuring precise and reliable results
even with limited data.

Our research focuses on three pivotal pre-trained CNN models, which constitute the
core of our investigation. MobileNet, a CNN architecture tailored for efficient on-device
image classification tasks, stands out for its exceptional efficiency achieved by implementing
depthwise separable convolutions. These convolutions significantly reduce computational
costs while maintaining high accuracy. MobileNet’s widespread adoption in mobile and
embedded applications makes it an ideal choice for real-time image recognition on resource-
constrained devices. The Xception model, another prominent CNN architecture, excels in
image classification tasks. It attains remarkable accuracy by utilizing depthwise separable
convolutions, effectively reducing parameter counts and computational complexity. This
design does not compromise its ability to capture intricate image features, making Xception
a popular choice for computer vision applications such as image recognition and object
detection. InceptionV3, our third focal model, is a deep CNN architecture renowned
for its image classification and feature extraction capabilities. Its intricate network of
inception modules empowers it to capture features across various scales, enabling the
acquisition of both global and local image features. InceptionV3 has gained widespread
recognition in computer vision due to its impressive performance and efficient architectural
design. Utilizing the capabilities of three pre-trained models, we can effectively use their
existing features to classify images of roads into crack and non-crack categories. These
pre-trained models prove invaluable in discerning road anomalies and patterns relevant
to autonomous vehicles, as they have already acquired the ability to recognize common
patterns and characteristics across a wide range of image categories.

To significantly enhance the precision of crack and non-crack road detection for au-
tonomous vehicles, we harness the capabilities of three pre-trained models: Xception,
MobileNet, and InceptionV3. Instead of relying on their final classification layers, we opt
for feature extraction from intermediate layers, which capture intricate and distinctive
information. The crux of our approach lies in the stacking phase, where we consolidate the
feature vectors obtained from Xception, MobileNet, and InceptionV3 to construct a compre-
hensive ensemble representation for each image. This fusion of diverse features enables
our model to leverage the unique strengths of each architecture, ultimately augmenting the
overall discriminative power of the system.

In our pursuit of optimal performance, we explore various machine learning tech-
niques utilizing these stacked features to classify road data (crack vs. non-crack) for
autonomous vehicles. Subsequently, we train a classifier, such as a Random Forest, on the
stacked feature representations using the training dataset, with the validation set aiding in
fine-tuning hyperparameters to achieve peak efficiency. The evaluation phase is paramount,
where we meticulously assess the proposed model’s accuracy, precision, recall, F1 Score,
and other pertinent metrics on the test dataset. We experiment with different stacking tech-
niques for further performance enhancements and delve into ensemble learning approaches
like bagging, boosting, Min Ensemble, Max Ensemble, and Average Ensemble. Employing
cross-validation ensures the model’s robustness and its capacity for generalization. Upon
achieving the desired accuracy, our model is poised for real-world deployment in road
maintenance and safety monitoring applications. By effectively harnessing the combined
capabilities of Xception, MobileNet, InceptionV3, and Random Forest, we deliver a potent
solution for accurate crack detection in road infrastructure. Figure 2 presents overview of
proposed architecture diagram.
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4. Results and Implementation

The proposed model, which leverages the stacked features from Xception, MobileNet,
and InceptionV3 along the Random Forest classifier, undergoes a rigorous evaluation
to ensure its effectiveness in crack and non-crack road detection. Following the model
development, the evaluation phase includes several crucial steps. This section describes
the experimental setup, model evaluation, proposed model hyperparameter details, and
class wise proposed model performance.

4.1. Experimental Setup

The methods and results of the experiments on the suggested architectures are de-
scribed in depth in this section. This study contrasted the ensemble method suggested
for the competitive model with deep transfer learning using the ML classifier. We assess
the performance of the proposed technique using the road crack public dataset. Accurate
crack classification is the main goal of this endeavor. Python and the Keras package were
utilized to train the suggested model. The GPU runtime type on the Google Collaboratory
Notebook is used for any experimental research. This is a free academic study program
from Google. The model was trained using 4 GB of RAM and 12 GB of memory on the
NVIDIA GeForce MX350 (Nvidia, Santa Clara, CA, USA).

4.2. Model Evaluation

The evaluation begins by subjecting the model to a dedicated test dataset, distinct
from the training and validation sets. This separation ensures an unbiased assessment of
the model’s performance. Various performance metrics are then meticulously computed to
evaluate its classification capabilities comprehensively. These metrics include the following:

• Accuracy

This metric gauges the overall correctness of the model’s predictions, measuring the
proportion of correctly classified samples.
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• Precision

Precision assesses the model’s ability to make accurate positive predictions. It quanti-
fies the ratio of true positive predictions to the total number of positive predictions made
by the model.

• Recall

Recall, also known as sensitivity or true positive rate, measures the model’s effec-
tiveness in identifying all relevant positive class instances. It calculates the ratio of true
positives to the total number of actual positive instances.

• F1 Score

The F1 Score is a harmonized metric that balances precision and recall. It considers
false positives and false negatives, providing a single value that summarizes the model’s
overall performance in binary classification tasks.

• Confusion Matrices

Confusion matrices are essential visual tools that showcase the model’s classification
results in a tabular format. They break down predictions into true positives, false positives,
and false negatives, allowing for in-depth analysis of classification errors.

By meticulously assessing the model’s performance using these metrics and interpret-
ing the information presented in the confusion matrices, we comprehensively understand
its strengths and weaknesses in the context of crack and non-crack road detection. This
rigorous evaluation ensures the model’s reliability and suitability for practical applications.

Accuracy (AC) =
TP + TN

TP + FP + TN + FN
(1)

Precision (PR) =
TP

TP + FP
(2)

Recall (RC) =
TP

TP + FN
(3)

F1 Score (FS) = 2 × Precion × Recall
Precision + Recall

(4)

4.3. Hyper Parameter Details

Image Size (224 × 224): Image size refers to the dimensions of the input images used in
the model. In this case, the images are resized to 224 pixels in height and 224 pixels in width.
This size is a common choice for many pre-trained deep-learning models, including those
used for image classification. Epochs (10): An epoch represents one complete pass through
the entire training dataset during model training. In this case, the model will iterate over
the whole dataset 10 times. The number of epochs is a hyperparameter that determines
how often the model learns from the data. Loss Function (Binary): In this context, the loss
function is set to “Binary”. This indicates that the model is likely being used for a binary
classification task, such as crack vs. non-crack road detection. The binary loss function
typically involves measuring the difference between the two classes’ predicted values and
actual labels. Optimizer (Adam): Adam (short for Adaptive Moment Estimation) is a
popular optimization algorithm that updates the model’s parameters during training. It
combines elements of both the RMSprop and momentum optimization techniques to adjust
learning rates for each parameter efficiently. Activation (Sigmoid): The activation function
used in the output layer of the model is the sigmoid activation function. Sigmoid is often
used for binary classification tasks because it maps the model’s raw output to a probability
value between 0 and 1, which can be interpreted as the probability of the input belonging to
the positive class. Learning Rate (0.001): The learning rate is a hyperparameter that controls
the step size at which the model’s parameters are updated during training. A learning
rate of 0.001 indicates that the model makes minor parameter adjustments in each training



Sensors 2024, 24, 1647 12 of 22

iteration. Learning rate tuning is crucial, as it affects the convergence and stability of the
training process.

Batch Size (32): The batch size refers to the number of samples processed together in
each training iteration. A batch size of 32 means 32 images are used in each training step
before updating the model’s parameters. Batch size impacts training speed and memory
usage and is another hyperparameter that needs to be tuned for optimal performance. These
parameter details provide essential information about how the deep learning model is
configured for training and inference. Adjusting these parameters, along with appropriate
data preprocessing and model architecture, is essential for achieving the desired accuracy
and performance in specific tasks like crack and non-crack road detection.

4.4. Classification Performance

Table 2 presents a comparative performance analysis of different models for a crack
and non-crack road detection task, evaluating their precision, recall, F1 Score, and accuracy.
The base models used for this analysis are MobileNet, InceptionV3, and Xception, and they
are compared against a proposed model. MobileNet achieved a remarkable balance be-
tween precision, recall, F1 Score, and accuracy, scoring 98.13%. This demonstrates its ability
to effectively classify crack and non-crack road segments, making it a strong candidate
for the task. InceptionV3 also exhibited impressive performance across all metrics, with
precision, recall, F1 Score, and accuracy measuring 96.38%. This indicates its capability to
handle the detection task effectively. Xception, another base model, delivered results very
close to InceptionV3, with precision, recall, and accuracy, all at 96.20% and an F1 Score of
96.19%. This suggests that it is a competitive choice for the crack detection problem. The
proposed model outperformed all the base models significantly. It achieved an exceptional
precision of 99.95%, recall of 99.94%, F1 Score of 99.94%, and accuracy of 99.95%. These
enhanced results indicate that the proposed model has substantially improved the ability
to distinguish between crack and non-crack road segments compared to the base models,
making it an efficient choice for this task. The proposed model demonstrates superior preci-
sion, recall, F1 Score, and accuracy performance compared to the base models (MobileNet,
InceptionV3, and Xception). It shows promise in crack and non-crack road detection,
offering higher accuracy and reliability, which could be valuable in real-world applications
like road maintenance and safety monitoring. Furthermore, Table 2 also presents the test
time required by each base model as well as our proposed model.

Table 2. Classification performance.

Models Precision Recall F1 Score Accuracy Test Time

MobileNet (Base) 98.13 98.13 98.13 98.13 0:00:13.92

InceptionV3 (Base) 96.38 96.38 96.38 96.38 0:00:15.20

Xception (Base) 96.20 96.20 96.19 96.20 0:00:13.81

Proposed Model 99.95 99.94 99.94 99.95 0:00:19.86

The results Figure 3 displayed in provide a comprehensive view of the Kappa coef-
ficients and error values for various models assessed on the test dataset. Following the
evaluation of base models, including MobileNet, Xception, InceptionV3, and a stacked
ensemble, the respective Kappa coefficients were found to be 96.23, 92.43, 92.83, and 97.63.
In contrast, our proposed model exhibited a remarkable enhancement in the Kappa value,
achieving a coefficient of 99.9. Moreover, the graphical representation illustrates a con-
sistent decrease in error values as the Kappa coefficients increase, signifying improved
predictive accuracy with higher Kappa values. This substantial boost in the Kappa coeffi-
cient highlights our proposed model’s exceptional robustness and reliability in classifying
road information (crack vs. non-crack) for autonomous vehicle predictions. The out-
comes underscore the significant performance enhancement delivered by our suggested
model, which leverages the stack ensemble and Random Forest algorithm to weigh the



Sensors 2024, 24, 1647 13 of 22

base models. Our proposed model outperforms the evaluated base models across various
metrics, including accuracy scores, Kappa coefficients, F1 Score, and precision values.
The Random Forest’s superior predictive accuracy and adaptability in handling both re-
gression and classification tasks and its ability to provide feature relevance scores for
feature selection make it a valuable asset. Our suggested model’s capability to harness
the ensemble models’ complementary features to overcome individual models’ limitations
results in a substantial overall performance improvement. These findings underscore
the potential of our suggested model as an effective approach for autonomous vehicle
crack vs. non-crack detection.
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The Kappa coefficient measures the agreement between observed and expected agree-
ment beyond chance, providing insight into the reliability of classification systems. Our
base model, with Kappa coefficient values ranging from 92.43 to 97.63, showcases a solid
performance, while the proposed model, boasting a Kappa coefficient of 99.9, demonstrates
remarkable improvement in agreement metrics, indicating superior classification accuracy.

The performance of each base model was assessed by evaluating their sensitivity and
specificity rates through the ROC curve, as depicted in Figure 4. The results indicated
that the MobileNet, InceptionV3, and Xception baseline models outperformed the original
baseline models, achieving AUROCs of 0.98, 0.96, and 0.96, respectively. Our models’
remarkable performance can be attributed to the synergistic utilization of multiple models,
which enhances their overall strength compared to the baseline models.

In Figure 5, we showcase the results of the confusion matrix analysis for our proposed
model. The evaluation of the model on a dataset comprising 6000 images reveals a remark-
able level of accuracy, with a mere three instances of misclassification. This impressive
performance underscores the model’s ability to categorize most images in the dataset
effectively. Notably, these rare misclassifications involve images erroneously labeled as
“crack images”.
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4.5. Performance Comparison with Some Standard TL Models

Table 3 presents a performance comparison of different neural network models in
terms of precision, recall, F1 Score, and accuracy for a specific task. The models in-
clude ResNet-50, ResNet-152, DenseNet-121, DenseNet-169, DenseNet-201, EfficientNet-B4,
EfficientNet-B5, EfficientNet-B6, and a proposed model. Among these models, ResNet-
152 and the proposed model exhibit the highest precision, recall, F1 Score, and accuracy,
all at around 99.95%. ResNet-50 also performs exceptionally well, with scores slightly
lower at 99.91%. The DenseNet models achieve good results in the mid-90s range, with
DenseNet-121 being the lowest performer at 96.43%. Finally, the EfficientNet models per-
form impressively, with scores ranging from 99.76% to 99.93%. The proposed model stands
out as it achieves top-tier results, making it a strong candidate for the task, potentially
outperforming the base models in precision, recall, and F1 Score. Overall, these models
indicate high accuracy and effectiveness in their respective roles, with the choice of the best
model depending on specific application requirements and trade-offs.
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Table 3. Performance comparison with some standard pre-trained model.

Models Precision Recall F1 Score Accuracy

ResNet-50 (Base) 99.91 99.91 99.91 99.91

ResNet-152 (Base) 99.95 99.95 99.94 99.95

DenseNet-121 (Base) 96.45 96.43 96.43 96.43

DenseNet-169 (Base) 97.18 97.18 97.18 97.18

DenseNet-201 (Base) 97.83 97.81 97.81 97.81

EfficientNet-B4 (Base) 99.85 99.84 99.84 99.85

EfficientNet-B5 (Base) 99.76 99.76 99.76 99.76

EfficientNet-B6 (Base) 99.93 99.93 99.93 99.93

Proposed Model 99.95 99.94 99.94 99.95

4.6. Performance Comparison with Existing Model

Table 4 shows various reference methods and their corresponding accuracy scores
in a research study. Here are the details: Alipour et al. [2]—They utilized “ResNet-18”
and obtained an accuracy of 97.95%. Huyan et al. [16]—They employed the “CrackU-Net”
method and achieved an accuracy of 99.01%. Liu et al. [25]—Their method, “NB-FCN”,
achieved an accuracy of 97.96%. Wan et al. [26]—They employed “DenseNet” and achieved
an accuracy of 95.91%. Pu et al. [33]—They used the “Ced-Net” method and achieved
an accuracy of 98.90%. Shim et al. [36]—Their approach was the “Multiscale Adversarial
NN”, which yielded an accuracy of 98.17%. Yang et al. [43]—They used “FCN” and
obtained an accuracy of 97.96%. Song et al. [46]—Their approach was “TDB-Net”, with
an accuracy of 98.00%. Proposed Model—The authors introduced an “Ensemble” model,
which outperformed the others with an impressive accuracy of 99.95%. The accuracies
achieved by various methods in the context of the research study, with the Proposed Model
achieving the highest accuracy.

Table 4. Performance comparison with existing models.

Reference Method Precision Accuracy

Alipour et al. [2] ResNet-18 - 97.95%

Huyan et al. [16] CrackU-Net 98.56% 99.01%

Liu et al. [25] NB-FCN 81.73% 97.96%

Wan et al. [26] DenseNet - 95.91%

Pu et al. [33] Ced-Net 93.58% 98.90%

Shim et al. [36] Multiscale Adversarial NN - 98.17%

Yang et al. [43] FCN 83.30% 97.96%

Song et al. [46] TDB-Net - 98.00%

Proposed Model Ensemble 99.95% 99.95%

4.7. Feature Map Analysis and Grad Can Visualization

Feature map analysis is crucial to understanding the inner workings of CNN architec-
tures. Selected baseline architecture design principles were extracted and represent features
from input data.

1. MobileNet

MobileNet is designed to be a lightweight and efficient CNN architecture, particularly
suitable for mobile and embedded devices. It employs depthwise separable convolu-
tions, which consist of two consecutive layers: depthwise convolution and point-wise
convolution. Feature Map Structure: MobileNet’s depthwise separable convolutions re-
sult in a compact set of feature maps. The depthwise convolution operates on individual
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input channels independently, while the point-wise convolution combines the outputs
across channels. This leads to fewer parameters and computations, making MobileNet
well-suited for resource-constrained environments. Hierarchical Features: MobileNet’s
feature maps capture hierarchical information, with earlier layers focusing on low-level
features like edges and textures, while deeper layers’ capture more abstract and high-level
representations of objects and patterns as shown in Figure 6.
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2. InceptionV3

InceptionV3 is known for its inception modules, designed to capture features at
multiple scales and levels of abstraction. This architecture promotes improved feature
representation and object recognition. Multiple Paths: Inception modules in InceptionV3
utilize multiple convolutional paths with different kernel sizes. This enables the network to
capture fine-grained details and global contextual information in parallel. Feature Fusion:
Feature maps (Figure 6) from different paths are concatenated or fused, allowing the
network to learn diverse features. This results in more affluent and more discriminative
feature representations.

3. Xception

Xception is an extension of the Inception architecture that takes the concept of depth-
wise separable convolutions to the extreme. It replaces standard convolutions entirely
with depthwise separable convolutions. Extreme Depth Separation: Xception’s feature
map analysis reveals an exceptionally deep network that relies exclusively on depthwise
convolutions. This design promotes increased feature diversity and efficiency. Fine-Grained
Features: Xception’s depthwise separable convolutions allow it to capture fine-grained
details in the feature maps (Figure 6. Feature Map Analysis of Baselines models: (a) Mo-
bileNet, (b) InceptionV3, and (c) Xception), making it well-suited for tasks requiring precise
localization of objects or features.

Our selected MobileNet, InceptionV3, and Xception are three distinct CNN architec-
tures with varying approaches to feature map analysis in Figure 6. MobileNet prioritizes
efficiency, InceptionV3 focuses on capturing diverse features at multiple scales, and Xcep-
tion pushes the boundaries of depthwise separable convolutions for fine-grained feature
extraction. Understanding the nuances of these feature map analyses can help researchers
and practitioners choose the right architecture for their specific computer vision tasks.

GRAD-CAM is a powerful technique in the field of computer vision that helps explain
the decisions made by deep neural networks, specifically CNNs in image classification tasks.
It provides visualizations highlighting the regions within an input image that contribute
the most to the network’s classification decision.

MobileNet is known for its lightweight architecture, making it suitable for mobile and
embedded devices. When applying GRAD-CAM to MobileNet, the following steps are
typically followed:
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• Forward Pass. The input image is fed through the MobileNet model to obtain the final
classification score.

• Backward Pass. The gradients of the target class score concerning the feature maps of
the final convolutional layer are computed.

• Weighted Sum. The gradients are then weighted by the activations in the feature maps
to determine which regions have the most influence on the classification decision.

• Heatmap Visualization. Finally, the weighted gradients are used to generate a heatmap
highlighting the input image’s critical regions.

InceptionV3 is a more complex CNN architecture with multiple inception modules.
When applying GRAD-CAM to InceptionV3, the procedure is similar to MobileNet but
involves the following key steps:

• Multiple Branches. InceptionV3 has various branches in its architecture. The gra-
dients and activations are computed for each component and combined to obtain a
comprehensive heatmap.

• Hierarchical Analysis. The hierarchical structure of InceptionV3 allows for a more
detailed analysis of which parts of the image contribute to different levels of abstraction
in the network’s decision-making.

Xception is another advanced CNN architecture that extends the idea of depthwise
separable convolutions. Applying GRAD-CAM to Xception involves the following steps:

• Depthwise Separable Layers. Xception’s depthwise separable layers are treated simi-
larly to standard convolutional layers during the GRAD-CAM process.

• High-Level Abstractions. Xception excels at capturing high-level image features, and
GRAD-CAM can help identify the specific regions of the image that lead to these
high-level abstractions.

As shown in Figure 7, the resulting heatmaps from GRAD-CAM of baselines models
provide valuable insights into the neural network’s decision-making process by highlight-
ing which parts of an input image were most influential in making a particular classification
decision. This information is crucial for model interpretability, debugging, and understand-
ing the inner workings of these CNN architectures.
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4.8. Ablation Studies

Table 5 provides a performance comparison of different baseline models, stack ensem-
ble, and proposed models based on several evaluation metrics. These models were likely
trained and tested on a road crack dataset, such as the detection of road information for
autonomous vehicles. MobileNet (Base), InceptionV3 (Base), and Xception (Base) are three
baseline models, each achieving high levels of precision, recall, F1 Score, and accuracy,
around 96% to 98%. These metrics reflect their ability to classify and recognize crack,
and non-crack images in the dataset correctly they were tested on. The stack ensemble
model outperforms the baseline models, with precision, recall, F1 Score, and accuracy all
improved to around 98.8%. the stack ensemble model combines the predictions of selected
baseline models to boost overall performance. The proposed model stands out as the top
performer, achieving exceptionally high scores in all metrics, with precision, recall, F1
Score, and accuracy around 99.95%. This suggests that the proposed model has achieved
remarkable accuracy in classifying objects or data points, making it the best-performing
model among the ones listed.

Table 5. Performance analysis between proposed model and others.

Models Precision Recall F1 Score Accuracy

MobileNet (Base) 98.13 98.13 98.13 98.13

InceptionV3 (Base) 96.38 96.38 96.38 96.38

Xception (Base) 96.20 96.20 96.19 96.20

Stack Ensemble 98.80 98.80 98.79 98.80

Proposed Model 99.95 99.94 99.94 99.95

Figure 8 provides a detailed breakdown of the misclassifications of the three inde-
pendent base models: MobileNet, InceptionV3, and Xception. Among the 6000 evaluated
instances, MobileNet had 112 misclassifications, InceptionV3 had 228, and Xception had
217. These statistics reveal the individual performance of each base model. However, it is
worth highlighting that our suggested model, which combines the strengths of these base
models, exhibited a significantly lower error ratio than each. This outcome demonstrates
our proposed model’s enhanced predictive accuracy and superior performance, making it
a more effective choice for the task at hand.
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Figure 9 presents a comprehensive analysis of misclassifications, comparing the stack
ensemble technique with our proposed model. In a set of 6000 instances, the stack ensemble
model exhibited 72 misclassifications, while the proposed model showed a meager count
of just three incorrect classifications. These results outperform the baseline models shown
in Figure 8 and surpass the stack ensemble technique. Our proposed model achieved
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a substantially lower error rate, solidifying its position as a superior choice due to its
enhanced predictive accuracy and outstanding performance.
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5. Discussion

This paper proposed a novel hybrid approach for road information detection in
autonomous vehicles, utilizing both positive and negative images. The proposed method
combines a Random Forest classifier with transfer learning techniques. Training a CNN is
often challenging due to limited labeled data availability in the crack and non-crack imaging
scenarios. To address this challenge, our study leverages layers from three pre-trained
models, Xception, InceptionV3, and MobileNet. This fusion of pre-trained models with
Random Forest prevents overfitting and enhances high-dimensional feature extraction for
improved performance. Moreover, we employ data augmentation to enhance the model’s
generalization capacity and accuracy.

Integrating these stacked features with Random Forest yields significant improvements
in accuracy, precision, recall, and F1 Score compared to alternative approaches explored
in our research. Detailed results are presented in Tables 2 and 4 and Figures 8 and 9. Our
suggested model consistently achieves the highest classification accuracy through extensive
experimentation. Tables 3 and 5 and Figure 5 further underscore the superior performance
of our proposed model, which harnesses the combined strengths of multiple models for
enhanced road information detection.

The practical implementation of our proposed model is that road crack detection for
autonomous vehicles using deep learning is trained on vast datasets of road images to
accurately identify and localize cracks. The proposed model is integrated into the vehicle’s
sensor suite, enabling real-time detection and response to potential road hazards, ensuring
safer navigation.

6. Strength and Limitation

The paper addresses the critical task of road crack detection, particularly essential
for inspecting and evaluating the integrity of concrete pavement structures, such as in
autonomous vehicle road detection scenarios. Traditional image-based methods often
struggle with complex preprocessing requirements to extract crack features, making them
less practical for real-world scenarios characterized by various forms of noise on concrete
surfaces. To overcome these challenges, the research proposes an innovative approach that
combines a Random Forest machine learning classifier with a DCNN (deep convolutional
neural network). This hybrid model effectively leverages the strengths of both techniques,
enhancing crack detection performance significantly. Through rigorous experimentation,
the paper identifies an optimal base learning rate of 0.001, crucial for model training, and
achieves an impressive maximum validation accuracy of 99.97%, contributing significantly
to the overall strength of the approach.
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The current study could be enhanced by further integrating real-time data streams
and adaptive learning algorithms. This integration could lead to improved model perfor-
mance and scalability. Real-time data streams provide up-to-date information, allowing
the model to make more accurate predictions or decisions based on the latest data. Ad-
ditionally, adaptive learning algorithms can adjust their behavior based on new data or
changing circumstances, leading to more flexible and efficient models. While we aim to
ensure the generalization of our proposed method by working with other datasets, future
research will focus on further validating its applicability across diverse data sources and
real-world scenarios.

7. Conclusions

Road crack detection is a critical and challenging task, a fundamental aspect of infras-
tructure maintenance and autonomous vehicle technologies. The findings of this study
contribute significantly to the field of computer vision and image-based defect detection.
Several key takeaways and contributions emerge from this research. First and foremost, this
study offers a practical solution to the road crack detection problem by leveraging a hybrid
approach. Combining a Random Forest machine learning classifier with state-of-the-art
deep convolutional neural network (CNN) models, namely MobileNet, InceptionV3, and
Xception, yields a robust and adaptable system. This hybrid approach effectively mitigates
the complexities of preprocessing and noise in real-world concrete surfaces. Moreover,
through systematic experimentation, the research identifies an optimal base learning rate
of 0.001, achieving an exceptional maximum validation accuracy of 99.97%. This discovery
is pivotal in enhancing model training and overall detection performance. The comprehen-
sive testing phase, conducted on a separate dataset of 6000 photos with 224 × 224-pixel
resolutions, underscores the robustness and generalization capabilities of the proposed
technique. The ability to accurately identify road fractures in images captured on actual
concrete surfaces demonstrates the practical applicability of the approach in real-world
scenarios. These contributions collectively underscore the significance of this research
in the domain of defect detection and infrastructure maintenance. The hybrid approach,
optimal learning rate determination, and thorough testing advance the state of the art in
road crack detection and hold promise for broader applications in computer vision and
machine learning.

As we move forward, further research may explore the integration of real-time moni-
toring systems, the potential for scalability, and the extension of this approach to address
additional infrastructure maintenance challenges. In doing so, this work lays a strong foun-
dation for improving the safety and reliability of our transportation systems. It contributes
to the advancement of smart cities and autonomous vehicle technologies.
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