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Abstract: The effects of climate change and the rapid growth of societies often lead to water scarcity
and inadequate water quality, resulting in a significant number of diseases. The digitalization of
infrastructure and the use of Digital Twins are presented as alternatives for optimizing resources and
the necessary infrastructure in the water cycle. This paper presents a framework for the development
of a Digital Twin platform for a wastewater treatment plant, based on a microservices architecture
which optimized its design for edge computing implementation. The platform aims to optimize
the operation and maintenance processes of the plant’s systems, by employing machine learning
techniques, process modeling and simulation, as well as leveraging the information contained in BIM
models to support decision-making.

Keywords: Digital Twin; water treatment plant; artificial intelligence; HMI; microservices; edge
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1. Introduction

Water is one of the fundamental resources for the development of societies. Since
ancient times, the first cities developed around sources of water to advance their civi-
lizations [1]. However, today, more than one billion people lack access to clean and safe
drinking water, considered a right for all in developed countries [2]. Additionally, over
a quarter of the world’s population in developing countries live in regions that will suf-
fer from water scarcity, and the effects of climate change could further exacerbate these
shortages [3]. This water scarcity is not only reflected in human dehydration but also in
sanitation and hygiene issues, leading to a significant number of global health problems [4].

Sustainable Development Goals (SDGs) were framed at the United Nations General
Assembly within the 2030 Agenda [5]. Among these goals are access to clean water and
sanitation, aiming to optimize water treatment processes, develop and improve distribution
and sanitation infrastructure, and clean up oceans, among other initiatives.

Industry 4.0, driven by the digitization of organizations and the use of the latest
technologies such as big data, artificial intelligence, robotics, or the Internet of Things
(IoT) [6], presents itself as an option to improve the quality of water infrastructure, reduce
water losses, and enhance water quality, using these advantages to address sustainability
issues in the entire water cycle [7]. This digitization can be implemented at any point in
the water value chain, from resource capture to end-user consumption and return to the
environment, including collection and supply infrastructure and distribution systems [8].

Among the different technologies driven by the Fourth Industrial Revolution, Digital
Twins (DT) are one of the most attractive due to their process optimization capabilities [9].
In their publication, Madni et al. [10] define a Digital Twin as a virtual replica of a physical
system, fed with real-time system information, enabling the incorporation of the most
disruptive technologies of today, such as artificial intelligence, advanced data analytics,
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extended reality, or robotics, to extract value from data, automate and optimize processes,
and support decision-making [11].

There is often confusion between DT and BIM modeling, so it is important to clarify
that BIM models are static representations of geometric and parametric information, while
DT are dynamic systems, connected to real-time information, designed to emulate the
system they represent [12].

In the context of water infrastructure, Digital Twins can provide solutions such as
predictive maintenance, anomaly detection, optimization of energy consumption, or im-
provements in sustainability, by reducing pollution and maximizing water conservation,
as well as increasing benefits and reducing operating costs for public services, among
others [8,13]. Additionally, these systems can also be used to enhance water resource
management in reservoirs, prevent floods, improve stormwater tank management during
heavy precipitation, optimize supply networks, or aid in reducing user consumption [8,14].

This paper focuses on the development of a Digital Twin platform for a water treatment
plant, based on a microservices architecture. The rest of the text is organized as follows:
Section 2 will address the state of the art of the technology, covering the main definitions of
Digital Twins and their enabling technologies, as well as the main examples of digitization
and Digital Twins in water infrastructure. Then, Section 3 depicts the main contribution
of the Digital Twin platform for water treatment. Section 4 discusses the outcome of the
work performed, delving into the main results of the platform and models developed and
outlining the main future research directions for this research. Finally, Section 5 summarizes
the key contributions and conclusions.

2. State of the Art

As previously mentioned, Digital Twins are virtual replicas of physical systems in
continuous communication with them, transforming data into information using disruptive
technologies to extract value [10]. In most cases, these Digital Twins represent a process, not
just an individual system, so a Digital Twin can be considered as a system of systems [15].
In many cases, these processes can be very complex and require a large volume of data
and a high level of abstraction to be properly modeled, so it will be especially important to
undergo a process of decomposition and analysis to understand them correctly.

From one definition, it is concluded that the fundamental elements that make up the
Digital Twin are the physical asset, the virtual system, and the communication among
them [16]. This communication between the physical and virtual twins results from data
acquisition processes, with the IoT (Internet of Things) being one of the main enablers of
Digital Twins [17], such as in fields like agriculture and its monitorization [18]. Nevertheless,
disconnected data will be of limited use, so it is the transformations performed by the
Digital Twin that add value to this information. These transformations take the form of
advanced data analytics, the use of artificial intelligence techniques, or behavior simulation
through modeling [19,20].

To develop a Digital Twin, it is essential to understand each of the actors involved in
the process. In order to establish a foundation for the development of Digital Twins, the
article developed by Standfor-Clark et al. [21] presents a reference architecture for Digital
Twins, consisting of seven layers that define the different functionalities of the Digital Twin
and three cross-cutting layers responsible for the governance, security, and integration of
Digital Twin elements (see Figure 1).

On the other hand, IBM [22] lists some of the benefits of Digital Twins, such as
improvements in design and research through their use in product development, enforced
by generating simulation environments and data analysis; improved process efficiency by
identifying premature failures through Digital Twins or using results in new production
batches; and end-of-life product assessment by evaluating which assets in the system are
more deteriorated and which can be reused in other processes.
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Figure 1. Reference architecture presented by Standfor-Clark et al. [21] for the development of Digital
Twins.

In the context of water infrastructure, Digital Twins and process digitization offer
improvements for all the needs in this area. In the paper written by Banerjee et al. [14], the
importance of digitization in water management is presented. In this, an evaluation of three
digitization systems implemented across two different cities is carried out: Singapore, a
highly developed and technologically advanced city, and Bangalore, a developing city. The
digitization measures evaluated include a smart water meter system, the implementation
of a SCADA device, and the development of a flood alert system.

In the case of Singapore, the implementation of these technologies aimed to improve
existing infrastructure and citizen satisfaction, seeking synergies with other city systems
to maximize the benefits of these improvements. Conversely, in Bangalore, the measures
were taken to reduce water losses and unauthorized usage, imposing the cost burden of
these measures on citizens.

The results showed that in the case of Singapore, the implementation of these systems,
starting from an infrastructure with very low water losses, allowed for a reduction in water
consumption by citizens, improved water quality and supply systems, and the ability to
harness heavy rainfall, in coordination with city territorial management, to enhance water
reserve systems in the city. In contrast, Bangalore’s focus on reducing water losses in all
its measures meant that they did not consider synergies with other initiatives, resulting in
very poor results that had to be subsidized by citizens, with a return on investment that
did not cover the costs.

In the report presented by Hernandez Sancho [23], the benefits of digitization in
natural resource sustainability management are highlighted. To demonstrate the benefits,
a practical case is presented, in which, based on data from 400 pump blowers over the
last 10 years, it is determined that the variables most related to failures in these blowers
are operating hours, the presence of sand in wastewater, cavitation, or lower maintenance
frequency than indicated by the manufacturer. These findings allow for the development
of a strategy to reduce these factors whenever possible, improving process efficiency and
reducing the need for corrective maintenance or equipment replacement, demonstrating
the benefits of digitization and data analytics derived from this process.

In the context of Digital Twins for water infrastructure, Johnson et al. [24] presented
two cases of Digital Twins in a book published by The International Water Association.

The first case focuses on a Digital Twin of the sewage network in the city of Gothenburg,
with the aim of reducing wastewater discharges into the environment, resulting from heavy
rains in combination with household waste. The Digital Twin consists of a model of the
sewer system, using data on flows and water levels in the network, as well as at treatment
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plants. This Digital Twin, presented to users along with weather forecasts for the next
two days, implements a network management strategy to optimize the pumping system to
maintain a constant flow into treatment plants for the next 12 h.

The results presented by the Digital Twin showed a reduction of up to 50% in untreated
water discharges into the environment, totaling 1.5 billion liters. It also improved process
efficiency by maintaining more stable flows, reduced the risk of critical situations through
predictive algorithms, and increased the capacity to address problems with pumps or at
the entrance to water treatment plants through predictive control.

In the second case presented by Johnson et al. [24], a Digital Twin was developed
by the public utilities of Singapore in collaboration with the company Jacobs to support
decision-making in wastewater treatment plants. It was based on information collected
by the SCADA system and the Laboratory Information Management System (LIMS) to
develop a hybrid simulation model of plant hydraulics and control. This model allowed
for a comparison between system outputs and simulated data, thus providing anomaly
detection, scenario simulation to anticipate potential infrastructure modifications, and a
5-day prediction of events in the treatment plant to assist in operational decision-making.

In the context of fluid dynamics process simulation, Chiva Vicent [25] presented an
alternative use of Computational Fluid Dynamics in operational decision-making for Digital
Twins at a conference hosted by aguasresiduales.info. The development of this approach
highlights the advantages of CFD models for calculating the evolution of processes and the
hydrodynamics associated with biological reactors in wastewater treatment plants.

However, the timeframes handled by these systems are not feasible for use in oper-
ational Digital Twins that assess plant operational development, as the simulation time
required exceeds the process duration. To address this challenge, Chiva Vicent proposes
the use of neural networks to simulate system behavior. Trained through CFD process sim-
ulations, these neural networks can provide results with minimal error margins compared
to those obtained from CFD system execution, and within seconds instead. This enables
the use of these neural networks in operational Digital Twins, allowing the simulation of
water treatment process outcomes and obtaining results before they occur, facilitating the
optimization of plant operation and control strategies.

3. Contribution

As indicated in the previous sections, the main objectives pursued with the Digital
Twin platform for the sewage treatment plant are as follows:

• Optimizing Operational Efficiency: By leveraging real-time sensor data and predictive
analytics, the platform aims to enhance the decision-making process, ensuring that
treatment operations are as efficient and effective as possible, preventing, for instance,
untreated water being released to the population;

• Predictive Maintenance: Utilizing machine learning models, the platform predicts
equipment failures, allowing for timely maintenance that prevents unscheduled down-
times and extends the lifespan of the plant’s machinery;

• Process Simulation: Through the ASM1 model, the platform simulates the biological
treatment processes, aiding in the planning and optimization of operations to handle
varying inflow conditions and maintain compliance with environmental standards;

• Resource Management: By integrating with BIM models, the platform supports
the management of physical assets, helping to optimize resource allocation and
reduce waste;

• Enhanced Decision Support: The platform provides a comprehensive view of the plant’s
operations, enabling operators to make informed decisions rapidly and effectively.

3.1. Platform Architecture

This section will cover the development of an architecture for Digital Twins based
on microservices deployed on a server on premise. These microservices could also be



Sensors 2024, 24, 1568 5 of 19

deployed on a cloud server and make use of services offered by various cloud providers,
but this strategy has been followed to aid the development of the proof of concept.

The adoption of a microservices architecture yields several benefits, crucial for op-
timizing system performance and enhancing operational efficiency. Firstly, the modular
nature of microservices facilitates greater flexibility and agility in the development and
deployment of new use cases, following an agile methodology for developing the Digital
Twin. By decomposing the system into smaller, loosely coupled services, updates and
modifications can be implemented seamlessly without disrupting the entire ecosystem.
This modularity also enables scalability, allowing individual components to scale inde-
pendently, based on specific resource demands, thereby ensuring optimal performance
even under varying workloads and evolving requirements. Furthermore, the decentralized
nature of microservices promotes fault isolation, preventing issues in one service from
affecting others and enhancing system reliability and resilience. Additionally, the use of
microservices fosters interoperability, by enabling better integration with external systems,
data sources, and services, thereby facilitating the exchange of information and enhancing
the overall functionality of the Digital Twin.

To achieve this, the architecture starts with the development of a central gateway and
control service, named the API Gateway, which acts as the orchestrator of the microservices
and serves as the link to the user interface application [26].

To enable communication between legacy systems such as SCADA and the API
Gateway, this architecture proposes the use of OPC UA, as suggested by Hoffman et al. [27].
OPC UA is a unified communication standard for information modeling and real-time data
exchange [28]. Using these protocols allows the development of Application Programming
Interfaces (APIs) to access data from OPC UA sensors. These APIs, combined with the use
of gateways, enable operational data to be brought to the network for use by the Digital
Twin [20].

The communication service will leverage the APIs exposed by the OPC publisher to
obtain system data and send it to the gateway. The gateway then sends a request to the
data ingestion service to store the obtained information. Prior to this data publication, it
will be necessary to verify the identity of the device sending the data to the platform. This
task will be performed by the authentication service.

Once the data is published, the gateway service will coordinate the collection of
necessary data and send it to the analytics service, based on machine learning in this case,
to obtain the analysis results and store them again through the data ingestion service, as
Figure 2 shows.

Finally, this simplified architecture proposes the development of a web application
as users’ interface. These users will identify themselves on the web page by sending a
request to the authentication microservice through the gateway, granting them access to
the platform if their identity is confirmed.

To ensure user security and privacy, as this is a sensitive infrastructure, the data will be
encrypted in the users’ database, following a salt and hash strategy [29]. The authentication
system will return a temporary token, which will be used by the API Gateway before
calling any microservice, ensuring route security and maintaining session temporality.
This API Gateway will filter all communications with the various microservices, verify
the identity of users using a username and password against an encrypted database,
employing hash techniques strengthened with the use of salts to prevent decryption.
Once the user is identified, the web application will provide access to a Digital Twin
selection platform. Upon this selection, a digital model based on BIM models and using
Autodesk Platform Service [30] will be presented, allowing access to all the data stored
in the BIM model and the development of dashboards based on this data, as a product
of the infrastructure digitization process. Additionally, to ensure the identity of data
acquisition devices, the gateway service will also verify a token against its identity using
the authentication service, allowing for the processing and storage of data sent only if the
operation is validated. Also, all microservices will have been protected with firewall rules,
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allowing only calls from inside the server, where the API Gateway will be the only service
able to call the microservices.
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In addition to the functionalities developed thanks to the processing of data from
BIM models, this platform will allow the control of data and use cases presented by the
Digital Twin. The gateway service will request the latest stored data from the data ingestion
services. Upon selecting one of the monitored assets on the platform, it will display the
latest data from the data acquisition devices in a graph, as well as the results of data
analysis using the simulation and machine learning services employed. Furthermore, this
platform also allows the launching of online simulations, obtaining results to support
decision-making.

In designing the Digital Twin platform, it was opted to pursue edge computing
implementation due to the following considerations and tools [31,32]:

• Real-time Data Processing: The platform was tailored to process sensor data on-site
at the water treatment facility, enabling immediate response to changing conditions,
without latency;

• Efficient Data Handling: To manage bandwidth, the system was optimized to prepro-
cess data at the edge, reducing the volume of information required to be sent to the
cloud, if this was to be extrapolated to other facilities, and focusing on transmitting
actionable insights;

• Scalable Microservices: The architecture uses microservices that can be individually
scaled and updated, allowing for flexibility in expanding or upgrading the system’s
capabilities at the plant level;

• Enhanced Security Measures: Recognizing the critical nature of water treatment
infrastructure, edge allows for another layer of robust security protocols and reduces
the amount of information shared off premises;

• Autonomous Operations: The platform can maintain operations during network
disruptions (still common in remote areas), ensuring continuous water treatment
processes and data synchronization once connectivity is restored.

By adopting a 5-dimensional model [33], the design of the platform is prompted to
optimize operations, maintenance, and decision-making within water treatment facilities.
The following analysis delves into the specifics of each dimension, tailored to the unique
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requirements of the water treatment industry and leveraging a microservices architecture
for improved scalability, flexibility, and efficiency.

• Cyber-Physical Data Store Layer: This layer is where real-time operational data from
the water treatment plant is captured and stored. Sensors and IoT devices collect
data on water quality, flow rates, and equipment status. This information is essen-
tial for creating an accurate virtual representation of the plant’s physical systems
and processes;

• Primary Processing Layer: The data from the first layer are processed to convert raw
sensor readings into a structured format. This involves standardizing data for compat-
ibility with the Digital Twin platform and ensuring that the data flow is maintained
efficiently and securely;

• Models and Algorithms Layer: In this layer, the water treatment plant’s processes are
modeled using computational algorithms. These algorithms simulate the behavior of
physical assets and processes, such as filtration, chemical dosing, and sludge treatment,
providing a basis for the analysis and prediction functionalities of the Digital Twin;

• Analysis Layer: Utilizing the processed data and models, this layer performs advanced
analytics to predict equipment maintenance needs, optimize treatment processes,
and improve plant performance. Machine learning (in the case of the water pump)
and physics-based (sludge) models analyze patterns and trends, enabling predictive
maintenance and operational insights;

• Visualization and User Interface Layer: The final layer is where the processed data,
analytical models, and predictions are presented to the users through an interactive
interface. This layer allows plant operators to visualize plant performance, receive
maintenance alerts, and make informed decisions based on real-time data and predic-
tive insights.

3.2. Machine Learning Service

One of the main goals while developing the Digital Twin platform for a water treatment
plant is the implementation of a predictive maintenance service. This service is a crucial
component that can significantly reduce downtime and maintenance costs [34]. The service
developed in this framework uses machine learning techniques to predict potential failures
in the plant’s equipment, specifically focusing on water pump drivers. More concretely,
machine learning techniques are integrated into the Digital Twin platform to enhance the
following functionalities:

• Predictive Maintenance: Machine learning models analyze historical sensor data to
predict potential equipment failures, enabling proactive maintenance scheduling and
reducing downtime;

• Anomaly Detection: These techniques monitor operational data for deviations from ex-
pected patterns, identifying potential issues before they escalate into serious problems;

• Process Optimizations: Machine learning assists in optimizing various treatment
processes by analyzing trends and correlations in data, leading to more efficient
operations being recommended as next steps;

• Data-Driven Insights: The platform utilizes machine learning to transform raw data into
actionable insights, supporting informed decision-making and continuous improvement.

The predictive model aims to anticipate errors in the water pump drivers at the
treatment plant within a 10 min interval, allowing for timely preventive maintenance
actions. This approach is particularly valuable in water treatment plants where equipment
failures can lead to untreated wastewater discharges, causing environmental pollution and
potential health risks.

For gathering the data, it is key to review the data acquisition possibilities, involving
precise sensor placement to ensure accurate signal capture, and feature extraction focuses on
identifying parameters that are highly indicative of the system’s health. As a demonstration
of the capabilities of machine learning services for the framework presented in this paper, a
predictive service for errors in water pump drivers at the treatment plant was developed.
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This was done using a public dataset from Kaggle [35], which was labeled with normal,
breakdown, or recovery operating states, with data collected every minute during the
winters of 2018 and 2019. The dataset provided 52 sensor readings associated with the
pump’s operational state, such as temperature, pressure, flow rates, and vibration levels.

First, data cleaning and preprocessing were performed by removing variables that
had more than 1% of their values missing in the dataset and filling in missing values for
the remaining variables based on the last non-null value, since the dataset was structured
as a time series [36].

Given the high number of variables and their interrelationships, dimensionality re-
duction techniques were deemed necessary to aid in model training. The correlation
matrix visualization allowed the identification of many variables that were related to
each other [37], making it possible to select the most important ones and discard the rest.
Nevertheless, a Principal Component Analysis (PCA) algorithm was used to reduce dimen-
sionality, by choosing which variables of the project are relevant to be used in training the
system [38], whilst keeping the most significant information from the dataset’s features,
revealing the variance contribution of each. Upon analyzing the results, it was observed
that the most significant variance was encapsulated within the first 10 components, with the
variance diminishing progressively, following a pattern resembling a negative exponential
curve (see Figure 3).
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Additionally, to facilitate the model training, mitigating the influence of variables
with larger magnitudes and to improve training speed, a normalization technique was
applied using a standard scaler, where each sample’s values were centered by subtracting
the variable’s mean and dividing by the standard deviation, resulting in a dataset in which
all variables have a mean of 0 and a standard deviation of 1 [39], and therefore ensuring
that each feature contributed equally to the model’s predictions.

Based on the variance results obtained from the principal components, it was decided
to keep a system with the first 15 components, as it is estimated that these would be
sufficient to represent the dataset.

Before starting with the training, the distribution of samples in the dataset was ana-
lyzed, showing that cases of normal operation are much more frequent than breakdown
and recovery cases, and that all recovery cases follow a breakdown. Therefore, it was
decided to identify breakdown and recovery cases in the same way, the model’s purpose
being to anticipate breakdown situations, and predicting either a breakdown or recovery in
the future serves the same purpose of anticipation. This is shown in Figure 4, where the
transition from ‘normal’ to ‘broken’ was always followed by a ‘recovering’ and a return
to ‘normal’.
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The machine learning model’s objective is to predict the pump’s state 10 time intervals
ahead based on the data from the last 10 time intervals. Given the need for future predic-
tion, past data, and considering that system failures are in many cases often preceded by
inefficient operation in previous periods, a recurrent neural network was employed [40], or
more concretely, a Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN).
Among the various recurrent neural network algorithms, Long-Short Term Memory cells
were used in this case, which allow for long-term memory, taking previous conditions into
account in future predictions. Following the LSTM layer, a dense neural network layer was
used for classification [41].

For model training, binary cross-entropy (1) was used as the cost function, which
heavily penalizes incorrect classifications, ensuring that the training considers breakdown
cases despite their lower frequency compared to normal behavior cases.

Fcost(q) = − 1
N

N

∑
i=1

yi ∗ log(p(yi)) + (1 − yi)∗ log(1 − p(yi)) (1)

The architecture of the neural network was selected so it is able to capture the temporal
dependencies and patterns in the sensor data. These are characteristic of time series data
commonly found in predictive maintenance scenarios. LSTM has the ability to learn from
data points that are far apart in time, making them capable of recognizing patterns over
longer sequences, which is essential when predicting equipment failures that may be based
on prolonged periods of operation.

The Gate mechanism also allows the network to decide which information should be
kept or discarded at each step in the sequence. This selective memory process is critical
for predictive maintenance, where not all sensor readings may be equally relevant for
predicting a future failure.

As seen in Figure 4, the time between normal operation and potential failure can vary
significantly. LSTMs are robust to changes in the length of input sequences, meaning they
can adapt to different durations of operational cycles without the need for re-engineering
the network structure.

LSTMs can recognize and learn the cyclical behavior or trends present in sensor data,
to anticipate future equipment states. Finally, LSTMs are also efficient in the need for
feature engineering, as they can make predictions based on raw time series data.
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The network architecture consisted of an initial layer of LSTM neurons, with a total of
250 neurons using hyperbolic tangent as the activation function and sigmoid activation for
recurrent neurons, followed by a dropout layer. The next layer was another LSTM with
the same activation functions and a total of 100 units, followed again by a dropout layer.
Then, a densely connected layer with 10 units using the Rectified Linear activation function
was presented, followed by a dropout layer. Finally, the output layer consisted of a single
densely connected neuron with the sigmoid activation function. Since the model was a
binary classification model, the output could be understood as the probability of the pump
being in normal operation.

Upon training this model and evaluating the results on the test dataset, a recall of
0.977, precision of 0.984, and F1 Score of 0.981 were achieved, demonstrating the network’s
ability to detect both normal operating states and breakdown states. The confusion matrix
shows all the results obtained in the evaluation leading to these metrics.

Upon examination of the test set, it was noted that of the samples labeled as either
breakdown or repair—which are critical states for predictive maintenance—only 333 were
incorrectly classified as normal operation, constituting roughly 4% of the total sample
size for malfunctioning states. Conversely, when considering samples labeled as normal
operation, the model misclassified a mere 479 as potential breakdown or repair conditions
from a total of 21,609 cases, amounting to less than 2.1% of the normal functioning sample
pool. These figures underscore the model’s high accuracy in distinguishing between normal
and malfunctioning operational states, validating its efficacy for maintenance applications
(see Figure 5).
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Using the previously trained models, this framework proposed the development of a
predictive maintenance microservice. This services, based on REST API, received a request
from the API Gateway service with the last data as a body request. Then, the service used
the machine learning model for status prediction and returned the estimated state.

To develop predictive maintenance microservice in this research, the flask Python
3.10.12 framework was used, as per [42]. Based on this framework, an API REST access
point was exposed to the API Gateway service, allowing this service to request prediction
on the water pump status.

3.3. Simulation Model: Active Sludge Model 1

Within the framework developed in this paper, the development of an active sludge
model for the reactor of the water treatment plant was presented as an example of a simula-
tion model. This physics-based model, based on the work by Henze et al. [43], simplifies
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the processes carried out in the biological reactor, considering the most representative
kinetic and stoichiometric processes occurring in the reactor.

In the treatment of water in the biological reactor through an activated sludge process,
the water flow to be treated enters a tank where sludge or biomass, composed of microor-
ganisms, is present to remove contaminants from the water [44]. This tank may consist of
anoxic zones, where transformation occurs in the absence of oxygen, and an aerobic zone,
where oxygen is consumed. For the development of this model, the variables involved
in the reaction were simplified based on the decomposition of the matter involved in the
processes, as indicated in Table 1.

Table 1. ASM1 Components.

Notation COMPONENTS Units

SI Soluble inert organic matter g COD/m3

Ss Readily biodegradable substrate g COD/m3

XI Particulate inert organic matter g COD/m3

XS Slowly biodegradable substrate g COD/m3

XBH Active heterotrophic biomass g COD/m3

XBA Active autotrophic biomass g COD/m3

XP Particulate product arising from biomass decay g COD/m3

SO Oxygen g O2/m3

SNO Nitrate and nitrite nitrogen g N/m3

SNH NH+
4 + NH3 nitrogen g N/m3

SND Soluble biodegradable organic nitrogen g N/m3

XND Particulate biodegradable organic nitrogen g N/m3

SALK Alkalinity Molar units

The main reactions that occur in the tank, and which are included in the ASM1 (Active
Sludge Model 1) according to Henze et al. [43], are as follows:

• Aerobic growth of heterotrophic bacteria;
• Anoxic growth of heterotrophic bacteria;
• Aerobic growth of autotrophic bacteria;
• Decomposition of autotrophic biomass;
• Decomposition of heterotrophic biomass;
• Ammonification of soluble organic nitrogen;
• Hydrolysis of trapped organic substances;
• Hydrolysis of trapped nitrogen.

Henze et al. [43] presented the relationship between components and these processes
through a Peterson matrix, defining the coefficients of the relationships using stoichiometric
parameters and each of the reactions using the kinetic parameters of the system.

To develop the simulation model, the equations presented in the Peterson matrix were
used, implementing the equations governing the processes involved in a Simulink model.
For this, a biological reactor consisting of two tanks was considered: a first anoxic tank
that served the denitrification function, and a second aerobic tank, where the oxidation
and nitrification process took place, followed by an ideal clarifier where no chemical
transformation occurred, controlling the age of the sludge through the waste flow rate,
which went to the sludge chain.

The outputs of the simulation model were the concentrations of each of the components
at the outlet of the biological reactor, with special control over the total suspended solids,
chemical oxygen demand, total nitrogen, and dissolved oxygen concentration. The inputs
to the model were the concentrations of the components in the influent and in each of the
tanks, as well as the values of stoichiometric and kinetic parameters.

Starting from the condition presented by Talib [45] and conducting a simulation for
a total of 10 days with a sinusoidal flow rate as input with Gaussian noise, the results
obtained are shown in Figure 6.
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(TN) evolution on 10 days simulation.

To use this biological reactor simulation service, an asynchronous strategy was fol-
lowed in this article, allowing the platform to export the variables of the real system as a
.csv file, also being the model fed from this file to execute the simulation.

3.4. Digital Twin Platform

The Digital Twin platform serves as the central axis of the Digital Twin, acting as the
interface for users. Developed as a web application using .Net Core, it utilizes the previously
described services to facilitate the defined use cases and features its own database to store
necessary information.

The Digital Twin platform works as an access point for users of the Digital Twin of the
water treatment plant. In this framework, the development of this platform was proposed
as a web application, following a model-view-controller (MVC) scheme, a well-established
design pattern that promotes efficient code organization and separation of concerns.

Upon initial access, this platform provided a user identification view, which operated
through the authentication microservices managed by the API Gateway. The response
token is stored in the session for subsequent API calls, ensuring a seamless and secure
user experience. Once access to the platform was authorized, users were presented with
a list of the Digital Twins they had access to, which was defined based on their user, role,
or organization.

Subsequently, the platform allowed users to a view of available Digital Twins, enabling
them to select the specific Twin they wish to access. This feature effectively centralizes the
management of multiple Digital Twins within a single platform. To aid user navigation
through the list of Digital Twins, the platform incorporates a search function that swiftly
locates the desired Digital Twin. After selecting the specific Digital Twin, the BIM model
resulting from the digitization process was launched whenever it was available. Therefore,
these BIM models serve as a critical decision-support tool within the Digital Twin platform,
providing a detailed and interactive representation of the plant’s physical and functional
characteristics to inform and enhance operational strategies.
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The BIM model was stored in a common data environment. In this framework, access
to BIM models and their visualization was developed using the APIs provided by Autodesk
Platform Services [30], but other frameworks like IFC.js [46] could also be used. The use
of these data visualization tools and associated information allowed the development of
functionalities that leveraged the data and provided information about each of the model’s
components, such as conducting a carbon footprint analysis of each model component [47].

The BIM model is responsible for ensuring that the interface is approachable and
straightforward for operators and decision-makers alike. Emphasizing a hassle-free user
experience, the platform is equipped with an intuitive dashboard that presents BIM models
in a navigable format, familiar to those with experience in authoring tools.

At this first stage there are few use cases, but in potential future releases, with more
applications added, the selection of use cases shall be streamlined, allowing users to
access relevant scenarios and data visualizations with minimal effort. Decision-making is
supported by clear, interactive charts and graphs that translate complex data into actionable
insights. Additionally, the platform includes a help feature and user guide/blueprint to
assist developers in how to digitize other infrastructures.

This view also contained connected assets or Digital Twin use cases, which presented
updated status information by reading data offered by data acquisition systems through
the API Gateway, as well as simulations and predictions. For the first use case, based
on the pump status data collected by the sensors, the platform estimates the pump’s
condition within a 5 min window. This stored data is updated every 30 s and displayed in
a graph, allowing users to anticipate abnormal states in the device and perform preventive
maintenance to prevent equipment damage.

Furthermore, the platform allowed for on-demand simulations to evaluate possible
outcomes in fictitious situations, enabling the assessment of potential system behaviors to
enhance operational capabilities. Regarding the biological reactor, the Digital Twin platform
will display state data for the reactor in both tanks, as well as the influent data entering the
plant. This allows users to export the data for use in the simulation model, enabling them
to assess whether the current plant conditions can handle the inflow, whether adjustments
to the conditions could accommodate it, or whether the inflow should be diverted to a
plant with greater capacity.

This platform is engineered to be adaptable, enabling integration with future advance-
ments in the digitalization of the water treatment plant. This flexibility will accommodate
the expected developments in sensor technology, data analytics, predictive algorithms, and
automation processes.

Key to this adaptability is the platform’s modular architecture and API-first design.
These features ensure that the platform can be continuously updated and expanded without
major overhauls. New functionalities and improvements can be developed and integrated
into the existing framework with minimal disruption, ensuring that the platform remains
current with the latest industry trends and technological innovations. The platform’s design
anticipates future technological developments in digitalization and water treatment. Its
microservices architecture enables the incorporation of new functionalities and integration
with advanced systems, ensuring that the platform remains relevant and effective in the
evolving landscape of water management technologies.

3.5. Strategy for Digitization and Digital Twin Implementation

For the water treatment plant digitalization, it is recommended, similarly to other
Digital Twin implementation projects, to implement a multi-stage strategy that begins
with a rigorous data acquisition phase, capturing critical operational parameters through
advanced sensing technology and the meticulous integration of BIM models to mirror the
physical infrastructure.

Following this, the digitization phase constructs a high-fidelity virtual model that
serves as the foundation for the Digital Twin platform. Emphasizing real-time data synthe-
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sis and predictive analytics, the strategy incorporates machine learning algorithms, such as
LSTM networks, to forecast equipment conditions with high precision.

As showcased in this paper, this framework not only streamlines plant operations but
also significantly enhances the accuracy of maintenance schedules, ultimately leading to
improved plant efficiency and reduced operational costs. The section sets forth a blueprint
for the integration of digital technologies into water treatment processes, showcasing the
transformative potential of Digital Twins in industrial applications:

• Data Collection and Management: Establishing a comprehensive data acquisition
system is the first step. This involves deploying various sensors and data loggers
throughout the water treatment plant to collect real-time data on water quality, flow
rates, energy consumption, and equipment status;

• Building Information Modeling (BIM): Integrating BIM allows for the creation of a
detailed 3D digital representation of the water treatment infrastructure. This model
serves as a central repository for all spatial and technical data, facilitating better
planning, construction, and maintenance activities;

• Machine Learning and Predictive Analytics: Machine learning algorithms are used to
analyze historical and real-time data to predict equipment failures, optimize treatment
processes, and reduce downtime. In particular, LSTM networks are implemented
for their ability to handle time-series data and make accurate predictions based on
long-term operational patterns;

• Digital Twin Implementation: The creation of a Digital Twin involves synthesizing
collected data and BIM models into a dynamic simulation that mirrors the physical
plant. This virtual counterpart can be used for process optimization, scenario testing,
and training without interrupting actual plant operations;

• Integration of IoT Technologies: The Internet of Things (IoT) plays a crucial role in
interconnecting sensors, equipment, and control systems;

• Cybersecurity Measures: Ensuring the security of digital systems is a priority. The
blueprint includes robust cybersecurity protocols to protect against unauthorized
access and cyber threats, safeguarding sensitive operational data;

• User Interface and HMI: A user-friendly interface and Human-Machine Interface
(HMI) is developed to provide plant operators with intuitive access to system insights,
alerts, and controls, enhancing decision-making and operational oversight;

• Feedback Loops and Continuous Improvement: The blueprint emphasizes the impor-
tance of feedback mechanisms that allow for the continuous monitoring of system
performance. These mechanisms enable ongoing improvements to the Digital Twin
model and the overall digitalization strategy.

4. Discussion

The research presented in this paper introduces a novel framework centered around
the development of a Digital Twin web-based platform for a water treatment plant)see
Figure 7). This platform aims to facilitate the control and management of water treatment
plants by providing system information in real time and analyzing data to support decision
making, on the web, giving access from any device and anywhere.

The presented microservices architecture allows for the progressive addition of new
use cases for the Digital Twin, enabling better control over other system assets or creating
new revenue streams. As an example, two main use cases have been presented: the first
one focused on predictive maintenance using machine learning techniques, and the second
centered around simulating processes within the biological reactor.

In the first use case, a predictive model for the state of water pumping pumps at a
10 min interval has been developed. Detecting a possible early failure in these systems
enables preventive maintenance and the activation of auxiliary systems, thus avoiding a
process shutdown that could lead to untreated wastewater discharge into the environment.
Furthermore, the development of this model can be reused for other pumps, adapted to the
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operating conditions of each system, reducing model development times and increasing
return on investment.
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In the second use case, simulating the processes inside the biological reactor allows
for evaluating the plant’s capabilities to handle current flow rates. This evaluation helps
determine if changes in the system’s operating conditions are necessary to prevent the
discharge of non-compliant flow rates into the environment.

Additionally, the platform’s integration with the Digital Twin and information analy-
sis serves as another use case, enabling improved maintenance planning, assessment of
environmental conditions, potential future design improvements, and virtual assistance for
maintainers who are not physically present at the plant.

On the other hand, using the ASM1 allows the operators to monitor the evolution of the
water treatment process developed in the plant. This permits the identification of potential
deviations from the parameters and modifications in the chemicals concentrations of the
different components involved in the process. Further development in the Digital Twin
platform, such as the Digital Twin’s connection with sewage, allows for the evaluation of the
treatment process in the plant for a future discharge observed in the sewerage network, and
for deciding the best treatment strategy, adjusting the plant conditions to those necessary
for the treatment of that discharge, or redirecting it to other plants for treatment.

From the user point of view, the Digital Twin platform features an intuitive user
interface that enables operators and decision-makers to interact seamlessly with BIM
models and access use cases. The design prioritizes ease of use, ensuring that even users
unfamiliar with authoring tools can efficiently navigate the platform. With the inclusion
of clear, chart-based visualizations for data analysis and decision-making, the platform
facilitates a user-friendly experience tailored to the needs of professionals in the water
treatment industry.

Future developments in this research may involve applying this framework to a real
system to demonstrate its benefits, integrating the simulation model as a microservice with
an exposed access interface, and implementing the system using public cloud services.
Also, cybersecurity aspects may be addressed. Among them:

• Edge-Specific Security Protocols: Implementing security protocols designed for the
characteristics of edge computing;
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• Network Segmentation: Segmenting the network to isolate edge devices from the
core network, limiting the potential impact of a security breach and containing threats
within controlled segments;

• Secure Data Transmission: Utilizing encryption and secure communication channels
for data transmission between edge devices and the eventually central system to
prevent interception and unauthorized access;

• Regular Software Updates: Ensuring that all edge devices receive regular software updates
and patches to mitigate vulnerabilities and protect against the latest security threats;

• Authentication and Authorization: Deploying strong authentication and authorization
mechanisms for devices and users to verify identities and control access to sensitive
data and system functionalities, therefore building on the current temporary token;

• Intrusion Detection Systems (IDS): Implementing IDS at the edge to monitor and
analyze network traffic for signs of malicious activities and respond to detected threats
in real-time;

• Physical Security Measures: Enhancing physical security measures for edge devices to
prevent tampering, unauthorized physical access, and damage.

Furthermore, the platform’s versatility would allow for the development of new Digi-
tal Twins and their linkage, centralizing the management of regional water administrators
and enhancing simulation and result retrieval capabilities as others future research. For
example, integrating wastewater networks with various water treatment plants could
anticipate incoming flow rates to treatment plants and simulate process outcomes, assisting
in optimizing the control and distribution strategy for sewer network discharges.

5. Conclusions

The main conclusions of the work presented above can be summarized as follows:

• A novel microservices-based Digital Twin platform tailored for water treatment plants
that integrates real-time data and BIM models;

• Utilization of LSTM neural networks for predictive maintenance to improve opera-
tional efficiency and minimize downtime;

• Simulation of the water treatment process using an Active Sludge Model, providing
insights into plant operations;

• Optimization for edge computing, ensuring data efficiency and secure processing in
critical infrastructure;

• A clear blueprint for Digital Twin integration, outlining a comprehensive approach for
digital transformation in water treatment.

The development of a Digital Twin platform for water treatment plants offers a
forward-looking solution to the water scarcity and quality challenges exacerbated by
climate change and societal growth.

By leveraging a microservices architecture, this platform provides a blueprint for the
digital transformation of water treatment facilities, integrating real-time data acquisition,
predictive analytics, and BIM integration within a single, user-friendly interface.

The successful application of LSTM machine learning models for predictive main-
tenance, and the modeling of active sludge processes through physics-based modeling,
exemplify the practical benefits of the platform. These include enhanced operational ef-
ficiency, reduced maintenance costs, and improved decision-making capabilities. The
platform’s edge computing design further ensures real-time processing, data efficiency,
and robust security measures, making it an adaptable solution for the ever-evolving digital
landscape of the water industry.

The Digital Twin platform presents a significant stride toward achieving the Sustain-
able Development Goals related to water and sanitation. It demonstrates the potential
of Industry 4.0 technologies to revolutionize water infrastructure, providing a replicable
model for global implementation. As the platform continues to evolve, future research will
focus on expanding its capabilities, integrating additional applications onto the Digital
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Twins, and refining its predictive models to ensure that water treatment processes remain
sustainable, efficient, and resilient to the challenges ahead.
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