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Abstract: Advanced sensing technologies and communication capabilities of Connected and Au-
tonomous Vehicles (CAVs) empower them to capture the dynamics of surrounding vehicles, including
speeds and positions of those behind, enabling judicious responsive maneuvers. The acquired dy-
namics information of vehicles spurred the development of various cooperative platoon controls,
particularly designed to enhance platoon stability with reduced spacing for reliable roadway capacity
increase. These controls leverage abundant information transmitted through various communication
topologies. Despite these advancements, the impact of different vehicle dynamics information on
platoon safety remains underexplored, as current research predominantly focuses on stability analysis.
This knowledge gap highlights the critical need for further investigation into how diverse vehicle
dynamics information influences platoon safety. To address this gap, this research introduces a novel
framework based on the concept of phase shift, aiming to scrutinize the tradeoffs between the safety
and stability of CAV platoons formed upon bidirectional information flow topology. Our investiga-
tion focuses on platoon controls built upon bidirectional information flow topologies using diverse
dynamics information of vehicles. Our research findings emphasize that the integration of various
types of information into CAV platoon controls does not universally yield benefits. Specifically,
incorporating spacing information can enhance both platoon safety and string stability. In contrast,
velocity difference information can improve either safety or string stability, but not both simultane-
ously. These findings offer valuable insights into the formulation of CAV platoon control principles
built upon diverse communication topologies. This research contributes a nuanced understanding of
the intricate interplay between safety and stability in CAV platoons, emphasizing the importance of
information dynamics in shaping effective control strategies.

Keywords: CAV platoon; bidirectional sensing and communication; phase shift; safety; stability

1. Introduction

Platoon control aims to minimize speed variations among vehicles while ensuring
consistent and secure spacing between them [1]. This approach offers a promising solution
to several pressing concerns of today’s road transportation due to its potential to increase
highway capacity, enhance safety, and reduce fuel consumption [2]. The recent advent of
CAV technologies has received much attention in platoon control, largely owing to the
pivotal role of communication and information technologies, including advanced sensors,
5G network and a variety of communication protocols [3,4]. These technologies significantly
enhance platoon safety and stability [5,6].

Leveraging communication technology, platoon controls can be developed based on
Cooperative Adaptive Cruise Control (CACC), typically comprising four components [1,2]:
(1) vehicle dynamics, especially longitudinal vehicle dynamics, which depict the behavior
of each vehicle in the longitudinal direction, (2) information exchange that describes
how vehicles communicate with other vehicles, including the exchanged information and
information flow topology (IFT) that determines the configuration of V2V communication
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links in vehicle platoon, (3) a controller that uses information from other vehicles in the
platoon to devise control strategies, and (4) formation geometry that describes the spatial
arrangement of vehicles within the platoon.

Among the four components, information exchange is crucial, facilitated by advanced
information and communication technologies that support different information flow
topologies for effective communication in CAV platoon control [7]. Various information
topologies offer both benefits and challenges to the design and analysis of multi-vehicle
systems, such as predecessor following topology, predecessor–leader following topology,
multiple predecessor following topology, and bidirectional topology [8]. Among them,
bidirectional topology stands out as popular and extensively applied in various studies
due to its simple structure. In bidirectional topology, the subject vehicle adjusts its velocity
by not only following the preceding vehicle but also taking into account the dynamics of
the following vehicle.

CAV platoon controls employing bidirectional topology are also referred to as bidi-
rectional car-following control models. Existing bidirectional models primarily aim to
improve overall platoon stability by integrating abundant information from vehicles trav-
eling behind. However, the incorporation of increasingly complex layers of information
into these models comes with its drawbacks. One significant oversight in this pursuit of
enhanced stability is the neglect of safety analysis—an essential aspect that remains under-
explored. The emphasis on stability often overshadows the potential safety implications
of adding complexity to control protocols. It is crucial to acknowledge that the reception
of back-looking information from following vehicles can affect the dynamics of preceding
vehicles, leading to significant safety concerns. Current studies are examining the tradeoff
between safety and stability in automated vehicles [9], but the impact of bidirectional
communication on this tradeoff is not thoroughly understood yet. Additionally, there is a
lack of comprehensive investigation into the diverse effects resulting from different types
of information in current research.

To address these research gaps, this study introduces a novel framework utilizing the
concept of phase shift to examine the influence of back-looking information on platoons
considering both stability and safety aspects. Employing the proposed framework, this
research analyzes how spacing information and velocity difference information affect
CAV platoon safety and stability. Theoretical analysis reveals that incorporating spacing
information of the following vehicle improves both platoon string stability and safety.
In contrast, adopting velocity difference information enhances either safety or stability,
but not both simultaneously. These theoretical findings are validated through numerical
experiments conducted on both linear and non-linear car-following models.

The remainder of this research is organized as follows. The subsequent section is the
literature review of existing bidirectional models, offering a comprehensive background.
Section 3 presents the methodology which encompasses an illustration of platoon vehicle
dynamics with bidirectional information flow topology. Then, the proposed phase-shift-
based framework is introduced, followed by an analysis of the safety conditions and
the derivation of string stability for two types of information. Additionally, the tradeoff
between safety and stability is examined. Sections 4 and 5 validate the theoretical and
numerical analysis using specific linear and non-linear car-following models. The final
section summarizes the main findings and offers recommendations for future research.

2. Literature Review

The exchange of vehicle dynamics information is pivotal for CAV platoon control. The
most commonly used vehicle dynamics information includes velocity and spacing [10–12].
Other types of vehicle information are also considered, such as acceleration [13], traffic
jerk [14,15], visual angle [16], and electronic throttle opening angle [17,18]. Abundant vehi-
cle information can facilitate platoon control design to achieve better platoon performances
in a coordinated manner.
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This research focuses on bidirectional car-following control models. Existing bidirec-
tional models primarily depend on two prevalent types of vehicle dynamic information
to maintain harmonized speeds with constant time headways: spacing, which is the dis-
tance between the target vehicle and the following vehicle, and the velocity difference
between the target and following vehicles [19]. Table 1 categorizes existing bidirectional
car-following control models into three categories by types of back-looking information
utilized, including spacing information only, velocity difference information only and both
types of information.

Table 1. Car-following control models considering bidirectional information.

Type of Information Used Publications

Spacing [20–26]

Velocity difference [27]

Both spacing and velocity difference [19,28–32]

The first category of bidirectional car-following control models utilizes spacing infor-
mation only. Spacing information is widely used since it can be easily measured by sensors.
For example, Nakayama et al. extended the optimal velocity model (OVM) by introducing
a back-looking optimal velocity function. The modified model takes into account one
preceding and one following vehicle, and it has been shown to improve traffic stability
compared to the traditional OVM model [20]. Hasebe et al. extended the OVM model
by considering the headway of multiple preceding and following vehicles. The study
examined the linear stability of the modified model, revealing that it displayed dynamic
properties capable of mitigating velocity fluctuations [21]. Ge et al. proposed an extension
of the OVM model that takes into account an arbitrary number of vehicles ahead and one
vehicle following. Linear stability analysis was conducted to demonstrate the enhanced
stabilizing effect [22]. Chen et al. extended the full velocity difference (FVD) model by
considering the driver’s sensory memory and the back-looking effect [23]. And Hou et al.
further incorporated the bidirectional FVD models with the driver’s visual angle [24]. Ma
et al. improved the FVD model by accounting for the time-delayed velocity difference
and back-looking effect [25]. Yi et al. introduced a new bidirectional distance-balanced
model that was built upon the Intelligent Driver Model (IDM). This model aims to balance
the distance between the host vehicle and its nearest preceding and following vehicles.
The authors conducted analyses on the local stability and string stability of the proposed
model [26].

The second category solely utilizes velocity difference information. Models in this
category are relatively rare. Herman et al. were the first to propose a bidirectional car-
following control model using velocity differences, taking into account both the velocity
difference between the target vehicle and the preceding vehicle and the velocity difference
between the target vehicle and the following vehicle. It was found that the local and string
stability conditions improved as the weights of the forward-looking and back-looking
decisions increased [27].

Research in the third category combines spacing and velocity difference information
when designing car-following control models. Yang et al. presented a new extension of
the OVM model that considers an arbitrary number of preceding and following vehicles.
The study found that the back-looking effect can help to stabilize traffic flow [28]. Hu et al.
proposed an extension of the OVM model that considers bidirectional visual fields and
multiple anticipations. A stability analysis of the model revealed that multiple anticipations
can enhance the stability of traffic flow. The results demonstrated that the extended model
is capable of reproducing the local clustering phenomenon observed in the traffic flow [19].
Sun et al. proposed a bidirectional car-following model based on the FVD model, which
takes into account multiple preceding vehicles and only one following vehicle [29]. Yang
et al. introduced a bidirectional Gipps’ model and investigated the linear stability of traffic
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flow. The results indicated that the back-looking behavior has three types of effects on traffic
flow stability: stabilizing, destabilizing, and generating non-physical phenomena, which are
more complex than the effects derived from OVM-based bidirectional models. Furthermore,
the study discovered that drivers with shorter reaction times and larger additional delays
can contribute to stabilizing traffic flow [30]. Horn and Wang incorporated the back-looking
effect into Helly’s car-following model. This research developed the damped wave equation
for stability analysis under bidirectional control, where the ‘damping’ component is critical
to the dissipation of perturbations [31]. Yi et al. proposed an extended bidirectional car-
following model based on the IDM in the CAV environment, which considers the desired
distance of the following vehicle as a control term. The study investigated the linear
stability of the model, and theoretical and simulation results indicated that bidirectional
IDM improves string stability. Furthermore, stability can be further enhanced by increasing
the proportion of the desired distance of the following vehicle [32].

3. Methodology

This section is structured to examine key components vital to our research. Section 3.1
lays the groundwork by introducing vehicle longitudinal dynamics models with bidirec-
tional information flow. Subsequent Sections 3.2 and 3.3 introduce phase shift effects and
employ a framework rooted in this concept to analyze the interconnected behavior of vehi-
cles within a platoon under bidirectional communication. Building upon this groundwork,
the study further evaluates the rear-end collision risk and conducts a stability analysis in
Sections 3.4 and 3.5, respectively. And culminating findings are presented in Section 3.6.

3.1. Vehicle Longitudinal Dynamics Models with Bidirectional Information Flow

In CAV environment, the dissemination of real-time data is essential for ensuring
the safety and stability of vehicles within a platoon. This critical process is supported
by advanced sensor and communication technologies, which are essential for enabling
automated vehicles to share information seamlessly. Key sensor devices include RADAR,
cameras, and LIDAR, etc. Furthermore, advanced communication technologies, including
Dedicated Short-Range Communications (DSRC) and 5G, are indispensable for facilitating
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Everything (V2X)
communications [33].

Meanwhile, the effectiveness of information delivery within this communication
network heavily relies on communication protocols. These protocols are designed to ensure
that necessary information is disseminated to the intended vehicle in a reliable and low-
latency manner [34]. The development and implementation of a variety of communication
protocols have been proposed to significantly improve the safety and stability of vehicular
platoons [3,4,35].

The integration of information technologies and protocols enables CAVs to exchange
information seamlessly with each other. In a CAV platoon, the control system operates the
vehicle using locally sensed information and information shared among vehicles [36]. A
car-following model can be used to describe the vehicle’s longitudinal dynamics. Note that,
at present, our analysis is confined to a one-dimensional perspective. The car-following
model, along with our safety and stability analysis, does not account for lateral dynamics,
such as left and right turns. In the literature, continuous-time car-following models have a
generalized form, which can be expressed below [37,38]; we adapted this format to include
additional information:

.
xn(t) = vn(t).

vn(t) = f (sn(t), vn(t), ∆vn(t), K(t))
(1)

where
.
vn(t) is the control variable, which represents the acceleration (or deceleration) of

the nth vehicle at time t. This variable is what the control system aims to adjust through the
function. xn and vn represent the position and velocity of vehicle n, sn = xn−1 − xn − ln−1
represents the net distance between vehicle n and vehicle n − 1, ln−1 indicates the length
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of vehicle n − 1, and ∆vn = vn − vn−1 represents the velocity difference between vehicle n
and vehicle n − 1. In this study, we apply a broader interpretation of net distance, referring
to it as “spacing.” In Equation (1), K(t) symbolizes additional information, encompassing
vehicle dynamic data from the following vehicle in bidirectional car-following control,
like velocity or spacing. Moreover, it extends to represent various other data types, such
as acceleration [13], traffic jerk [14,15], visual angle [16], and electronic throttle opening
angle [17,18].

For platoon control with bidirectional information flow topology, the target vehicle
reacts not only to the preceding vehicle but also to the dynamics of the following vehicle to
adjust its speed, as shown in Figure 1. Typically, bidirectional control utilizes two types
of back-looking information from the following vehicle, i.e., spacing sn+1 and velocity
difference ∆vn+1 information. We denote as sn+1 = xn − xn+1 − ln the spacing between
vehicle n+1 and vehicle n, and as ∆vn+1 = vn+1 − vn the velocity difference between vehicle
n + 1 and vehicle n. The car-following models with bidirectional communication topology
have a generic form as in Equation (2). If only spacing information sn+1 is utilized, the
resulting model is formulated in Equation (3) and referred to in this research as the spacing
bidirectional control model.

.
xn(t) = vn(t).

vn(t) = f (sn(t), vn(t), ∆vn(t), sn+1(t), ∆vn+1(t))
(2)

If only spacing information sn+1 is utilized, the resulting model is formulated in
Equation (3) and referred to in this research as the spacing bidirectional control model.

.
vn(t) = f (sn(t), vn(t), ∆vn(t), sn+1(t)) (3)

If only velocity difference information ∆vn+1 is utilized, the resulting model is formu-
lated in Equation (4) and referred to in this research as the velocity difference bidirectional
control model.

.
vn(t) = f (sn(t), vn(t), ∆vn(t), ∆vn+1(t)) (4)
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3.2. Phase Shift Effects

In a CAV system, the dynamics of vehicles are impacted by several factors, including
the vehicle’s control mechanisms, types of exchanged information, communication delays,
packet losses, and the design of information flow topology. For instance, in CACC systems
that utilize bidirectional information flow topology, vehicles take into account information
from the following vehicle, which affects the dynamics of the preceding vehicles, potentially
giving rise to substantial safety concerns. However, there has not yet been a generalized
model to comprehensively assess such impacts on vehicle dynamics.

Inspired by our recent discovery that a perturbed vehicular platoon exhibits peri-
odic oscillatory dynamics characterized by inherent frequency [39–41], this research pro-
posed a generalized analysis model based on the concept of phase shift to capture the
interactions among connected vehicles’ dynamics. Our research demonstrated that the
oscillation dynamics of a perturbed vehicle platoon can be described by a second-order
non-homogeneous ordinary differential equation (ODE), resulting in periodic oscillations
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propagating within the platoon. In the context of a CAV platoon employing bidirectional
communication, the effects of perturbations can be transmitted both forward and back-
ward simultaneously, leading to an overlapping effect of two periodic oscillations. This
overlapping effect can be analyzed using the concept of phase shift.

The concept of phase shift is commonly used in physics, for example, in acoustics and
optics [42,43], to describe the differences, φ(t) = ϕG(t)− ϕF(t), between the phases of two
periodic signals F and G, as depicted in Figure 2a. Specifically, when the difference is zero,
the two signals are in phase (IP), as shown in Figure 2b, indicating perfect synchronization.
On the contrary, when the difference is not zero, implying φ(t) ̸= 0, the two signals are
termed out-of-phase, as illustrated in Figure 2a. For sinusoidal signals, when difference
φ(t) is 180◦, the two phases are opposite, defined as opposite phase (OP), as illustrated in
Figure 2c.

The concept of phase shift provides a valuable framework for understanding the inter-
actions among vehicles through information exchange. In this framework, we distinguish
between different vehicles involved in the information exchange process by categorizing
them as either the “source vehicle” or the “target vehicle”. The “source vehicle,” repre-
sented as signal F in Figure 2, refers to the vehicle that transmits stimulus information. On
the other hand, the “target vehicle,” denoted as signal G in Figure 2, refers to the vehicle
that receives this stimulus information and responds accordingly.

Phase shift plays a crucial role in depicting target vehicle response to stimulus informa-
tion, encompassing factors such as latency and response patterns. To represent latency, let
us consider

.
vn(t), which represents vehicle dynamics with delay td indicating the latency

in the target vehicle’s response to perturbation from the source vehicle. In this context,
phase shift φ(t) can serve as a representation of latency td. The relationship between phase
shift φ(t) and latency td is associated with the wavelength of the resulting platoon oscilla-
tion, which can be analytically derived using the corresponding ODE [41]. Furthermore,
phase shift can also be utilized in depicting response patterns. When phase shift φ(t) = 0
and there is no latency (td = 0), the dynamics of the two adjacent vehicles synchronize
their responses to perturbation. If the target vehicle responds to the source vehicle in a
synchronized manner, this can be denoted as “in-phase.” On the contrary, if the response
is unsynchronized with phase shift φ(t) ̸= 0, it is denoted as being “out of phase”. If the
response displays an adverse manner, it is characterized as “opposite-phase.”
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3.3. Phase Shift Effects in Bidirectional Communication

The present research employs the proposed framework centered around phase shift
to characterize the interconnected behavior of the following vehicle and the target vehicle
in a platoon under bidirectional communication topology. In this scenario, the following
vehicle serves as the source vehicle, transmitting stimulus information, while the target
vehicle receives this stimulus information and responds accordingly. As an initial step to
analyze safety impacts, this research narrows the focus to two specific and extreme cases
of phase shift without considering communication latency: the in-phase (IP) effect and
the opposite-phase (OP) effect. The in-phase (IP) effect indicates a synchronized manner
between the following vehicle and the target vehicle. For instance, if the following vehicle
accelerates abruptly, the target vehicle also accelerates, as depicted in Figure 3a. In contrast,
the opposite-phase (OP) effect reflects an adverse manner. For instance, if the following
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vehicle accelerates abruptly, the target vehicle decelerates to adjust its speed, as shown in
Figure 3b.
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The rest of this section outlines the conditions for the IP and OP effects in the spacing
bidirectional control model and the velocity difference bidirectional control model. Con-
sidering that a platoon of CAVs runs on a single lane with all vehicles in an equilibrium
state, i.e., maintaining the same spacing and velocity, perturbation is introduced to the
following vehicle n+1 at time t, resulting in a deviation denoted as velocity deviation
µn+1(t) = vn+1 − vn and spacing deviation φn+1(t) = sn+1(t)− se, where se represents
spacing at the equilibrium state. We have

µn+1(t) = − .
φn+1(t)

φn+1(t) ∗ µn+1(t) < 0
(5)

In a bidirectional control model, the velocity deviation of the following vehicle n+1
prompts the target vehicle n to adjust its speed. By taking the first-order Taylor expansion
of Equation (3) of the spacing bidirectional control model, we can express the acceleration
of target vehicle n as shown in Equation (6).

.
vn(t) = fsn+1 φn+1(t) (6)

By taking the first-order Taylor expansion of Equation (4) of the velocity difference
bidirectional control model, the acceleration of the target vehicle n can be expressed as in
Equation (7).

.
vn(t) = f∆vn+1 µn+1(t) (7)

where fsn+1 = ∂ fn
∂sn+1

∣∣∣
(v, s)

represents velocity differential with respect to spacing change,

and f∆vn+1 = ∂ fn
∂∆vn+1

∣∣∣
(v, s)

represents velocity differential with respect to velocity differ-

ence change.
Let us first concentrate on the IP effect. When φn+1(t) ∗

.
vn(t) < 0 or µn+1(t) ∗

.
vn(t) > 0,

it implies that if vehicle n + 1 accelerates or decelerates, target vehicle n will also accelerate
or decelerate, as demonstrated in Figure 3a. The IP effect is determined by the positivity
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or negativity of fsn+1 and f∆vn+1 . If fsn+1 < 0, then φn+1(t) ∗ .
vn(t) < 0. If f∆vn+1 > 0, then

µn+1(t) ∗ .
vn(t) > 0.

Correspondingly, when φn+1(t) ∗ .
vn(t) > 0 or µn+1(t) ∗ .

vn(t) < 0, it means that
if vehicle n+1 accelerates or decelerates, the target vehicle n will respond oppositely by
decelerating or accelerating; this phenomenon is denoted as the OP effect, as illustrated in
Figure 3b. The OP effect is determined by the positivity or negativity of fsn+1 and f∆vn+1 . If
fsn+1 > 0, then φn+1(t) ∗ .

vn(t) > 0. If f∆vn+1 < 0, then µn+1(t) ∗ .
vn(t) < 0. The OP effect

increases the risk of rear-end collisions since the target vehicle and the following vehicle
exhibit opposite behaviors, especially when the following vehicle experiences sudden
acceleration.

Factors fsn+1 , f∆vn+1 are identified as crucial elements that dictate whether a platoon
operates in in-phase (IP) or opposite-phase (OP) modes, a distinction that is pivotal for
understanding the platoon’s reaction to internal disturbances. This identification of key
factors is fundamental to our further analysis concerning safety and string stability in
platoon dynamics. We delve deeper into these aspects in Equations (10) and (12), which
relate to safety, and Equations (25) and (27), which concern string stability.

3.4. Assessment of Rear-End Collision Risk

Rear-end collisions are prevalent on freeways, representing one of the most common
types of accidents [44]. The advent of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications has made it possible to use individual vehicle information to assess
collision risks and enhance traffic safety. Therefore, this section focuses on assessing the
collision risk associated with the bidirectional control model.

In this research, surrogate safety measures (SSMs) are utilized to evaluate collision
risks. SSMs are safety performance indicators that estimate accident risks based on mi-
croscopic traffic parameters like speed, space headway, and time headway [44]. Several
SSMs have been developed for estimating collision risks. Time to collision (TTC) is one of
the most used SSMs. The concept of TTC, introduced in [45], refers to the time remaining
until collision occurs between the leading and the following vehicle if velocity difference is
maintained.

This research adopts TTC as a metric to analyze the risk of rear-end collisions. Given
that perturbation is introduced to the following vehicle n+1 at time t, it impacts the
dynamics of vehicle n due to the bidirectional control mechanism. Our analysis specifically
focuses on the collision risk between vehicle n+1 and vehicle n, as this pair presents a
heightened risk of collision, particularly when the following vehicle n+1 undergoes sudden
acceleration. The TTC for vehicle n+1 is calculated as follows:

TTCn+1(t) =

{
xn(t)−xn+1(t)−ln

vn+1(t)−vn(t)
, i f vn+1(t) > vn(t)

∞, i f vn+1(t) < vn(t)
(8)

where TTCn+1(t) denotes the TTC value of vehicle n + 1 at time t, xn and xn+1 are the
positions of vehicles n and n + 1, vn and vn+1 are the velocities of vehicles n and n + 1, and
ln is the length of vehicle n. A smaller TTC value indicates a higher risk of collision.

As discussed earlier, the OP effect increases the risk of collisions, especially when the
following vehicle experiences sudden acceleration. Thus, we consider the perturbation
in Section 3.2 when µn+1(t) > 0 (φn+1(t) < 0). The TTC of vehicle n + 1 after time ∆t for
spacing and velocity difference bidirectional control can be represented using Equations (9)
and (11), respectively.

For the spacing bidirectional control model, TTCn+1(t + ∆t), denoted as TTCs
n+1(t + ∆t),

is expressed as follows:

TTCs
n+1(t + ∆t) = xn(t+∆t)−xn+1(t+∆t)−ln

vn+1(t+∆t)−vn(t+∆t)

= φn+1(t+∆t)+se
µn+1(t+∆t)− fsn+1 φn+1(t)∆t

(9)
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By taking partial derivation of Equation (9) with respect to fsn+1 , we obtain the follow-
ing equation:

∂TTCs
n+1(t + ∆t)
∂ fsn+1

∣∣∣∣
(v, s)

=
(φn+1(t + ∆t) + se)φn+1(t)∆t

(µ n+1(t + ∆t)− fsn+1 φn+1(t)∆t
)2 (10)

Given that perturbation φn+1(t) is small and does not result in an immediate collision,
we can infer that φn+1(t + ∆t) + se > 0. Thus, we can conclude that ∂TTCn+1(t+∆t)

∂ fsn+1
< 0.

Since
∂TTCs

n+1(t+∆t)
∂ fsn+1

< 0, it can be observed that when fsn+1 < 0 (IP), TTCn+1(t + ∆t)
increases, resulting in lower collision risk and improved safety. On the contrary, when
fsn+1 > 0 (OP), TTCn+1(t + ∆t) decreases, leading to higher collision risk.

For the velocity difference bidirectional control model, TTCn+1(t + ∆t), denoted as
TTC∆v

n+1(t + ∆t), is expressed as follows:

TTC∆v
n+1(t + ∆t) =

φn+1(t + ∆t) + se

µn+1(t + ∆t)− f∆vn+1 µn+1(t)∆t
(11)

By taking partial derivation of Equation (11) with respect to f ∆v
n+1, we obtain the

following equation:

∂TTC∆v
n+1(t + ∆t)

∂ f∆vn+1

∣∣∣∣∣
(v, s)

=
(φn+1(t + ∆t) + se)µn+1(t)∆t

(µ n+1(t + ∆t)− f∆vn+1 µn+1(t)∆t)2 (12)

Since
∂TTC∆v

n+1(t+∆t)
∂ f∆vn+1

> 0, it can be observed that when f∆vn+1 > 0 (IP), TTC∆v
n+1(t + ∆t)

increases, resulting in lower collision risk and improved safety. On the contrary, when
f∆vn+1 < 0 (OP), TTC∆v

n+1(t + ∆t) decreases, leading to higher collision risk.
Based on the analysis presented above, we can conclude that for both the spacing and

velocity difference bidirectional control models, the IP effect decreases rear-end collision
risk, while the OP effect increases the risk.

3.5. String Stability Analysis

This section derives the string stability of the bidirectional control model. String stability
represents the ability of one vehicle to withstand small perturbations and progress to the
steady state where vehicles travel with an identical gap and speed in homogenous traffic [46].
This research adopts the linear stability analysis method described in [21,32,47,48] to analyze
string stability. We first derive the stability condition for the generic model, which adopts
both spacing and velocity difference information in Equation (2). We then derive the stability
condition for the specific models that only use one type of information.

Considering a platoon with N vehicles, in the steady state, each vehicle can be repre-
sented as

xn(t) = (N − n)h0 + vt, n = 1, 2 . . . , N (13)

where h0 denotes the average headway of adjacent vehicles in the steady state in homoge-
nous traffic, v represents the velocity of vehicles in the steady state, and xn(t) is the location
of vehicle n at time t.

We assume that a small perturbation affects the steady state solution of vehicle n at
time t. We denote the perturbation by yn(t) that has a linear Fourier-mode expansion,

yn(t) = ceiαkn+zt = xn(t)− xn(t), yn(t) → 0, αk =
2πk
N

(14)

where c is a constant and αk =
2πk
N (k = 0, 1, . . . , N − 1)
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Taking the second derivative of both sides of Equation (14), we obtain

..
yn(t + td) =

..
xn(t + td)− (x n(t + td))

′′ =
..
xn(t + td) =

dvn(t + td)

dt
(15)

Based on Equation (2), we rewrite Equation (15) as

..
yn(t + td) = fn(sn(t), vn(t), ∆vn(t), sn+1(t), ∆vn+1(t)) (16)

By linearizing Equation (16), we can derive the following equation:

..
yn(t + td) = fsn(yn−1(t)− yn(t)) + fvn

.
yn(t) + f∆vn

( .
yn−1(t)−

.
yn(t)

)
+ fsn+1(yn(t)− yn+1(t)) + f∆vn+1

( .
yn(t)−

.
yn+1(t)

)) (17)

where fsn = ∂ fn
∂sn

∣∣∣
(v, s)

> 0, fvn = ∂ fn
∂vn

∣∣∣
(v, s)

< 0, f∆vn = ∂ fn
∂∆vn

∣∣∣
(v, s)

< 0, fsn+1 = ∂ fn
∂sn+1

∣∣∣
(v, s)

,

and f∆vn+1 = ∂ fn
∂∆vn+1

∣∣∣
(v, s)

.

We rewrite Equation (17) and substitute yn(t) = ceiαkn+zt and
.
yn(t) = zceiαkn+zt into

Equation (17). Simplifying the resulting equation, we can obtain(
etdz − 1

)[
zetdz − fvn +

(
e−iak − 1

)
( f ∆vn

+ eiak f ∆vn+1
)
]

= td ·
(
e−iak − 1

)(
fsn + eiak f sn+1

) (18)

We expand z in a power series solution, where z = z1(iak) + z2(iak)
2 + · · · and

etdz = 1 + tdz + t2
dz2

2 + · · · . We can insert this solution into Equation (18) to derive the
first-order and second-order terms of coefficients in expression of z, given, respectively, the
following:

z1 =
fsn + fsn+1

fvn

(19)

z2 =
z2

1 − z1
(

f∆vn + f∆vn+1

)
− 1

2
(

fsn − fsn+1

)
fvn

− 1
2
(z2

1td) (20)

The platoon is string stable if z2 > 0. The string stability condition is derived as
follows, assuming no time delays ( td = 0):

( f s)
2 −

( f vn

)2

2
(

fsn − fsn+1

)
− fs fvn f∆v < 0 (21)

where fs = fsn + fsn+1 , f∆v = f∆vn + f∆vn+1

If fsn+1 = 0 and f∆vn+1 = 0, the equation then simplifies to fsn −
( f v

n)
2

2 − fvn f ∆vn
< 0,

which matches the string stability condition of the traditional predecessor following
scheme [40,49,50].

This section first derives the stability condition of the spacing bidirectional control
model based on Equation (21) when f∆vn+1 = 0 and fsn+1 ̸= 0. The platoon is stable if
ηs < 0, which is formulated in Equation (22),

ηs = ( f s)
2 −

( f vn

)2

2
(

fsn − fsn+1

)
− fs fvn f∆vn (22)

It should be noted that in the spacing bidirectional control model, spacing information
sn+1 from the following vehicle is usually coupled with spacing information sn from the
preceding vehicle as a stimulative term, w(sn+1)− w(sn). Therefore, f s

n is composed of two
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parts, denoted as f s1
n and f s2

n , where f s1
n represents the original part in Equation (1) and

f s2
n = − f s

n+1 represent the part in a stimulative term as shown in the equation below:

fsn = f 1
sn + f 2

sn (23)

where f 2
sn = − fsn+1 .

Then, the stability condition of the spacing bidirectional control model can be rewritten
as shown in Equation (24),

ηs = ( f s1
n

)2
−

( f vn

)2

2

(
f 1
sn − 2 fsn+1

)
− f 1

sn fvn f∆vn (24)

Taking the partial derivative of Equation (24) with respect to f s
n+1 yields Equation (25)

as follows:
∂ηs

∂ fsn+1

= ( f vn

)2
(25)

Since ∂ηs

∂ fsn+1
> 0, it can be observed that when fsn+1 < 0 (IP), ηs decreases, indicating

an improvement in string stability. On the contrary, when fsn+1 > 0 (OP), ηs increases,
leading to worse stability.

In this section, we derive the stability condition of the velocity difference bidirectional
control model based on Equation (21) when f∆vn+1 ̸= 0 and fsn+1 = 0. The platoon is stable
if η∆v < 0, which is formulated in Equation (26),

η∆v = ( fsn)
2 −

( f vn

)2

2
fsn − fsn fvn f∆v (26)

Taking the partial derivative of Equation (26) with respect to f∆vn+1 yields Equation (27),

∂η∆v

∂ f∆vn+1

= − fsn fvn (27)

where fsn > 0 and fvn < 0.

Since ∂η∆v

∂ f∆vn+1
> 0, it can be observed that when f∆vn+1 < 0 (OP), η∆v decreases,

resulting in improved stability. On the contrary, when f∆vn+1 > 0 (IP), η∆v increases,
leading to worse stability.

3.6. Tradeoff between Platoon Safety and String Stability

Sections 3.4 and 3.5 investigate the collision risk and string stability of the spacing and
velocity difference bidirectional control models. In this section, we synthesize the findings
and discuss the tradeoff between platoon safety and stability.

First, we direct our attention to the spacing bidirectional control model. The analyses
conducted in Sections 3.4 and 3.5 indicate that a bidirectional control model exhibiting
the in-phase (IP) effect has the potential to reduce the risk of rear-end collisions and
enhance string stability. Conversely, a model featuring the opposite-phase (OP) effect can
increase the likelihood of rear-end collisions and worsen instability. These observations are
summarized in Table 2, highlighting that incorporating spacing information with the IP
effect can effectively improve both platoon stability and safety.
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Table 2. Impact of spacing information on platoon safety and stability.

Control Model Spacing Information Rear-End Collision Risk String Stability

In-Phase Effect fsn+1 < 0 Decreased Improved

Opposite-Phase Effect fsn+1 > 0 Increased Worsened

Next, our attention turns to the evaluation of the velocity difference bidirectional
control model. The analysis conducted in Sections 3.4 and 3.5 reveals notable observations:
the IP effect can decrease the risk of rear-end collisions, albeit at the cost of worsening
stability. Conversely, the OP effect can increase the risk of rear-end collisions but has the
potential to improve string stability. Table 3 summarizes these findings, emphasizing that
the utilization of velocity difference information can only enhance either safety or stability,
but not both simultaneously.

Table 3. Impact of velocity difference information on platoon safety and stability.

Control Model Velocity Difference
Information

Rear-End Collision
Risk String Stability

In-Phase Effect f∆vn+1 > 0 Decreased Worsened

Opposite-Phase Effect f∆vn+1 < 0 Increased Improved

4. Analytical Verification on Specific Car-Following Models

The objective of this section is to provide detailed analytical validation for the theoret-
ical findings presented in the previous sections. This is accomplished by examining the
safety and stability of two distinct car-following models: one linear model (i.e., Helly’s
model) and one non-linear model (i.e., the IDM). Both of them are prominent in modeling
CAV behaviors [33,51–53]. Incorporating both a linear and a non-linear model allows
analytical verification to provide comprehensive insights.

4.1. Linear Car-following Model

Car-following models have been developed for more than half a century, and numer-
ous models have been proposed to model the longitudinal behaviors of vehicles. Among
them, Helly’s linear car-following model has been widely applied to describe CAV be-
havior [54] due to its simple and intuitive feature [40]. This research adopts Helly’s
car-following model to model the linear following behavior of CAVs and bidirectional
information flow topology effects. The formulation of the Helly’s model is denoted as
below [55]:

.
vn(t) = λx(sn(t)− τvn(t)− s0)− λv∆vn(t) (28)

where λv represents the sensitivity to velocity difference between target vehicle and preced-
ing vehicle, λx represents the sensitivity to spacing between target vehicle and preceding
vehicle, s0 is the minimum distance allowed as a safety gap, and τ represents reaction time.
Note that τvn(t) + s0 indicates the desired space gap. In this model, the acceleration of a
vehicle presents a linear relationship with deviation from spacing and velocity difference
between two successive vehicles.

Incorporating the information from the nearest following vehicle, the bidirectional
Helly’s model can be expressed as:

.
vn(t) = λx(sn(t)− τvn(t)− s0)− λv∆vn(t)

+γx(sn+1(t)−sn(t)) + γv∆vn+1(t)
(29)

where sn+1, ∆vn+1 represent the spacing and velocity difference information from the
following vehicle, respectively. Difference sn+1(t)−sn(t) represents the spacing stimulus.
γx represents sensitivity to spacing, and γv represents sensitivity to velocity difference. By
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setting γv = 0 and γx = 0, the spacing and the velocity difference bidirectional Helly’s
model can be obtained, respectively.

We can obtain the analytic expressions of the partial differential equations for the
bidirectional Helly’s model, as shown in the equations below:

f 1
sn = λx, f 2

sn
= −γx, f vn

= −λxτ, f ∆vn
= −λv,

fsn+1 = γx, f∆vn+1 = γv
(30)

For the spacing bidirectional Helly’s model, by applying the partial differential equa-
tions to Equation (10), we obtain Equation (31).

∂TTCs
n+1(t + ∆t)
∂ fsn+1

∣∣∣∣
(v, s)

=
(φn+1(t + ∆t) + se)φn+1(t)∆t

(µ n+1(t + ∆t)− γx φn+1(t)∆t
)2 (31)

Since
∂TTCs

n+1(t+∆t)
∂ fsn+1

< 0, it can be observed that when fsn+1 < 0 (IP), TTCn+1(t + ∆t) in-

creases, resulting in lower collision risk. On the contrary, when fsn+1 > 0 (OP), TTCn+1(t + ∆t)
decreases, leading to higher collision risk.

For the velocity difference bidirectional Helly’s model, by applying the partial differ-
ential equations to Equation (12), we obtain Equation (32).

∂TTC∆v
n+1(t + ∆t)

∂ f∆vn+1

∣∣∣∣∣
(v, s)

=
(φn+1(t + ∆t) + se)µn+1(t)∆t

(µ n+1(t + ∆t)− γvµn+1(t)∆t)2 (32)

Since
∂TTC∆v

n+1(t+∆t)
∂ f∆vn+1

> 0, it can be observed that when f∆vn+1 > 0 (IP), TTC∆v
n+1(t + ∆t)

increases, implying lower collision risk. On the contrary, when f∆vn+1 < 0 (OP),
TTC∆v

n+1(t + ∆t) decreases, leading to higher collision risk. The above rear-end collision
risk analyses on Helly’s model demonstrate the findings presented in Tables 2 and 3.

We now proceed to derive the stability condition of the bidirectional Helly’s model.
Applying the partial differential equations to Equations (22) and (26), we can obtain the
stability transition curves for both the spacing and velocity difference bidirectional models
from the neutral stability criterion. Figure 4 presents the stability transition curves for
both models. Figure 4a shows the stability transition curve of the spacing bidirectional
Helly’s model, while Figure 4b shows the stability transition curve of the velocity difference
bidirectional Helly’s model. The traffic flow is considered stable when the equilibrium
space gap lies above the stability line. The black dashed line represents the phase transition
curve of Helly’s model when γx = 0 and γv = 0.
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Figure 4a for the spacing bidirectional Helly’s model indicates that the stability region
expands when γx < 0 (IP). On the contrary, when γx > 0 (OP), the stability region shrinks.
Figure 4b for the velocity difference bidirectional Helly’s model reveals that when γv > 0
(IP), the stability region shrinks, and the stability region expands when γv < 0 (OP). The
above string stability analyses on Helly’s model demonstrate the findings presented in
Tables 2 and 3.

4.2. Non-Linear Car-following Model

The research further employs the Intelligent Driver Model (IDM) car-following model,
proposed by Treiber et al. [12], to describe the non-linear following behavior of CAVs due
to several of its advantages. First, the IDM is a multi-regime model, which captures the
dynamics of different traffic congestion levels more realistically than other models [33].
Second, it provides collision-free behavior and smooth traffic flow [56]. Third, it is well-
accepted to model connected automated vehicles’ longitudinal dynamics [57].

In the IDM model, the acceleration of vehicle n at time t is determined by its current
velocity vn, headway sn, and velocity difference ∆vn to the preceding vehicle, which can be
expressed as

.
vn(t) = a

(
1 −

(
vn(t)

v0

)δ
−

(
s∗(vn(t), ∆vn(t))

sn(t)

)2
)

s∗(vn(t), ∆vn(t)) = s0 + vn(t)T + vn(t)·∆vn(t)
2
√

ab

(33)

where
.

vn(t) and vn denote the acceleration and speed of vehicle n at time t; a and b denote
the maximum acceleration and deceleration of the vehicle, respectively; v0 denotes the
free-flow speed; δ is the acceleration exponent parameter; s0 represents the minimum
bumper-to-bumper gap in traffic jam states; T is the desired time gap; sn denotes the net
distance, sn = xn − xn−1 − l, between vehicle n and its preceding vehicle n − 1, where l is
vehicle length and xn denotes the position of vehicle n at time t. ∆vn denotes the velocity
difference between vehicle n and its preceding vehicle n − 1.

The research adapts the bidirectional distance balanced model (BDBM) proposed
in [26] and further modifies it by incorporating velocity difference information from the
nearest following vehicle. The structure of the new bidirectional IDM model is expressed
as follows:

.
vn(t) = a

(
1 −

(
vn(t)

v0

)δ
−

(
s∗(vn(t), ∆vn(t))

sn(t)

)2
)

s∗(vn(t), ∆vn(t)) = s0 + vn(t)T + vn(t)·∆vn(t)
2
√

ab
+γx(sn+1,t(t)− sn,t(t)) + γv∆vn+1(t)

(34)

where sn+1 and ∆vn+1 denote the spacing and velocity difference information received from
the following vehicle, respectively. γx represents the sensitivity to spacing and γv represents
the sensitivity to velocity difference. By setting γv = 0 and γx = 0, the spacing and the
velocity difference bidirectional IDM model can be obtained, respectively.

We can obtain the analytic expressions of the partial differential equations for the
bidirectional IDM model, as shown in the equations below:

f 1
sn = 2as∗2

s3 , f 2
sn

= 2as∗γx
s2 , f vn

= − 4av3
e

v4
o

− 2aTs∗
s2 ,

f∆vn = −
√

avs∗

s2
√

b
, fsn+1 = − 2as∗γx

s2 , f∆vn+1 = − 2as∗γv
s2

(35)

For the spacing bidirectional IDM, by applying the partial differential equations in
Equation (35) to Equation (10), we obtain Equation (36).

∂TTCs
n+1(t + ∆t)
∂ fsn+1

∣∣∣∣
(v, s)

=
(φn+1(t + ∆t) + se)φn+1(t)∆t

(µ n+1(t + ∆t) + 2as∗γx
s2 φn+1(t)∆t)

2 (36)
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Since
∂TTCs

n+1(t+∆t)
∂ fsn+1

< 0, it can be observed that when γx > 0 and fsn+1 < 0 (IP),

TTCn+1(t + ∆t) increases, resulting in lower collision risk. On the contrary, when γx < 0
and fsn+1 > 0 (OP), TTCn+1(t + ∆t) decreases, leading to higher collision risk.

For the velocity difference bidirectional IDM, by applying the partial differential
equations in Equation (35) to Equation (12), we can obtain

∂TTC∆v
n+1(t + ∆t)

∂ f∆vn+1

∣∣∣∣∣
(v, s)

=
(φn+1(t + ∆t) + se)µn+1(t)∆t

(µ n+1(t + ∆t) + 2as∗γv
s2 µn+1(t)∆t)

2 (37)

Since
∂TTC∆v

n+1(t+∆t)
∂ f∆vn+1

> 0, it can be observed that when γv < 0 and f∆vn+1 > 0 (IP),

TTC∆v
n+1(t + ∆t) increases, resulting in lower collision risk. On the contrary, when γv > 0

and f∆vn+1 < 0 (OP), TTC∆v
n+1(t + ∆t) decreases, leading to higher collision risk. The

above rear-end collision risk analyses on the bidirectional IDM model validate the findings
presented in Tables 2 and 3.

We now derive the stability condition of the bidirectional IDM model, using the
parameters in [46] listed in Table 4. By applying the partial differential equations in
Equation (35) to Equations (22) and (26), we can obtain the stability transition curves for
both the spacing and velocity difference bidirectional IDM models from the neutral stability
criterion.

Table 4. Parameters used in the IDM model.

a (m ∗ s−2) b (m ∗ s−2) vd (km ∗ h−1) s0 (m)

1 2 120 2

Figure 5 illustrates the stability transition curves for both models. The figure to the
left shows the stability transition curve of the spacing bidirectional IDM model, while the
figure to the right shows the stability transition curve of the velocity difference bidirectional
IDM model. The traffic flow is considered stable when the equilibrium space gap lies above
the stability line. The black dashed line represents the phase transition curve of the IDM
model when γx = 0 and γv = 0.
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The figure to the left for the spacing bidirectional IDM model indicates that the stability
region expands when γx > 0 (IP). On the contrary, the stability region shrinks when γx < 0
(OP). The figure to the right for the velocity difference bidirectional IDM model reveals
that the stability region shrinks when γv < 0 (IP) and the stability region expands when
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γv > 0 (OP). The above string stability analyses on the bidirectional IDM model validate
the findings presented in Tables 2 and 3.

5. Numerical Verification

In this section, we perform numerical experiments using the bidirectional Helly’s
model and the bidirectional IDM model to validate the analytical findings presented in
Sections 3 and 4. The simulations are initialized as follows: A platoon consisting of
20 vehicles operates on a single lane with an open boundary condition. All vehicles have an
identical initial velocity of 15 m/s and are spaced equidistantly. To investigate the impact
of back-looking information on vehicle dynamics, perturbation is introduced to the 10th
vehicle in the platoon. The 10th vehicle is programmed to follow a trapezoidal-type speed
profile, simulating a typical congested traffic scenario characterized by sudden acceleration
and deceleration.

5.1. Numerical Investigation on Helly’s Model with Bidirectional Information

Numerical experiments using the spacing bidirectional Helly’s model are first carried
out. The values of model parameters are from [58] as summarized in Table 5.

Table 5. Parameters in Helly’s model.

Initial Speed (m/s) λx λv τ

15 1 1 0.8

The simulation results are shown below. Figures 6–8 show vehicle speed profiles
when γx= −0.4, 0 and 0.4, respectively. Note that when γx = 0, the model degenerates to
Helly’s model. In each figure, Figures 6a, 7a and 8a show the speed profile of the perturbed
vehicle and its preceding vehicles, demonstrating how back-looking information impacts
downstream vehicle dynamics, especially in terms of safety. Figures 6b, 7b and 8b show
the speed profile of the perturbed vehicle and its following vehicles, demonstrating how
back-looking information impacts upstream vehicles dynamics, especially in terms of string
stability. Figure 9 illustrates the minimum TTC value between the perturbed vehicle and
its nearest preceding vehicle.
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Figure 6. Vehicle speed profile under the bidirectional Helly’s model when γx = −0.4 : (a) 1st–10th
vehicles, (b) 10th–20th vehicles.

When γx = −0.4 and f s
n+1 < 0, based on the analysis in Table 2, spacing information

results in the IP effect. As shown in Figure 6a, when the perturbed 10th vehicle undergoes
abrupt acceleration and deceleration, the nearest preceding 9th vehicle also accelerates
and decelerates. In Figure 9, a larger minimum TTC value is observed when γx = −0.4
compared to the value when γx = 0, indicating lower collision risk. Figure 6b demon-
strates that the following vehicles smoothly converge to steady speed without significant
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oscillations. These results validate that incorporating spacing information with the IP effect
can reduce collision risk and improve platoon stability.
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When γx = 0.4 and f s
n+1 > 0, spacing information results in the OP effect. As shown in

Figure 8a, when the perturbed 10th vehicle undergoes abrupt acceleration and deceleration,
the nearest preceding 9th vehicle reacts by decelerating and then accelerating adversely.
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The speed variation of the ninth vehicle also affects the eighth vehicle, resulting in adverse
behavior with respect to the ninth vehicle. In Figure 9, a smaller minimum TTC value is
observed when γx = 0.4, indicating higher collision risk. Figure 8b shows that the speed
fluctuations are enlarged upstream in the platoon due to string instability. These results
validate that incorporating spacing information with the OP effect can increase collision
risk and worsen platoon stability.

Figure 9 demonstrates that an increase in γx leads to a smaller minimum TTC value,
indicating higher collision risk. When γx approaches 0.6, the perturbed 10th vehicle collides
with the 9th vehicle due to the OP effect.

Numerical experiments using the velocity difference bidirectional Helly’s model are
then carried out. Figures 10–12 show the vehicle speed profiles when γv= 0.4, 0 and −0.4,
respectively. Figure 13 illustrates the minimum TTC value between the perturbed vehicle
and its nearest preceding vehicle.
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When γv = 0.4 and f ∆v
n+1 > 0, the velocity difference information results in the IP effect.

As shown in Figure 10a, when the perturbed 10th vehicle undergoes abrupt acceleration
and deceleration, the nearest preceding 9th vehicle also accelerates and decelerates. The
minimum TTC value increases in Figure 13, indicating lower collision risk. In Figure 10b,
the speed fluctuations are enlarged upstream in the platoon due to string instability. These
results validate that incorporating velocity information with the IP effect can reduce colli-
sion risk but worsen platoon stability.

When γv = −0.4 and f ∆v
n+1 < 0, velocity difference information results in the OP effect.

As shown in Figure 12a, when the perturbed 10th vehicle undergoes abrupt acceleration and
deceleration, the nearest preceding 9th vehicle reacts by decelerating and then accelerating
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adversely. In Figure 13, a smaller minimum TTC value is observed, indicating higher colli-
sion risk. Figure 12b demonstrates that the following vehicles smoothly converge to steady
speed without significant oscillation. These results confirm that incorporating velocity
information with the OP effect can improve platoon stability but increase collision risk.
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Figure 13 illustrates that as parameter γv increases, there is a reduction in the minimum
TTC value. This trend suggests a decreased risk of collision. Moreover, it is observed that
no collisions occur across the entire range of γv values examined.

5.2. Numerical Investigation on the IDM with Bidirectional Information

The spacing bidirectional IDM is subject to numerical experiments to validate the find-
ings. The parameters used in the experiments are identical to those in Table 5. Figures 14–16
demonstrate the vehicle speed profiles when γx= 0.4, 0 and −0.4, respectively. Figure 17
depicts the minimum TTC value among 1st–10th vehicles. These simulation outcomes are
consistent with the previous simulation results obtained using Helly’s model. Specifically,
utilizing spacing information with the IP effect can effectively reduce collision risk and
enhance platoon stability. On the contrary, incorporating spacing information with the OP
effect can increase collision risk and worsen platoon stability.
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Numerical experiments are further conducted using the velocity difference bidirec-
tional IDM model. Figures 18–20 depict the vehicle speed profiles when γv= −1.5, 0 and
1.5, respectively. Figure 21 displays the minimum TTC value. The simulation results are in
line with the previous findings obtained using Helly’s model. Specifically, using velocity
difference information with the IP effect can reduce collision risk but worsen platoon
stability, whereas velocity difference information with the OP effect can improve platoon
stability but increase collision risk.
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In conclusion, the numerical analyses conducted on both linear and nonlinear models
verify the findings presented in Tables 3 and 4. The use of spacing information can enhance
both platoon string stability and safety. However, the use of velocity difference information
can only enhance either safety or stability.

6. Conclusions

This paper introduces a novel framework based on the concept of phase shift to
investigate the influence of bidirectional information flow topology on platoons in terms of
both stability and safety. This research sheds light on the effects of phase shift, particularly
focusing on two specific cases: the in-phase (IP) effect and the opposite-phase (OP) effect.
The IP effect contributes to enhanced platoon safety, while the OP effect significantly
increases the risk of rear-end collisions. By employing the proposed framework, the
research investigates the impact of different types of dynamics information of vehicles
on platoons. Theoretical analyses pertaining to string stability and rear-end collision risk
reveal that the integration of diverse information into the models does not universally yield
benefits. Specifically, incorporating spacing information can concurrently improve both
platoon safety and stability. However, the integration of velocity difference information
can only enhance either safety or stability, but not both simultaneously. To validate these
theoretical analyses, numerical experiments are conducted on both linear and non-linear
car-following models, with simulation results confirming theoretical analyses.

There are several potential directions for future research in this field. While this
research focuses on uncovering the effects of phase shift on CAV platoons, it primarily
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examines the IP and OP effects which represent two extreme cases of phase shift. Other
communication factors, such as delay and packet loss, might result in different phase
shift effects beyond those already examined. Undertaking a comprehensive investiga-
tion of phase shift effects would be a valuable direction to explore. Furthermore, while
this research concentrates on the bidirectional communication topology, it is important to
consider other communication topologies such as predecessor–leader following topology,
multiple predecessor following topology, etc., as well. Exploring different communication
architectures and their implications for platoon dynamics could yield valuable findings.
In addition, the present study primarily evaluates the impacts of spacing and velocity
difference information on CAV platoons. Nevertheless, incorporating other types of in-
formation, such as acceleration, traffic jerks, and electronic throttle opening angle, could
provide a more comprehensive analysis of communication side impacts on CAV traffic.
Moreover, our current analysis is limited to a one-dimensional perspective. Exploring the
effects of lateral dynamics, such as left or right turns, on platoon performance represents a
promising avenue for future research. Additionally, this research initially concentrated on
introducing a theoretical framework. It is essential to expand the studies to include more
comprehensive validation processes in subsequent research. Lastly, while this research
mainly evaluates traffic performance by examining string stability and rear-end collision
risk, there are other aspects that could be explored. Investigating the damping behavior
and energy efficiency of CAV platoons, for example, would offer a more holistic assessment
of the impacts of communication on CAV traffic.
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