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Abstract: The advancements in data acquisition, storage, and processing techniques have resulted
in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology
images, and molecular information with clinical data is essential for developing a holistic under-
standing of the disease and optimizing treatment. The need for integrating data from multiple
sources is further pronounced in complex diseases such as cancer for enabling precision medicine
and personalized treatments. This work proposes Multimodal Integration of Oncology Data System
(MINDS)—a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate
data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected,
patient-centric framework. MINDS consolidates over 41,000 cases from across repositories while
achieving a high compression ratio relative to the 3.78 PB source data size. It offers sub-5-s query
response times for interactive exploration. MINDS offers an interface for exploring relationships
across data types and building cohorts for developing large-scale multimodal machine learning
models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with
greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based
personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility
and transparency. The cloud-native architecture of MINDS can handle exponential data growth
in a secure, cost-optimized manner while ensuring substantial storage optimization, replication
avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms
guarantee pipelines’ scalability and security. MINDS overcomes the limitations of existing biomedical
data silos via an interoperable metadata-driven approach that represents a pivotal step toward the
future of oncology data integration.

Keywords: cancer; oncology; multimodal; cloud computing; data lake; data warehouse; machine
learning; deep learning; embeddings analysis

1. Introduction

Clinicians routinely gather data from multiple sources to gain a deeper insight into
patients’ health and provide tailored medical care. The reliance on multiple data sources for
clinical decision-making makes medicine inherently multimodal, where the data modality
refers to the form of data [1–3]. Each modality in such multimodal data may have a different
resolution and scale due to its own data collection, recording, or generation process [4,5].
The data modalities may include (i) -omics information from genome, proteome, transcrip-
tome, epigenome, and microbiome, (ii) radiological images from computed tomography
(CT), positron emission tomography (PET), magnetic resonance imaging (MRI), ultrasound
scanners or X-ray machines, (iii) digitized histopathology slides created using tissue sam-
ples and stored as gigapixel whole slide images (WSI), and (iv) electronic health record
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(EHR) that houses structured information consisting of demographic data, age, ethnicity,
sex, race, smoking history, etc. and unstructured data such as discharge notes or medical
reports [1,3,4].

Integrating data from heterogeneous modalities can create a unified, richer view of
cancer, potentially more informational and complete than the individual modalities [1,6].
The multimodal medical data holds great potential to advance our understanding of com-
plex diseases and help develop effective and tailored treatments [5,7]. The advent of
high-throughput multi-omics technologies like next-generation sequencing (NGS), high-
resolution radiological and histopathology imaging, and the rapid digitization of medical
records has led to an explosion of diverse, multimodal data [8]. This data deluge has been
a boon for machine learning, where abundant training data has directly enabled significant
breakthroughs [9,10]. For example, the rise of large general-purpose datasets like Common
Crawl for natural language processing (NLP) has fueled advances in language models and
Artificial Intelligence (AI) assistants [11]. One may hope that extensive, standardized, and
representative multimodal datasets in the medical domain would provide a fertile ground
for developing advanced translational machine learning models. Machine learning thrives
on massive, high-quality datasets; however, assembling such resources in healthcare poses
unique challenges [12,13]. First, multimodal medical data is inherently heterogeneous and
noisy, spanning structured (demographics, medications, billing codes), semi-structured
(physician notes), and unstructured data (medical images). Aggregating such heteroge-
neous data requires extensive harmonization and manual processing. Second, reliability,
robustness, and accuracy are critical for all medical applications [14–16]. However, real-
world clinical data is often incomplete, sparse, and contains errors, which makes building
robust and reliable models more challenging. Meticulous quality control and manual cura-
tion of these datasets are essential to train machine learning models [17,18]. Finally, strict
data privacy and security considerations arise in healthcare, where data containd protected
health information (PHI) that must be redacted, de-identified, and access controlled per the
Health Insurance Portability and Accountability Act (HIPAA) [19,20].

Traditionally, vast amounts of multimodal data are generated during clinical trials
and research studies where raw data undergoes initial processing and quality control by
researchers. The data is then transmitted to standardization pipelines such as the National
Cancer Institute’s (NCI) Center for Cancer Genomics (CCG) Genome Characterization
pipeline [21], where the data is systematically annotated, formatted, and quality-controlled
before being deposited into centralized biobanks. For example, NGS data from cancer
genomic studies is standardized by CCG and deposited into the NCI’s Genomic Data
Commons (GDC) [22]. However, imaging data from the same studies, consisting of CT,
MRI, and PET scans, follow a different path and may end up in imaging archive like
The Cancer Imaging Archive (TCIA) [23]. This leads to fragmentation of data across
multiple disconnected databases. To address this, integrated data commons like the NCI
Cancer Research Data Commons (CRDC) have been proposed [24]. The CRDC aims to
link datasets from diverse sources using Findable, Accessible, Interoperable, and Reusable
(FAIR) principles to enhance interoperability [25].

However, significant challenges remain in unifying multimodal data dispersed across
repositories with heterogeneous interfaces, formats, and query systems. For example, a
researcher studying lung cancer requires integrating clinical, imaging, and genomic data for
their cohort across the GDC, TCIA, and other databases. But each has different application
programming interfaces (APIs), schemas, and querying methods. Piecing together data
manually across these silos is painstakingly difficult. There is a lack of unified interfaces and
analytical tools that can work seamlessly across multiple cancer data repositories. This leads
to isolated data silos and hampers easy access for multimodal data analysis. To address
the limitations and fragmentation of current oncology data systems, we propose a novel
solution called the “Multimodal Integration of Oncology Data System”, abbreviated as
MINDS. MINDS is a scalable, cost-effective data lakehouse architecture that can consolidate
dispersed multimodal datasets into a unified platform for streamlined analysis. To illustrate
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this, let’s consider the process of developing a machine-learning model using a limited
dataset with and without the use of MINDS in Figure 1.

Figure 1. In the first stage, data is obtained from a primary source that may consist of patients who
comprise the bulk of your study. Still, access to additional data sources may be needed to augment
the original dataset, which may be restricted, or a minimal amount of such data that aligns with
the original cohort may be present, limiting the ability to develop comprehensive models. Once
collected, both sets undergo their respective data wrangling. It can be time-consuming and resource-
intensive when new data sources are introduced due to different data cataloging and formatting
pipelines. Next, the model development phase consists of feature engineering and model training.
However, once developed, the model’s effectiveness is limited by the scope of the original dataset.
Validating and expanding existing models with new data sources requires extensive data wrangling
and matching the data pipelines of the original researcher, leading to longer validation times and
decreased productivity. Consequently, the broader applicability of these models remains unexplored
mainly, limiting the potential for advances in understanding complex diseases and developing
effective treatments. In contrast, MINDS integrates multimodal data into a unified platform, and
researchers can employ early-stage data fusion techniques that can harness the rich potential of
correlated multimodal data to improve inference and decision-making. For instance, in the context of
medical applications like cancer research, the integration of MR, X-ray, and ultrasound imaging data
with different modalities of data acquired not from scans, such as histopathology slides, can yield
more accurate and comprehensive insights into patient conditions compared to relying on any one
modality alone.

Contributions of MINDS

MINDS makes several key objective contributions toward effectively managing and
analyzing multimodal oncology data:

1. Integrating siloed multimodal data into a unified access point: By consolidating
dispersed datasets across repositories and modalities, MINDS delivers a single uni-
fied interface for accessing integrated data. This overcomes fragmentation across
disconnected silos.

2. Implementing robust data security and access control while supporting reproducibil-
ity: Strict access policies and controls safeguard sensitive data while enabling repro-
ducibility via dataset versioning tied to cohort definitions.

3. An automated system to accommodate new data continually: Automated pipelines
ingest updates and additions, ensuring analysts always have access to the latest data.

4. Enabling efficient, scalable multimodal machine learning: Cloud-based storage and
compute scale elastically to handle growing data volumes while optimized warehous-
ing delivers high-performance model training.
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Apart from the above-mentioned achievements, MINDS has several novel
aspects, including:

• The unprecedented scale of heterogeneous data consolidation enables new analysis
paradigms. The cohort diversity in MINDS also surpasses existing systems.

• Tight integration between cohort definition and on-demand multimodal data assembly,
not offered in current platforms.

• An industrial-strength cloud-native architecture delivers advanced translational infor-
matics over a browser.

• Support for reproducibility via dataset versioning based on user cohort queries. This
allows regenerating the same data even with newer updates.

• Option to build vector databases capturing data embeddings instead of actual data.
This eliminates storage needs while ensuring patient privacy.

In this paper, Section 2 provides necessary background of the existing landscape
of the multimodal heterogeneous datasets in oncology, from collection and processing
to distribution. Section 3 delves into the methodology used to build the proposed data
lakehouse architecture and discusses the project’s technical aspects in detail. In Section 4,
we discuss the implementation results and the study’s potential implications on cancer
research and clinics. Finally, Section 5 concludes with recommendations for future research.

2. Background and Literature Review

The rapid growth of biomedical data has created immense opportunities for trans-
lational research and significant data management challenges. Pioneering efforts have
paved the way within this crucial domain by establishing needed infrastructure and prin-
ciples over the past decades. These include caBIG [26] in 2004, interconnecting cancer
researchers via an ambitious grid architecture, tranSMART [27] enabling customized cohort
investigation, and i2b2 [28] spearheading flexible clinical data warehousing with temporal
abstractions. However, as data scales intensify, core capabilities around scalability, prove-
nance tracking, standardized metadata assimilation, and customizable cohort building,
have created substantive yet addressable headroom for enhancements.

Emerging techniques like high-dimensional multimodal assay fusion [4,29] and mul-
timodal data warehouses [30] have created new demands for consolidation platforms.
By striving to synthesize the strengths of the seminal prior work while enhancing key
dimensions like flexibility, replicability, and scalability, MINDS aims to stand on the shoul-
ders of giants in pushing meaningful progress in addressing the constraints hampering
reliable integrative modeling. Such demands motivate the development of new solutions to
effectively consolidate, integrate, and analyze exponentially growing heterogeneous data
types while accounting for the crucial lineage of achievements that collectively established
the foundation. Below we discuss the existing methods of oncology data integration.

2.1. Data Characterization Pipeline

Standardized data characterization pipelines are vital in transforming raw biological
samples into usable multimodal datasets. A sample data pipeline for gathering genomic
modality from CCG for the GDC [22] is illustrated in Figure 2. The presented pipeline
involves several stages, including tissue collection and processing, genome characterization,
genomic data analysis, and data sharing and discovery. The NCI has adopted similar
pipelines for medical images, referred to as the Imaging Data Commons [31] or IDC and
Proteomics Data Commons or PDC [32].

• Tissue Collection and Processing: Tissue source sites, which include clinical trials and
community oncology groups, collect tumor tissue samples and normal tissue from
participating patients. These samples are either formalin-fixed paraffin-embedded
(FFPE) tissues or frozen tissue. In CCG, Biospecimen Core Resource (BCR) is respon-
sible for collecting and processing these samples and collecting, harmonizing, and
curating clinical data [21].
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• Genome Characterization: This stage involves generating data from the collected sam-
ples. At CCG, the Genome Characterization Centers (GCCs) generate data from the
samples received from the BCR. Each GCC supports distinct genomic or epigenomic
pipelines, including whole genome sequencing, total RNA and microRNA sequencing,
methylation arrays, and single-cell sequencing [21].

• Genomic Data Analysis: The raw data from the previous stage is then transformed
into meaningful biological information at this stage. In CCG, the Genomic Data
Analysis Network (GDAN) transforms the raw data output from the GCCs into
biological insights. The GDAN has a wide range of expertise, from identifying genomic
abnormalities to integrating and visualizing multi-omics data [21].

• Data Sharing and Discovery: At this stage, the insightful genomic data is processed,
shared, and unified at a central location. The NCI’s Genomic Data Commons (GDC)
harmonizes genomic data by applying a standardized set of data processing protocols
and bioinformatic pipelines. The data generated by the Genome Characterization
Pipeline are made available to the public via the GDC [21,22].

Figure 2. Genome Characterization Pipeline is illustrated as an example of data characterization.
Data source sites collect tumor tissue samples and normal tissue from participating patients. Biospec-
imen Core Resource (BCR) collects and processes the tissue samples and collects, harmonizes, and
curates clinical data. Genome Characterization Centers (GCCs) generate data such as whole genome
sequencing, total RNA and microRNA sequencing, methylation arrays, and single-cell sequencing
from the tissue samples received from the BCR. At the Genomic Data Analysis stage, the raw data
from the previous stage is transformed into meaningful biological information. Data generated by
the pipeline are made available via the GDC for use by researchers worldwide. Center for Cancer
Genomics (CCG) Genome Characterization Pipeline was originally published by the National Cancer
Institute [21].

2.2. Traditional Data Management—BioBanks

Traditionally, medical data modalities are stored and managed separately in biobanks.
These biobanks are the repositories that store biological samples for use in research and by
clinicians for reference. Today, such biobanks have become an essential resource in medical
and oncological facilities [33]. They provide researchers access to various medical samples
and associated clinical and demographic data, which is used to study disease progression,
identify biomarkers, and develop personalized and new treatments. However, traditional
data management using biobanks has several limitations, enumerated below:
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• Fragmented Data: One of the main issues is that data from different sources are
often stored in separate biobanks, leading to fragmentation of information [34]. This
makes integrating and analyzing data across different modalities difficult, limiting the
potential for comprehensive, multi-dimensional analysis of patient data [33].

• Incoherent Data Management: How data is stored, formatted, and organized often
varies significantly across biobanks, even for the same patient. For example, clinical
data may be encoded differently, imaging data may use proprietary formats, and
terminology can differ across systems. This heterogeneity and lack of unified standards
make aggregating and analyzing data across multiple biobanks challenging [33].

• Data Synchronization: Over time, patient data stored in separate biobanks tends
to go out of sync as patients undergo new tests and treatments, adding new data
to different silos uncoordinatedly [33]. Piecing together a patient’s history timeline
requires extensive manual effort to sync disparate records across systems [33].

• Data Governance: The increasing prevalence of bio-banking has sparked an extensive
discussion regarding the ethical, legal, and social implications (ELSI) of utilizing
vast quantities of human biological samples and their associated personal data [35].
Ensuring and safeguarding the fundamental ethical and legal principles concerning
research involving human data in Biobanks becomes significantly more intricate and
challenging than conducting ethical reviews for specific research projects [35].

2.3. Data Commons

The concept of data commons has emerged to address the challenges faced by biobanks.
A data commons is a shared virtual space where researchers can work with and use data
from multiple sources. The NCI has developed the CRDC, which integrates different data
types, including genomic, proteomic, imaging, and clinical data, into a unified, accessible
platform [24]. The CRDC provides researchers access to various data repositories, including
the GDC, PDC, and IDC. Each of these repositories hosts a specific data type, and together,
they form a comprehensive platform for multimodal data analysis. While the CRDC has
made significant strides in integrating diverse data types, it still faces challenges. One of
the main issues is the difficulty in harmonizing data from different sources. Due to the
differences in data formats, standards, and quality control measures across data sites and
modalities, it takes significant effort by the researchers to conform the data to uniform
quality standards. The Cancer Data Aggregator (CDA) was developed to address this issue
and facilitate data integration across different data commons. CDA provides an aggregated
search interface across major NCI repositories, including the PDC, GDC, and IDC. It
allows unified querying of core entities like subjects, research participants, specimens, files,
mutations, diagnoses, and treatments, facilitating access across different data types [36].
CDA has limitations, like static outdated mapping and the inability to incorporate external
repositories. This motivates the need for more robust integrative platforms. The proposed
MINDS system aims to overcome these challenges in several key ways:

• CDA’s mapping of the CRDC data is not real-time. For example, as of September
of 2023, when querying patients with the primary diagnosis site being lung, only
4870 cases are present, despite there being 12,267 cases present in the GDC data portal.
MINDS pulls source data directly from repositories like GDC to ensure real-time,
up-to-date mapping of all cases.

• MINDS is designed as an end-to-end platform for users to build integrated multimodal
datasets themselves rather than a fixed service. The open methodology enables full
replication of huge multi-source datasets. To this end, anyone can replicate our method
to generate the exact copy of over 40,000 public case data on their infrastructure.

• MINDS is flexible and incorporates diverse repositories and data sources, not just
CRDC resources. Our proposed architecture can integrate new repositories as needed,
unlike CDA, which is constrained to CRDC-managed data. For example, the cBioPortal
for Cancer Genomics, a widely used platform for exploring, visualizing, and analyzing
cancer genomics data, has its own data management and storage system separate from
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the CDA [37,38]. The data stored in cBioPortal cannot be directly queried or accessed
through CDA, limiting the potential for integrated data analysis across platforms.

2.4. The “Big Data” Approach

We have used the Big Data approach in our work [12,13]. Among the recent advance-
ments in healthcare data management, the big-data approach is the most prominent and
feasible solution [7,8,39]. The rapid technological progress has led to an unparalleled
utilization of computer networks, multimedia, internet of things, social media, and cloud
computing, resulting in an overwhelming generation of “big data” [40]. Effectively collect-
ing, managing, and analyzing vast amount of healthcare data through big data processing
has become crucial. The big data processing involves various techniques, such as data
mining, leveraging data management, machine learning, high-performance computing,
statistics, and pattern recognition to extract knowledge from extensive datasets. These
datasets possess distinctive characteristics, often called the seven Vs of big data, as shown
in Figure 3. The Big Data approach guides data handling strategies. By considering each of
these aspects, we can effectively manage oncology data and, in turn, build better, effective
models. We use two primary data management systems to facilitate our big data approach:
Data Warehouses and Data Lakes.

Figure 3. The 7 Vs of Big Data: Volume relates to the data size, with more data, the models can learn
more and perform better. Variety refers to the data types we deal with, each data type presents unique
challenges and opportunities. Velocity considers the speed at which the data is accumulated, the
learning models need to remain current and adaptable. Veracity concerns the quality and integrity
of the data, data must be credible and high-quality. Value focuses on the utility and benefits of the
data. Variability pertains to the data volatility that changes in both temporal and spatial domains.
Visualization depicts insights through visual representations and illustrations [40].

Data warehouses represent a foundational pillar of the big data paradigm. A data
warehouse integrates heterogeneous data from diverse sources into a centralized, well-
organized repository to enable analysis. This repository provides a highly structured
environment explicitly optimized for analytics, reporting, and deriving insights across
vast information [40]. By fulfilling this role, data warehouses deliver immense value in
informed decision-making. The process of assembling data into warehouses is called data
warehousing. “Schema-on-write” is the core concept employed, where the warehouse
schema is predefined to meet specific analytical needs before data is loaded. This upfront
structural optimization makes warehouses ideal for handling structured data. Supervised
machine learning thrives in warehouses, as structured, consistent data facilitates training
algorithmic models. Moreover, the innate high degree of organization enables fast, efficient
querying to uncover trends and patterns through predictive analytics [40]. Overall, by
structuring varied data sources into a unified environment purpose-built for analytics, data
warehouses provide the backbone for deriving value from big data across many domains.

Data lakes complement the warehouses by providing centralized but low-structure
storage to accumulate expansive, heterogeneous data in raw form. In contrast to “schema-
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on-write”, data lakes employ “schema-on-read”, which only defines structure when data is
queried. This provides flexibility to modify analytics on-demand [40]. With their innate
tolerance for storing original, unprocessed data, lakes accommodate structured, semi-
structured, and unstructured data types. The lack of enforced structure enables rapid
scaling to meet growing analytics demands. The dual architectures of data warehouses
and data lakes provide structured refinement and raw accommodating capabilities to put
big data into action. Lakes aggregate heterogeneous datasets, while warehouses prepare
refined data for analysis. This symbiotic combination ultimately enables MINDS to derive
maximal value from oncology’s multidimensional data landscape.

2.5. Summary of Gaps in Existing Methods

While prior work has laid crucial foundations, several persistent constraints around
consolidation, interoperability, scalability, provenance, and security have encumbered
reliable integrative modeling on multimodal data. Biobanks carry siloed modalities with
heterogeneous formats, creating barriers to unification and requiring extensive manual
synchronization effort. Data commons combined various data types into unified platforms
but lack harmonization of diverse data sources. Static mappings fail to reflect repositories’
real-time state, while disjoint querying systems limit holistic analysis across databases.
Fundamentally, past efforts centered on aggregating principally structured sources, lacking
the breadth to effectively harness the heterogeneity spanning images, assays, text, and sen-
sors. With data volumes intensifying across these manifold streams, inflexible on-premises
systems strain to provide needed scalability. Reproducibility suffers from dynamic dataset
derivation as model provenance linkages fade. Finally, while ethical rigor grows in impor-
tance with scale, most architectures offer worryingly coarse-grained control over access
policies. By tackling this multiplicity of the persistent challenges through enhancements
leveraging the prior seminal achievements, MINDS aims to advance reliable, responsible
multimodal modeling on big oncology data. The key limitations that constrain multimodal
integrative modeling through existing approaches are summarized below:

• Prior consolidation is limited to structured data: Most prior efforts, like CDA, focused
on consolidating structured clinical records. Support for aggregating unstructured
imaging, -omics, and pathology data is lacking.

• Query interfaces have limited standardization: Different repositories have proprietary
APIs and schemas. Unified interfaces for federated querying are needed.

• Scalability is constrained for large data: On-premises systems restrict scaling storage
and compute for exponentially growing heterogeneous data.

• Minimal reproducibility without versioning: Dynamic dataset extracts make precise
tracking of model data versions difficult, hampering reproducibility.

• Coarse-grained access controls: Most systems have limited options for fine-grained
data access policies tailored to users.

Addressing these gaps is pivotal to unlocking translational applications of multimodal
oncology data through enhanced consolidation, standardization, scalability, provenance,
and security. By tackling each limitation, MINDS aims to overcome persistent bottlenecks
that have hitherto encumbered reliable integrative modeling on heterogeneous big data.

3. Methodology

This section details the technical implementation of the proposed MINDS architecture.
We begin by presenting the high-level requirements that informed key architectural deci-
sions. We then dive into the three-stage architecture of MINDS, describing each component
and its role in enabling scalable and secure management of multimodal oncology data.
Next, we provide deployment options for MINDS, including details on implementing the
system in the cloud across diverse platforms and on-premise infrastructure. Finally, we
outline key use cases and user interactions with MINDS.
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3.1. Requirements of a Flexible and Scalable Data Management System

To handle the complexities, scales, and heterogeneity in the structure and function
of oncology data, the data management system design has to be comprehensive, scalable,
and interoperable. The primary goal of this system is to cater to the needs of machine
learning engineering, which requires a robust and efficient data management infrastructure
to build accurate and reliable models. We set off with the aim to design and build a data
management system with the following requirements in mind:

• Requirement 1: Minimize large-scale unstructured data storage whenever possible.
This requirement ensures the efficient use of storage resources and allows the user to
access the data directly from the data provider.

• Requirement 2: The system should be horizontally and vertically scalable. Satisfying
this requirement is crucial to handle the increasing volume of oncology data and
ensure the system can accommodate data size and complexity growth.

• Requirement 3: The system should be interoperable, allowing for the easy integration
of new data sources. This is important in oncology, where data is often distributed
across various databases and systems.

• Requirement 4: The system should track data from the point of ingestion to the point
of training. This ensures reproducibility, a key requirement in scientific research and
machine learning.

• Requirement 5: Incorporate audit checkpoints in the data collection, pre-processing,
storage, processing, and analysis stages of the data pipeline. This ensures data integrity,
the prime consideration in delivering reliable machine learning outcomes.

3.2. MINDS Architecture

Considering the above-mentioned requirements, we have built a Multimodal Integra-
tion of the Oncology Data System (MINDS). The MINDS system design adopts a common
two-tier data architecture, a data lake, and a data warehouse [40] to process data and
derive meaningful insights efficiently. Figure 4 illustrates the architecture of MINDS,
which is divided into three primary stages: (1) Data Acquisition, (2) Data Processing, and
(3) Data Serving. Key goals include scalability of individual components, interoperability
via standardized APIs and schemas, security leveraging authentication and encryption, and
usability across interactive and programmatic access patterns. To meet this requirement
MINDS is built using the cloud-based technology of Amazon Web Services (AWS), the
cloud-based architecture allows us to scale up or down easily based on the data volume re-
quirements and the required computational resources. It also provides a wide range of tools
and services that can be leveraged to build, deploy, and manage a data management system.
While the current MINDS implementation leverages AWS, the architecture is designed to
enable deployment across different cloud platforms, not just AWS. The core methodology
centers on interfacing with managed cloud services, abstracting the underlying infrastruc-
ture through common programmatic interfaces. This service-oriented approach enhances
portability and avoids extensive customization tied to a single provider. For example, the
S3 storage layer could be replaced with Google Cloud Storage buckets, AWS Glue with
Azure Data Factory, RDS and Redshift with Snowflake’s data platform, and Lambda with
Cloud Functions. The overall system architecture would remain consistent while swapping
the provider services. When migrating platforms, trade-offs exist around performance,
access controls, and other factors. But by using managed services with standard APIs,
MINDS aims for platform-independent portability. Figure 5 provides a detailed layout of
technical components at each stage using AWS cloud infrastructure and the tools utilized to
actualize the system. Definitions of these technical components are summarized in Box 1.
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Box 1. Definitions of key cloud components.

Amazon S3
Ingest Bucket Object storage bucket for staging raw data before loading into a data lake.

Amazon Web
Services (AWS)

A cloud platform that provides scalable computing, storage, analytics, and
machine learning services.

AWS Athena Serverless interactive query service to analyze data in Amazon S3 using
standard SQL.

AWS Big
Data Analytics

Suite of services for processing and analyzing big data across storage,
compute, and databases.

AWS Data
Lake Formation

Service to set up and manage data lakes with indexing, security, and
data governance.

AWS Data
Warehouse Fully-managed data warehousing service for analytics using standard SQL.

AWS Glue Crawler Discovers data via classifiers and populates the AWS Glue Data Catalog.

AWS Glue
Data Catalog Central metadata store on AWS for datasets, schemas, and mappings.

AWS Lambda Serverless compute to run code without managing infrastructure.

AWS QuickSight Business intelligence service for easy visualizations and dashboards.

AWS RDS

Amazon Relational Database Service is a managed relational database
service that handles database administration tasks like backup, patching,
failure detection, and recovery. Including RDS MySQL, a managed
relational database optimized for online transaction processing.

AWS Redshift Petabyte-scale data warehouse for analytics and business intelligence.

JDBC

JDBC (Java Database Connectivity) is a standard API for connecting to
traditional relational databases from Java. The JDBC was released as part
of the Java Development Kit (JDK) in version 1.1 in 1997 and has since been
part of every Java edition.

Figure 4. MINDS architecture implements a 3-stage pipeline designed to optimize data aggregation,
data preparation, and data serving of multimodal datasets. Stage 1 comprises data acquisition and
involves acquiring structured and semi-structured data from sources like GDC, including clinical
records and biospecimen metadata. These are gathered, normalized, and securely stored in cloud
object storage. Stage 2 consists of data processing. The raw data is processed by extract, transform,
load (ETL) tools cataloging into data lakes, transforming into structured relational formats, and
loading into optimized data warehouses, generating analysis-ready clinical data. Stage 3 consists
of data serving. The clinical data is served directly to researchers for preliminary exploration and
visualization. They can also build patient cohorts by querying the selection criteria, and MINDS will
pull corresponding unstructured data like images from connected repositories, e.g., IDC.
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Figure 5. Overview of the MINDS architecture implemented on AWS. (A) Data from multiple
oncology sources is acquired. The pipeline for structured data is currently configured with GDC,
with the ability to integrate other platforms, such as the University of California Santa Cruz Xena and
cBIO portals. (B) The structured data from the source is acquired in an AWS Lake where multiple
components such as S3 Bucket, Glue, and Lambda catalog and process the data. (C) Next, the Data
Warehouse uses RDS and Redshift for structured data warehousing in the form of relational schema.
The cataloged data is available to Athena and Quicksight for analytics and visualization. (D) The users
can directly query the structured data for visualization. All unstructured data download pipelines
using the Data Commons APIs from Cancer Research Data Commons (CRDC) are also shown. Using
SQL queries, users can request all modalities data associated with the cohort. Resultantly, all the data
from PDC, GDC, and IDC are pulled together, harmonized, formatted, and presented to the user
ready to use for machine learning pre-processing.

3.2.1. Stage-1: Data Acquisition

Data sources: Data acquisition is the first and crucial step in building the MINDS
platform. This process involves gathering all publicly available structured and semi-
structured data from the data sources. As mentioned earlier, the CRDC and other oncology
data management initiatives host vast amounts of patient information, and we use them as
the primary data sources for our system. These sources primarily include the three data
commons portals, GDC, IDC, and PDC. Additionally, we use the CRDC’s Cancer Data
Aggregator (CDA) tool to map all the patient information across the commons into one
cohesive database. This database then expands to accommodate the patient data stored
across other portals, such as the cBioPortal, Xena, and other relevant data sources [37,38,41].
It is pertinent to mention that we do not store any unstructured data in MINDS, such
as whole slide images or radiology scans. MINDS instead pulls the unstructured data
from their respective data commons based on the cohort the users want to build and the
modalities they require for processing through the portal APIs. Hence, we are not required
to store large unstructured data such as gigabyte pathology images in our database.

For the initial version of MINDS, we leverage the GDC as the primary data source due
to its comprehensive collection of up-to-date, publicly available oncology data. The GDC
portal contains clinical, biospecimen, and molecular data across diverse cancer studies,
representing over 86,000 cases spanning 78 projects. The GDC has the most extensive public
data holdings out of the three NCI data commons. As of 2023, it hosts over 3 petabytes of
genomic and clinical data from the NCI programs like The Cancer Genome Atlas (TCGA)
and Therapeutically Applicable Research to Generate Effective Treatments (TARGET). The
GDC also has a well-designed and detailed data model that structures and connects the
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clinical, biospecimen, and molecular data domains. The availability of this robust data
dictionary and schema metadata makes the ingestion and integration of new GDC datasets
simpler and more consistent. Leveraging thousands of richly annotated multi-omic cancer
profiles, we can develop integrative and predictive models by utilizing all the public cases
in the GDC for MINDS initial deployment. The breadth of tumor types enables the building
of generalized models applicable across different cancers. As the MINDS data repository
expands to incorporate more primary sources beyond GDC, the experience of integrating
the GDC data provides a solid foundation to build upon. The tooling ETL workflows
developed to ingest and harmonize GDC data can be extended to transform and connect
new oncology datasets into the MINDS knowledge system.

3.2.2. Stage 2: Data Processing

A foundation of the MINDS architecture is ingesting petabytes of structured clinical,
biospecimen, and molecular data from cancer genomic repositories like the GDC. This raw
metadata arrives in heterogeneous formats including JSON documents, CSV exports, and
XML messages conveying case details, lab assays, pathology reports, and tissue sample
attributes. While information-rich, effectively using this disjointed data to drive integrative
insights requires significant wrangling. We leverage the GDC common data model as an
integration schema to streamline aggregation and analysis. This model structures enti-
ties like cases, files, and read groups into a normalized graph representation, with nodes
denoting key objects and edges linking related records. For example, a case entity may
reference constituent pathology reports, sequencing files, or tissue aliquots to provide a
unified view spanning this network of connected data. The GDC data dictionary rigor-
ously defines properties and relationships to provide semantic consistency. Aligning raw
data to this canonical representation enables unified storage, queries, and computational
pipelines. However, the raw downloads natively arrive in varied shapes. JSON clinical
documents describe patient characteristics differently than TSV biospecimen exports. Our
first challenge is flexible parsing and mapping.

Adopting Interoperability Standards: The need to integrate data from multiple sources
is further pronounced in complex diseases such as cancer when considering efforts such
as precision medicine and personalized treatments. However, interoperability remains a
major challenge in practice despite extensive standards development. Many clinical, ge-
nomic, imaging, and literature databases use disjoint interfaces, formats, and terminologies,
thus hampering unified analytics. Several domain-agnostic standards have emerged to
promote harmonization:

• Health Level 7 (HL7): Defines structures and semantics for messaging healthcare
data between computer systems, including Clinical Document Architecture and Fast
Healthcare Interoperability Resources (FHIR) specifications [42,43].

• Fast Healthcare Interoperability Resources (FHIR): Specifies RESTful APIs, schemas,
profiles, and formats for exchanging clinical, genomic, imaging, and other healthcare
data. Offers platform-agnostic interconnection [43].

• Clinical Data Interchange Standards Consortium (CDISC): Develops data models,
terminologies, and protocols focused specifically on clinical research and FDA sub-
missions, including the Study Data Tabulation Model (SDTM) and the Clinical Data
Acquisition Standards Harmonization (CDASH) [44].

However, adopting these standards remains inconsistent, and significant translator
development is required to bridge entities [45]. The tight coupling of databases to pro-
prietary representations threatens interoperability. Furthermore, medical ontologies and
terminologies such as those given below play a crucial role in promoting both human and
machine-readable shared understanding:

• Systematized Nomenclature of MEDicine Clinical Terms (SNOMED CT): Provides con-
sistent clinical terminology and codes for electronic health records. Enables semantic
interoperability [46].
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• National Cancer Institute (NCI) Thesaurus: Models cancer research domain semantics
with 33 distinct hierarchies and 54,000 classes/properties. Binds related concepts for
knowledge discovery [47].

The GDC data model and dictionary enhance interoperability by structuring and
defining entities, properties, and relationships standardized. When ingesting data, the
AWS Glue crawler leverages these common semantics to map input elements into the
unified representation. This semantic alignment enables integrated analysis despite origi-
nating heterogeneity.

Data Dictionary, Schema, and Entity Relationships: GDC structures clinical, biospeci-
men, and molecular data using a consolidated data model that interconnects related entities
into a directed acyclic graph (DAG) representation. This data model underpins the organi-
zation and semantics of the petabyte-scale GDC dataset. The model comprises a network
of nodes representing key data objects (cases, samples, reads, etc.) linked through edges
denoting relationships. Nodes have properties like type, age, and tumor_stage, while edges
characterize affiliations like a sample derived_from a case. Robust semantic definitions
specify permitted nodes, their properties, associated data types, and linkage rules. This
ontology ensures consistency critical for downstream interoperability. Technically, the data
model utilizes a mix of JSON and YAML schemas coupled with Python 3 and SQL code-
bases to architect domain representations. Schemas define valid elements and constraints
serialized into JSON documents. Codebases ingest and query documents while preserving
compliance. The GDC dictionary elaborates on metadata driving consistency. For example,
the sample entity has documented required fields like sample_type and permissible values
like Solid Tissue. The authentication service verifies submitted entities to satisfy specs.
At the infrastructure layer, dictionaries transform into SQLite representations. Indexed
tables track datasets while optimized queries fetch connections. Although decentralized,
federated services coalesce distributed systems into an integrated data collaboration. The
presentation tier visualizes linkages via an entity-relationship diagram highlighting car-
dinality rules (one-to-many mappings, etc.). Users traverse graphs accessing constituent
records through REST APIs. By providing rigorous blueprints governing content packag-
ing, exchange, and interpretation, GDC data models power external consistency unlocking
unified workflows spanning partners—enabling interconnected explorations.

3.2.3. Stage 3: Data Serving

We provide two core methods for researchers to consume processed oncology data
based on workflows. We built interactive dashboards for interactive visualization and
cohort analysis that use the data stored in the warehouse. Additionally, for developers
and computational researchers needing to ingest data into pipelines, we provide an open-
source Python toolkit as part of MINDS that programmatically downloads the unstructured
multimodal data from disparate databases.

Dashboard: At the data consumption stage, the structured data in the data warehouse
is utilized for various purposes. The data consumption process is designed to provide users
with an interactive and intuitive interface for exploring, visualizing, and analyzing the data.
This is achieved through a dashboard built on Amazon QuickSight [48], a fully managed
business intelligence service that enables data visualization and interactive analysis. Users
can interact with the dashboard to explore various aspects of the data and identify trends,
patterns, or correlations using QuickSight’s machine learning-powered insights.

Figure 6 presents sample visualizations enabled by the MINDS analytics dashboard,
allowing researchers to explore different data attributes like the cause of death and tumor
subtype distributions. For example, the death date graph reveals a peculiar underreporting
anomaly between 2014–2017 that may warrant investigation into potential data quality
issues. Meanwhile, tumor classification breakdown identifies pancreatic cancer as the most
represented diagnosis, informing potential studies targeting prevalent categories.

Beyond distributions, the interactive dashboards may also catalyze discoveries by
empowering explorations into relationships between clinical factors, assays, and outcomes.
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As illustrated, researchers could assess survival trends across cancer subtypes to uncover
prognostic biases. Recurrence patterns may be analyzed with modalities like genetic
mutations and treatment regimens to reveal predictive biomarkers or personalized medicine
insights. Apart from the analytical categories depicted in Figure 6, the MINDS analytics
dashboard allows the researchers to filter data based on any clinical or biological fields
such as age, gender, ethnicity, tumor grade, treatment type, year of diagnosis, survival, etc.

(a) (b)

(c) (d)

(e) (f)
Figure 6. Quicksight analytics and visualization generated using clinical data from MINDS, filtered
based on the condition mentioned in each sub-figure. Showcasing data mining and hypothesis
generation capacity based on querying MINDS’ consolidated case data and deriving tangible trends.
The presented visualizations offer glimpses into the extensive cohort analytics and visualization
capacities, where MINDS aims to accelerate discoveries by surfacing multidimensional correlations.
(a) Count of Records by the Year of Death. (b) Count of Records by the Cause of Death. (c) Count
of Records by Gender. (d) Count of Records by Ethnicity. (e) Count of Records by Classification of
Tumor. (f) Count of Records by Progression or Recurrence.
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Unstructured Data Download Tools: MINDS enables users to build focused, mul-
timodal datasets for targeted analysis by combining warehouse-driven cohort queries
with automated unstructured data collection. Patient cohorts are defined by querying the
database directly through SQL. The case IDs can be extracted from the cohort, and the
resulting list of case IDs is used to retrieve all related unstructured data from the GDC, IDC,
and PDC portals using their respective API interfaces. As part of the MINDS toolkit, we
provide a Python utility that accepts the case ID list as input and programmatically calls the
APIs to bulk download images, pathology, -omics, and other files for those specific cases.
The downloaded data is organized into a folder structure with a top-level “/raw” folder
containing subfolders for each case ID. Each case folder contains the unstructured data
objects from GDC, IDC, and PDC for that case. JSON manifest files are also generated to
capture metadata like file IDs, types, and sources. This enables easy indexing and querying
of the unstructured data extracts.

3.3. Cloud Deployment

This section outlines the AWS cloud implementation of MINDS, leveraging core infras-
tructure services to enable scalable data aggregation, processing, and unified access. Our
approach incorporated several key big data techniques essential to the MINDS architecture.
We utilized Amazon S3 for distributed storage, creating a data lake environment capable
of handling petabytes of heterogeneous data. AWS Redshift and EMR were employed
for large-scale data warehousing and distributed SQL and Spark processing, respectively.
These services enabled the building of high-performance SQL query engines and the ef-
ficient processing of large data volumes. AWS Glue played a critical role in machine
learning-powered ETL, allowing for the transformation and structuring of data for analysis.
Serverless computing using AWS Lambda was instrumental in managing scalable work-
loads, preventing server overflow, and ensuring system responsiveness. Together, these
components formed a robust foundation essential for addressing the challenges of volume,
variety, and velocity inherent in the multimodal oncology data within MINDS. While the
current system deployment utilizes Amazon Web Services, the underlying architecture
is designed for portability across cloud platforms. By interfacing with common storage,
database, analytics, and machine learning modules rather than low-level servers or virtual
machines, much of the MINDS technology stack can be replicated on alternate providers.

3.3.1. MINDS Infrastructure on AWS

Data Acquisition Process: We pull all semi-structured and structured data from the
GDC data portal for all public cases, including TSV and JSON files containing various
clinical (clinical, exposure, family history, follow-up, and pathology detail) and metadata
of biospecimen (aliquot, analyte, portion, sample, and slide) information. This data is then
uploaded into an Amazon S3 Ingest Bucket [49]. This bucket acts as the staging storage for
the data before it is uploaded to the data lake. To orchestrate the full data lake setup, we
utilize the AWS Data Lake Formation tool [50], which automates the transformation of the
semi-structured data stored in the S3 bucket into a queryable data lake using AWS Glue
crawlers to catalog the data and store it in data tables [51].

Data Updating Process: The data acquisition is not a one-time event but a continuous
process that must be updated regularly to ensure the data lake is always up-to-date with the
latest data. The new data is not uploaded arbitrarily but rather arrives through scheduled
ETL routines that run every 12 h to poll source repositories like GDC using their APIs.
For example, scripts leverage the GDC REST API to query for newly added cases, files
or metadata since the last update based on a timestamp. The incremental changes are
downloaded via the API and uploaded to the S3 bucket on a Linux-based cron schedule,
such as daily at 9 a.m. UTC. This polling pattern is tailored for each integrated data
source and its API capabilities. Explicitly tracking data provenance through structured
ingestion and ETL ensures the S3 bucket receives only authorized data uploads, avoiding
random additions. We use AWS Lambda serverless compute [52] to trigger Glue crawlers
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automatically whenever new data lands in the S3 bucket. This ensures our data lake is
always up-to-date with the latest data without explicit manual synchronization. This also
helps reduce the data transfer rates because the system updates the data lake only with
the delta between the bucket and the data lake. The data acquisition process is designed
to be robust and scalable, capable of handling the increasing volume of oncology data. It
also ensures the safety and integrity of the data by establishing secure connections to the
databases from which data needs to be extracted.

Data Extraction and Transformation to Structured Format: Once the data is acquired,
the next step is to clean, process, and aggregate this data. At this stage, the data is extracted
from the data lake, transformed into a more structured format, and loaded into the data
warehouse. This is done using Amazon AWS Glue 4.0 [53], which ensures consistency and
compatibility across data types and sources. AWS Glue performs the ETL actions using
the AWS Glue crawler [51]. The crawler works in a series of steps to ensure the data is
appropriately cataloged and ready for analysis. Figure 7 shows the internal workings of
the AWS crawler that ensure the data is properly processed and ready for analysis, making
it easier for users to extract valuable insights from the data. The steps involved in the AWS
crawler workflow are as follows:

1. Establish access-controlled database connections: The crawler first establishes secure
connections to the databases from which data needs to be extracted. This ensures the
safety and integrity of the data in transit.

2. Use custom classifiers: If any custom classifiers are defined, they catalog the data lake
and generate the necessary metadata. These classifiers help in identifying the type
and structure of the data.

3. Use built-in classifiers for ETL: AWS’s built-in classifiers perform ETL tasks for the
rest of the data. This process involves extracting data from the source, transforming it
into a more suitable format, and loading it into the data warehouse.

4. Merge catalog tables into a database: The catalog tables created from the previous
steps are merged into a single database. During this process, any conflicts in the data
are resolved to ensure consistency and deduplication.

5. Upload catalog to a data store: Finally, the catalog is uploaded to a data store to be
accessed and utilized for analytics. This data store is a central repository where all the
processed and cataloged data is stored.

When ingesting data, the AWS Glue crawler parses source elements into this consoli-
dated model by mapping input fields into the GDC dictionary. For instance, a Read Group
JSON would have its metadata properties (like ID, library name, etc.) inserted as columns
into the standardized Read Group table definition used across MINDS while retaining
references to the parent Case/File IDs to recreate linkages. The unified representation
enables joining and analysis across interconnected data domains related to biospecimen,
sequencing, diagnoses, etc., even if originating formats vary. This ensures interoperability
among diverse data sources through a common but fast health interoperable resource. To
incorporate emerging repositories into this existing data model, we extract salient clini-
cal and experimental metadata based on publication schemas and use the flexible AWS
Glue schema evolution tools to extend existing definitions or spawn new tables aligned
with import sources if needed. Templatized mapping configurations adjust for input het-
erogeneity while producing consistent MINDS representations to power integrated SQL
queries across past and future data partners - avoiding isolated silos or reengineering efforts
when onboarding additional cohorts. Hence, MINDS has built-in scalability supported
by interoperable functions. The crawler uses the GDC node schema definitions in YAML
files to parse the JSON documents and infer the schema. The GDC case entity is defined
with properties like case_id, disease_type, demographic, diagnoses, etc. When the crawler
processes a case JSON document from the GDC portal, it maps the JSON properties to
columns in a Glue table definition based on the GDC data model. This way, the GDC
model’s underlying graph structure transforms relationships into a relational view. The
Glue crawler output is a table definition in the AWS Glue Data Catalog. Users can directly
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query and join with other clinical, biospecimen, and genomic tables ingested from GDC.
The dictionaries also provide metadata like each property’s data types and code lists. When
creating data definition language (DDL) for the tables, the crawler leverages this to assign
appropriate column types, formats, and validations. This helps maintain data integrity and
consistency during the transformation process.

Figure 7. The AWS Glue crawler automates ETL in MINDS through a 5-step workflow. (1) Establish
secure database connections. (2) Apply custom classifiers to catalog raw data. (3) Transform data
using built-in classifiers. (4) Merge classifier outputs into unified databases. (5) Upload the final
catalog to processed data stores. The proposed workflow extracts, standardizes, and structures
heterogeneous multimodal data from diverse sources to enable advanced analytics applications.

Uploading Data to Warehouse: The normalized clinical, biospecimen, and molecular
data cataloged by the AWS Glue crawler undergoes loading into Amazon Redshift, which
serves as the primary data warehouse for enabling high-performance analytics. With this
structured data, we also populate an Amazon RDS MySQL cluster to support efficient
inserts and updates as new data arrives from source systems. However, given its optimiza-
tion for such read-heavy workloads, analytical queries are routed directly to Redshift [54].
As a petabyte-scale massively parallel processing (MPP) data warehouse service, Amazon
Redshift employs advanced query processing, adaptive machine learning optimizers, and
columnar storage layouts purpose-built for complex aggregations, filters, and joins across
huge datasets. By leveraging separate data warehouse and transactional database environ-
ments, MINDS supports fluid exploration without impacting critical path operations that
rely on consistent low-latency database performance unaffected by ad hoc analysis. We
incrementally load the Glue-cataloged data into Redshift using high-throughput COPY
commands to enable fast bulk data movement from S3 object storage. Redshift Spectrum
interfaces create external tables pointing directly at structured datasets in S3 buckets, pro-
viding direct access without loading the data into local warehouse storage. This allows
interactive SQL analytics directly on raw JSON, CSV, and TSV objects with automatic
inferencing of schema and transformations to perform as data is read at query runtime.
The centralized AWS Glue Data Catalog manages table definitions, schemas, partitions,
and mappings across these disparate storage and processing environments—serving as
the primary metadata store and enabling unified access to explore and visualize data
across tools like Amazon QuickSight, Amazon Athena [55], and Amazon SageMaker. We
leverage Athena’s serverless SQL query engine to enable users to analyze the consolidated
data using standard ANSI SQL without needing to connect to the underlying data stores,
enhancing accessibility directly.
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3.3.2. Benefits of Cloud as a PaaS Platform

In Platform as a Service (PaaS), the cloud’s intrinsic security features are not just an
add-on; they form the bedrock of a comprehensive data protection strategy. MINDS utilizes
the built-in security of cloud platforms to protect data. We implement several security
services from AWS to ensure our data storage and processing are safe and private. This
includes security, management, and backup mechanisms.

Security in S3 and Data Lake: Security and management are critical aspects of any
data management system, especially when dealing with sensitive medical data. In MINDS,
we employ several AWS security services and best practices to ensure the highest data
security and privacy level. Amazon S3, where our data lake resides, provides robust
security capabilities. We have enhanced these with network traffic encryption using TLS
1.2 and enforcing data integrity with HTTPS. All data in S3 is encrypted at rest using 256-bit
Advanced Encryption Standard (AES) keys managed through AWS Key Management
Service (KMS). Additionally, we use Identity and Access Management (IAM) policies
to precisely manage access at both the resource and action levels, utilizing temporary
credential chains to avoid exposure to raw secrets. Our setup includes Virtual Private
Cloud (VPC) endpoints to prevent public exposure of the data.

Security in Data Warehouse: Our data warehouse, Amazon Redshift [54], incorporates
multiple layers of security to protect sensitive oncology data. It integrates with AWS IAM,
allowing fine-grained access control to resources. Data in transit to and from Redshift
is protected using SSL connections. For data at rest, Redshift employs encryption using
Key Management Service (KMS) and Hardware Security Module (HSM) encryption for
large volumes exceeding terabytes. Redshift also enforces strict SQL-based authorization to
ensure secure data access [56]. Furthermore, we utilize features like Virtual Private Cloud
(VPC) for network isolation and comprehensive audit logging and compliance certifications
for enhanced security and accountability.

Security in ETL and Dashboard: We adhere to stringent security practices in the
context of data processing and ETL with AWS Glue. AWS Glue is integrated with AWS
Lake Formation, which allows for fine-grained, column-level access control, ensuring that
only authorized personnel can access sensitive data. AWS Glue ETL jobs run in a secure
and isolated environment, with all necessary resources provided by AWS Glue [57]. This
is complemented by regular updates to server security groups, operating system patches,
and adherence to the Center for Internet Security (CIS) hardening guidelines. For data
consumption, Amazon QuickSight employs AWS IAM and AWS Lake Formation for robust
access control, supporting both encryption at rest via AWS KMS and encryption in transit
using SSL. Additionally, AWS CloudTrail provides detailed audit logs, enabling effective
incident investigation and response.

Monitoring and Audit Logging: In addition to the above-mentioned security mea-
sures, we also employ monitoring and logging using AWS CloudTrail and Amazon Cloud-
Watch [58]. These services provide visibility into user activity and API usage, allowing us to
detect unusual or unauthorized activities. This helps build audit trails and trigger security
events in case of an undesired action. We also use Amazon RDS Multi-AZ deployments
for redundancy, high availability, and failover support for database instances. Multi-AZ
creates a primary RDS instance with a synchronous secondary standby instance in another
Availability Zone (AZ) for enhanced redundancy and faster failover.

Backups and Recovery Mechanisms: MINDS leverages AWS services’ robust backup,
redundancy, and disaster recovery capabilities to maximize system availability and protect
against data loss. Amazon S3 buckets are versioned, with all object modifications saved as
new versions. This allows restoring to any previous version. Cross-region replication sends
object replicas to geographically distant regions to mitigate region-level failures. S3 object
lock prevents accidental deletions during a specified retention period. RDS clusters run
as Multi-AZ deployments with a standby replica in a secondary AZ for high availability,
automatic failover, and fast recovery. Point-in-time restore rolls back to previous database
states using retained backups. Database snapshots are stored in S3 for long-term durability.
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Redshift distributes replicas across nodes for local redundancy. It replicates snapshots and
transaction logs to S3 to protect against node failures. Snapshots can restore clusters to
any point in time. Combining versioning, redundancy, failover capabilities, and recovery
automation, MINDS provides resilience against failures and minimizes disruption. Robust
security protects against data loss from malicious events.

3.3.3. Scalability across different Platforms

While the current MINDS implementation leverages AWS, the architecture is designed
to enable deployment across different cloud platforms, not just AWS. The core methodology
centers on interfacing with managed cloud services, abstracting the underlying infrastruc-
ture through common programmatic interfaces. This service-oriented approach enhances
portability and avoids extensive customization tied to a single provider. For example,
as shown in Figure 8, the S3 storage layer could be replaced with Google Cloud Storage
buckets, AWS Glue with Azure Data Factory, RDS and Redshift with Snowflake’s data plat-
form, and Lambda with Cloud Functions. The overall system architecture would remain
consistent while swapping the provider services. When migrating platforms, trade-offs
exist around performance, access controls, and other factors. But by using managed ser-
vices with standard APIs, MINDS aims for platform-independent portability. The MINDS
architecture can be replicated to the Google Cloud Platform to demonstrate feasibility
through the following replacement and compatibilities.

Figure 8. Demonstrating the feasibility of deploying MINDS across cloud platforms, this diagram
shows the mapping of key AWS services leveraged in the current implementation to their correspond-
ing managed offerings on Google Cloud Platform (GCP). By abstracting underlying infrastructure
into modular cloud services with standardized programmatic interfaces, MINDS aims for platform
agnosticism without vendor lock-in. While technical considerations around service limits, access
controls, and performance tuning differ across providers, the high-level architecture and methodology
remain consistent. Through this interoperability, MINDS can ingest, process, analyze, and serve
integrated multimodal datasets spanning storage systems, data pipelines, warehouses, and analytics
products from multiple public cloud platforms.

• Employing Cloud Data Fusion for data integration in place of AWS Glue
• Leveraging BigQuery for data warehousing rather than Redshift
• Using Cloud SQL over RDS for relational data
• Adopting Cloud Functions and Cloud Run for serverless compute instead of Lambda.
• Visualizing with Looker as an alternative to QuickSight
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• Applying Cloud Data Loss Prevention for security rather than AWS options

3.4. On-Premise Deployment

While the cloud delivery model provides advantages like elastic scalability, hands-
off management, and usage-based costing, some organizations may prefer on-premise
deployment of MINDS due to data sovereignty, customization, or latency constraints.
Despite extensive security protections, regulated data may mandate localized processing.
Custom modules like augmented analytics dashboards may also require internal hosting.
We provide an open-source Python toolkit for configurable local installations to address
these needs while retaining MINDS’ consistent methodology.

The MINDS library abstracts the orchestration of storage, databases, and web services
into simple commands. A Docker container runs the setup scripts to bootstrap a production-
ready environment. This generates a MySQL database pre-populated with the consolidated
clinical data schema. The library emulates S3’s file layout to organize unstructured dataset
downloads. A lightweight Flask web application replaces interactive dashboards for cohort
queries and drilling into associated multimodal records. Python notebooks connect natively
to the local database for flexible ad-hoc analysis.

While foregoing autoscaling capabilities, on-premise deployment grants organizations
direct control to modify pipelines, incorporate sensitive data, and reduce external network
dependencies. The toolkit ensures feature parity while unlocking customizations. The
same MySQL structure retains compatibility with predictive models trained in the cloud.
Consistent metadata schemas, entity definitions, and configurability guard against lock-in
across deployments. By supporting flexible topologies, MINDS balances sovereign data
management with scalable cloud analytics.

3.5. User Application

The MINDS platform aims to support users across academia, industry, and clinical
settings by enabling scalable and secure access to integrated multimodal oncology data.
Researchers can leverage MINDS to store, organize, search, and analyze large volumes of
heterogeneous data spanning modalities like imaging, sequencing, pathology, and EHRs.
For example, a lung cancer researcher may want to analyze treatment response biomarkers
across a substantial cohort of lung adenocarcinoma patients. However, gathering sufficient
cases poses barriers, as relevant data resides in siloed repositories and trial databases.
Each data source may only have a few hundred labeled lung adenocarcinoma cases that
meet the desired criteria. Using MINDS, the researcher can easily construct an expansive
harmonized analysis cohort. They can perform an SQL query against the aggregated clinical
data warehouse to select all lung adenocarcinoma cases across the 95,000+ aggregated
case database. This unified view allows for the efficient building of a cohort of over
7000 consolidated lung adenocarcinoma cases—a scale far beyond what any individual
source provides. MINDS data processing pipelines will have mapped the clinical data
from diverse sources like TCGA, TARGET, GENIE, and clinical trials into a standardized
representation aligned with the GDC data model. This harmonizes heterogeneity and
structures cohorts for analysis. The researcher can feed this harmonized case ID list
into the unstructured data download clients. The tool will automatically retrieve all raw
sequencing, imaging, and pathology data objects associated with each case from connected
GDC, IDC, and PDC repositories. The researcher now has a turnkey dataset with thousands
of consistently structured lung cancer cases annotated with multimodal data. This fuels
large-scale integrative experiments to uncover treatment response biomarkers that drive
outcomes. By aggregating and standardizing dispersed data into a centralized warehouse,
MINDS created an augmented lung cancer cohort at a far larger scale and faster pace than
otherwise feasible. This accelerates the discovery process through transformational access
to interconnected big data.
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4. Results and Discussion

This section presents the results of implementing the proposed MINDS architecture
for integrated multimodal oncology data management. We demonstrate MINDS’ cohort
building and data tracking capabilities and present its advantages over current solutions.

4.1. Multimodal Data Consolidation

A fundamental challenge in developing integrated multimodal learning models is as-
sembling the highly heterogeneous and fragmented data from myriad sources into unified
datasets at sufficient scale. As shown in Table 1, MINDS directly addresses this by consoli-
dating over 41,000 open-access cancer case profiles spanning diverse research programs
into a structured 25.85 MB extract. This aggregated dataset encompasses clinical, molecular,
and pathological data elements, providing a multifaceted view of each patient. Compared
to petabyte-scale source systems, the extreme compression enables single-node processing
and complex SQL analytics that are infeasible on individual repositories. The storage sizes
reported for the GDC, PDC, and IDC refer to the total data contained in each repository.
However, only a subset of cases in these repositories are open-access and available for
research without access restrictions. For example, the GDC contains over 3 petabytes of
genomic, imaging, and clinical data overall, but only 17.68 terabytes are associated with
open-access cases that can be freely downloaded and analyzed. The 41,499 cases consoli-
dated in MINDS are derived from these open repositories for unencumbered research use.

Table 1. Comparison of the storage size of structured clinical and metadata extracted in MINDS
versus complete unstructured data holdings in the GDC, IDC, and PDC repositories. MINDS only
consolidates structured information like patient records and biospecimen data. Raw unstructured
data, including medical images, genomic sequences, and digital pathology slides, remain hosted
separately in their respective source platforms. The storage sizes reflect this distinction between struc-
tured extracts in MINDS and total unstructured data in the commons. The comparison illustrates the
extreme compression of MINDS’ structured approach versus petabyte-scale repositories containing
all raw imagery and assay data.

Data Source Storage Size # of Cases

MINDS 25.85 MB 41,499
PDC 36 TB 3081
GDC 3.78 PB (17.68 TB public) 86,962
IDC 40.96 TB 63,788

As shown in Table 2, the consolidated cases represent a comprehensive amalgamation
of historical and contemporary research initiatives, vital for maintaining the relevance
and accuracy of downstream analytical models in the face of evolving technologies. For
example, the 11,315 cases from The Cancer Genome Atlas (TCGA) provide invaluable high-
throughput molecular profiling using earlier genomic microarray platforms. In contrast,
the 18,004 cases from Foundation Medicine incorporate the latest in contemporary genomic
assays, such as next-generation sequencing (NGS) techniques. This strategic blending of
data spanning different technological eras—from classic projects like TARGET to modern
Foundation Medicine NGS panels—is critical for mitigating chronological biases and batch
effects. By integrating this temporally diverse data through MINDS’ heterogeneous inte-
gration framework, we proactively inoculate our models against chronological distortions.
This approach ensures that the algorithms focus on learning durable, biological patterns
that are generalizable across technological shifts rather than transient, platform-specific
technical artifacts. Consequently, this temporal synthesis strategy enhances the generaliz-
ability of the machine learning models and future-proofs them against inevitable progress
in profiling techniques. Access to such a rich and varied dataset is indispensable for training
machine learning models, as it provides the large sample sizes necessary for deep learning
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and helps avoid statistical biases and spurious correlations that often arise from analyzing
isolated datasets.

Table 2. Distribution of the number (#) of cases by programs from GDC open cases present in MINDS.

Program # of Cases

Foundation Medicine (FM) 18,004
The Cancer Genome Atlas (TCGA) 11,315
Therapeutically Applicable Research to Generate Effective Treatments (TARGET) 6542
Clinical Proteomic Tumor Analysis Consortium (CPTAC) 1526
Multiple Myeloma Research Foundation (MMRF) 995
BEATAML1.0 756
NCI Center for Cancer Research (NCICCR) 481
REBC 440
Cancer Genome Characterization Initiatives (CGCI) 371
Count Me In (CMI) 296
Human Cancer Model Initiative (HCMI) 228
West Coast Prostrate Cancer Dream Team (WCDT) 99
Applied Proteogenomics OrganizationaL Learning and Outcomes (APOLLO) 87
EXCEPTIONAL RESPONDERS 84
Oregon Health and Science University (OHSU) 80
The Molecular Profiling to Predict Response to Treatment (MP2PRT) 52
Environment And Genetics in Lung Cancer Etiology (EAGLE) 50
ORGANOID 49
Clinical Trials Sequencing Project (CTSP) 44

Storage Optimization: By selectively assimilating solely essential clinical, biospecimen,
and assay metadata instead of complete image pixel repositories, the MINDS structured
ingestion approach reduces storage footprints from original petabyte scales down to a
consolidated 25.85 MB extract. This approximate 1000× storage optimization maintains
versatile multivariate cohort filtering capabilities across the 41,499 case corpus. Concretely,
archiving TCGA, TARGET, and Foundation Medicine oncology profiles requires only
MBs—facilitating responsive analytics from single commodity hardware, otherwise im-
possible at native TB+ scales. MINDS shifts the storage complexity curve through this
strategic assimilation to unlock unified exploration. Deferring transfers of raw pixels
and nucleic acid sequences until specifically requested for focused analysis prevents ex-
cessive upstream overheads. By directly handling initial cohort filtering on structured
metadata upstream, MINDS right-sizes infrastructure economics to enable cloud-scale
interactivity. Only specifically tailored subsets subsequently retrieve associated imagery.
This optimized 2-stage architecture minimizes waste for targeted investigation. We further
dissected storage contributions across warehoused clinical, biospecimen, and molecular cat-
egories, with cases consuming 10.24MB, followed by genomic variant calls and read groups.
This proportional breakdown spotlights metadata categories benefiting from the greatest
compression—guiding potential raw assimilation. Measurable storage optimization un-
locks interactive analysis otherwise hampered by extreme technical costs, demonstrating
quantifiable efficiencies.

Horizontal Scalability: Given that cohort queries constitute read-only analytical work-
loads, MINDS can scale underlying AWS Redshift compute capacity horizontally by adding
managed nodes to meet surging analysis demands transparently. We empirically demon-
strate corresponding latency reductions by doubling the cluster nodes, which directly
halved runtimes for intensive 8-table cohort investigative queries, proving straightfor-
ward scaling. As increasingly complex algorithmic analysis workloads like multimodal
federated learning and neural network training expand against MINDS unified corpus,
decoupled storage from flexible computing facilitates economic growth, avoiding over-
provisioning. This configurable capacity directly fulfills emerging surge requirements
without architectural redesign. By empirically plotting reductions in query latencies result-
ing from MINDS-scaled infrastructure, we substantiate real-world horizontal scalability
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vital for cloud viability. Similar economical scaling approaches apply when running MINDS
datasets through downstream machine learning toolchains. Distributed training frame-
works like XGBoost or PyTorch natively support decentralized parallel and vectorized
execution pipelines across GPU grids. Maintaining unified data formats ensures interoper-
ability with leading computational platforms.

By harmonizing dispersed data silos into a unified resource, MINDS effectively ad-
dresses the primary bottleneck in large-scale multimodal healthcare machine learning
model development—a sufficiently large, heterogeneous, and representative dataset for
training and validation of models.

4.2. Cohort Building

Once aggregated data has been consolidated, tailored cohort extraction is needed
to develop optimal machine learning training and test sets. Simple random sampling
often fails to provide adequate cohort stratification along key variables. MINDS enables
researchers to construct customized cohorts flexibly by querying the unified clinical data
using performant SQL.

MINDS implements a flexible end-to-end workflow that allows users to submit analyti-
cal cohort queries and receive customized structured or unstructured data extracts. Figure 9
provides an overview of the MINDS system and all the data and query interactions with
the user. The process begins with users formulating SQL-based queries that specify criteria
to define a cohort of interest. These parameterized queries filter over patient attributes
and allow the inclusion of any desired clinical, molecular, or demographic factors. For
structured data, the submitted SQL query executes against MINDS’ consolidated EHR
database containing harmonized patient profiles. This filtered extraction returns a Pandas
data frame containing detailed clinical records for all patients matching the cohort criteria.
Alternatively, users can request unstructured data for their defined cohort. In this case,
MINDS first extracts a list of unique patient case IDs for those meeting the criteria based
on the SQL query parameters. These case IDs are then used to retrieve all associated
unstructured medical objects related to those patients from connected repositories. This
includes digital pathology slides, medical images like CT/MRI scans, -omics assay files,
and other multimodal data assets. This flexible yet automated workflow allows researchers
to obtain structured medical records from the EHR or full multimodal datasets matching
customized cohorts simply by submitting analytical SQL queries. The tight integration
between cohort definition and data extraction enables the on-demand assembly of tailored
data corpora for various biomedical applications.

Preliminary experiments demonstrate interactive cohort construction, with simple
queries on a single clinical factor completed on average in 3–5 s. Even multidimensional
queries joining clinical, molecular, and outcome data across tables are completed within
15 s. This enables rapid, iterative refinement of cohort criteria during model development.

hlQuery Responsiveness: To quantify system performance, we extensively measured
SQL query latencies over diverse criteria ranging from simple filters to multidimensional
predicates across interconnected data domains. These complex joins emulate realistic ex-
ploratory analysis patterns that investigators conduct to uncover relationships within and
across data types. Rigorously quantified wall-clock timings over 24,000+ SQL invocations
reveal consistent sub-5 s average response times for typical single table queries. More com-
plex multidimensional queries encompassing 8+ tables are completed within 15 s despite
traversing metadata for thousands of cases. Minor fluctuations arise based on query types,
but critically, sub-15-s overheads enable practically interactive cohort investigation work-
flows, allowing analysts to rapidly iterate without experiencing disruptions commonplace
in legacy repositories. By maximizing fluidity, MINDS facilitates discovering underlying
correlations that otherwise remain obscured in fragmented systems.
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Figure 9. Overview of the workflow in MINDS, starting from user query generation through returning
the cohort data, structured and unstructured. The system starts with a user submitting an analytical
query specifying cohort criteria. If the user requests structured data, the query is sent to a function
that executes it against the consolidated EHR and clinical databases, returning a Pandas data frame
containing matching patient records. Alternatively, if the user requests unstructured data for the
cohort, the query is sent to another function that extracts a list of unique case IDs for patients meeting
the criteria. This case list is then used to retrieve all associated unstructured data objects like medical
images, genomic sequences, and pathology slides for those patients from connected repositories,
including GDC, PDC, and IDC. The cohort-specific unstructured data extract is returned to the user
for further analysis.

Researchers have full flexibility to extract customized sets for training algorithms by
simply adjusting Boolean logic combining clinical, molecular, or biospecimen factors in
the SQL queries. No system constraints are imposed. The ability to interactively construct
bespoke cohorts by piping SQL queries directly on consolidated records has several key
advantages for multimodal machine learning:

• MINDS allows researchers to build cohorts tailored to the problem. This prevents
sampling biases linked to the availability of pre-defined cohorts.

• SQL combines and consolidates disparate clinical, molecular, and outcomes data from
the entire period of medical treatment. This provides a complete view of each patient.

• Version IDs uniquely label dataset variants to enable precise tracking of changes
during iterative model development. Researchers can pinpoint the exact dataset used
to generate each model version.

• JSON manifests comprehensively log the dataset composition, including the originat-
ing queries, data sources, and extraction workflows. This provides full documentation
of the data provenance.

4.3. Data Standards

The need to integrate data from multiple sources is further pronounced in complex
diseases such as cancer, enabling precision medicine and personalized treatments. How-
ever, interoperability remains a major challenge in practice despite extensive standards
development. Myriad clinical, genomic, imaging, and literature databases use disjoint inter-
faces, formats, and terminologies—hampering unified analytics. Several domain-agnostic
standards have emerged to promote harmonization:

• Fast Healthcare Interoperability Resources (FHIR): Specifies RESTful APIs, schemas,
profiles, and formats for exchanging clinical, genomic, imaging, and other healthcare
data. Offers platform-agnostic interconnection.
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• Clinical Data Interchange Standards Consortium (CDISC): Develops data models,
terminologies, and protocols focused specifically on clinical research and FDA sub-
missions, including the Study Data Tabulation Model (SDTM) and the Clinical Data
Acquisition Standards Harmonization (CDASH).

• Health Level 7 (HL7): Defines structures and semantics for messaging healthcare data
between computer systems, including Clinical Document Architecture (CDA) and
Fast Healthcare Interoperable Resources (FHIR) specifications.

However, adopting these standards remains inconsistent, and significant translator de-
velopment is required to bridge entities. The tight coupling of databases to proprietary rep-
resentations threatens interoperability. Furthermore, medical ontologies and terminologies
play a crucial role in promoting both human and machine-readable shared understanding:

• Systematized Nomenclature of MEDicine Clinical Terms (SNOMED CT): Provides
consistent clinical terminology and codes for EHR. Enables semantic interoperability.

• National Cancer Institute (NCI) Thesaurus: Models cancer research domain semantics
with 33 distinct hierarchies and 54,000 classes/properties. Binds related concepts for
knowledge discovery.

Aligning emerging systems like the Multimodal Integration of Oncology Data System
(MINDS) with such technologies is vital to avoid isolated silos and enable integrated ana-
lytics over clinical and research data. This demands extensive use of their common formats,
unique identifiers, controlled vocabularies plus considerable translator development.

4.4. Data Tracking and Reproducibility

MINDS further simplifies multimodal analysis by automating the rebuild of full
datasets tailored to each cohort. APIs and utilities extract images, -omics, and other un-
structured data linked to cohort cases from connected repositories like GDC. Consistent
organization and JSON manifest document datasets ready for consumption by machine
learning models. To ensure reproducibility, MINDS assigns unique version IDs to cohort
datasets. Any changes trigger new versions, enabling precise data tracking to develop dif-
ferent model variants. Comprehensive data provenance from EHR queries to unstructured
set regeneration enhances reproducibility in machine learning training pipelines.

4.5. Integrated Analytics

Once unified datasets have been constructed, interactive analytics and visualizations
are needed to explore cohort characteristics, correlations, and model outputs. MINDS
delivers rapid analysis over aggregated multimodal data through integrated dashboards
powered by Amazon QuickSight. Optimized cloud data warehousing components like
Amazon Redshift enable ad-hoc exploration across thousands of variables without perfor-
mance lags. QuickSight’s advanced machine learning-driven insights uncover subtle trends
and patterns. User-defined charts visualize model performance metrics across various
cohorts. Key advantages of integrated analytics include:

• Rapid hypothesis testing during exploratory analysis to refine cohorts and features.
• Understanding model performance across cohorts reveals generalization capabilities.
• Uncovering correlations between clinical factors, assays, and predictions guides fea-

ture engineering.
• Visualizations build trust by providing direct views into model behaviors.

4.6. Limitations and Future Improvements

While MINDS has demonstrated significant benefits, there are several areas where
the system could be improved. Including controlled data, a local deployment option, and
enhanced analytics and visualization capabilities represent exciting directions for future
work on MINDS. These improvements would increase the amount of data available in
MINDS and enhance its utility for oncology research. Another future extension to this work
could be to replicate MINDS on the Google Cloud Platform or Microsoft Azure platform.
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While there would be specific technical differences across providers, the high-level design
focused on abstracted services ensures the seamless prevention of vendor lock-in. Multi-
cloud deployments ensure MINDS provides flexible, portable data management capabilities
spanning diverse infrastructures. To track the addition, deletions, and modifications to
data, webhooks and event notifications can be implemented to achieve more real-time
incremental updates. For example, an event trigger could invoke our ingest handler when
new data is added to the remote platform. This event-driven approach avoids excessive API
polling. Webhooks allow registering listeners to be notified immediately of data changes.

Additionally, though initially focused on cancer data, MINDS’s flexible and modular
design makes it well-suited for application across medical specialties. For example, the
infrastructure could readily incorporate COVID-19 data types such as clinical outcomes,
chest CT scans, and immunological biomarkers from initiatives like the Medical Imaging
and Data Resource Center (MIDRC) [59] to accelerate insights. By ingesting such assets via
extensions to the automated ETL pipelines and data model while reusing the security, gover-
nance, and analytics foundations, MINDS could integrate emerging COVID-19 knowledge.
More broadly, maintaining interoperable components enables consolidating distributed
data silos across domains to advance data-driven medicine beyond just oncology through
unified analytics.

While MINDS demonstrates significant benefits in enabling integrated analytics, some
core limitations provide fruitful directions for further enhancement. Given infrastructure
barriers, a primary constraint centers on directly ingesting raw clinical imagery and video.
However, introducing dimension reduction through learned embeddings holds promise
for overcoming such hurdles while preserving semantic representation. Exploring privacy-
preserving approaches would also facilitate assimilating regulated data assets beyond
public corpora. Additionally, absorbing unstructured physician notes poses non-trivial
natural language understanding challenges needing advancement through pre-trained
clinical language models. If these addressable constraints are tackled, the potential sig-
nificance would be immense. MINDS could profoundly transform integrated biomedical
investigation paradigms by synergizing heterogeneity and multiplicity across exponentially
growing streams. New modalities, data types, and controlled datasets could continually
expand the scope. Assimilating free text notes could uncover novel linguistic biomarkers.
Exciting enhancements we have highlighted include:

• Incorporating regulated data through privacy-preserving methods
• Migrating imagery via compact embeddings
• Absorbing unstructured notes through advanced NLP
• Expanding across diseases by reusing consolidation components
• Scaling across cloud platforms to prevent vendor lock-in

5. Conclusions

The MINDS was designed to address the challenges of integrating and managing
large volumes of oncology data from diverse sources. MINDS provides a cost-effective
and scalable solution for storing and managing oncology data through its innovative cloud
technologies and data mapping techniques. It leverages public datasets to ensure repro-
ducibility and enhance machine learning capabilities while providing a clear pathway for
including controlled data in the future. Our results demonstrate that MINDS significantly
reduces storage size and associated costs compared to traditional data storage methods.
MINDS’ compatibility with public datasets ensures no leaks of controlled data while allow-
ing for reproducibility of results. The system also enhances machine learning capabilities
by updating patient information as new data is released from clinical trials, providing
transparency and reproducibility.
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