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Abstract: The machines of WF Maschinenbau process metal blanks into various workpieces using
so-called flow-forming processes. The quality of these workpieces depends largely on the quality of
the blanks and the condition of the machine. This creates an urgent need for automated monitoring
of the forming processes and the condition of the machine. Since the complexity of the flow-forming
processes makes physical modeling impossible, the present work deals with data-driven modeling
using machine learning algorithms. The main contributions of this work lie in showcasing the
feasibility of utilizing machine learning and sensor data to monitor flow-forming processes, along
with developing a practical approach for this purpose. The approach includes an experimental
design capable of providing the necessary data, as well as a procedure for preprocessing the data and
extracting features that capture the information needed by the machine learning models to detect
defects in the blank and the machine. To make efficient use of the small number of experiments
available, the experimental design is generated using Design of Experiments methods. They consist
of two parts. In the first part, a pre-selection of influencing variables relevant to the forming process is
performed. In the second part of the design, the selected variables are investigated in more detail. The
preprocessing procedure consists of feature engineering, feature extraction and feature selection. In
the feature engineering step, the data set is augmented with time series variables that are meaningful
in the domain. For feature extraction, an algorithm was developed based on the mechanisms of the
r-STSF, a state-of-the-art algorithm for time series classification, extending them for multivariate time
series and metric target variables. This feature extraction algorithm itself can be seen as an additional
contribution of this work, because it is not tied to the application domain of monitoring flow-forming
processes, but can be used as a feature extraction algorithm for multivariate time series classification
in general. For feature selection, a Recursive Feature Elimination is employed. With the resulting
features, random forests are trained to detect several quality features of the blank and defects of
the machine. The trained models achieve good prediction accuracy for most of the target variables.
This shows that the application of machine learning is a promising approach for the monitoring of
flow-forming processes, which requires further investigation for confirmation.

Keywords: flow forming; metal forming; multi-sensor; time series classification; design of experiments;
recursive feature elimination; r-STSF; random forest

1. Introduction

Flow forming is a metal forming process for the production of rotationally symmetrical
parts such as flanged components and pressure cylinders [1,2]. In a flow-forming process,
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a blank, i.e., a short and thick metal disk, is mounted on a rotating spindle and stretched
out by mechanically guided rollers [3]. In the process, the workpiece becomes longer and
its wall thickness thinner, while the inside diameter remains constant [3].

In the flow-forming process studied in the work at hand, a test machine, the VSTR
400-3S built by WF Maschinenbau, forms a circular metal blank (see Figure 1) in the gear
component shown in Figures 2 and 3. First, the blank is placed on the spindle of the machine
(see Figure 4, marking A). When the program is started from the control panel, the tailstock
(see Figure 4, marking B) then moves in from above and fixes the blank on the spindle. The
three rollers of the machine (see Figure 4, marking C1, C2 and C3) are responsible for the
actual forming. During the process, they move along a programmatically defined path,
while the blank is rotated by the spindle. The free-spinning rollers are pressed against the
rotating workpiece along the axial feed axis, which also causes them to rotate and deform
the workpiece. The shaping in the inner part of the workpiece with the toothing shown
in Figure 2 is defined by the punch (see Figure 4, marking B). During the entire forming
process, the workpiece is cooled with a cooling liquid, which is why this is also referred to
as cold forming.

Figure 1. Ronde (Circular metal blank placed in the machine for processing).

Figure 2. Technical drawing of the workpiece showing its toothed inner side.
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Figure 3. Product of the studied forming process. The missing piece on the right edge was subse-
quently milled out in order to be able to perform measurements on the workpiece.

Figure 4. Interior of the VSTR 400-3S. Among other things, the fixed metal blank (marking A), the
tailstock (marking B), the rollers (marking C1, C2 and C3) and the punch (marking D) are visible.

The quality of the produced workpieces is highly dependent on the conditions or input
variables of the forming processes, which primarily include the quality of the metal blanks
used in the process and the preconditions of the machine itself. Blanks with an inexpedient
geometry, such as an irregular thickness or a hole that is displaced from the center, can
lead to undesired properties in the resulting workpiece, such as being asymmetrical. The
causes of blanks with such inexpedient geometry can be errors or misconfigurations in
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the manufacture of the blanks as well as the inadvertent use of incorrect blanks. Similarly,
machine defects can also lead to undesirable process results, such as irregularities on the
surface of the finished workpiece caused by a worn out roller. The resulting waste of
time and material increases as long as these problems go unnoticed. This is particularly
problematic if the feeding of the machine is automated, which is not the case for the test
machine used in this study, but may be the case for other flow forming machines as well
as extensions of the VSTR 400-3S. Therefore, automated process monitoring capable of
detecting and responding to such defects by issuing warnings, recommending actions, or
even stopping the machine can prevent significant financial loss.

However, the mechanics of flow-forming processes, are not fully understood [4], so it
is not possible to model them completely physically in order to implement the required
monitoring functions on this basis. Consequently, data-driven modeling using machine
learning algorithms is used to automatically monitor the process and the machine.

Machine learning is a branch of artificial intelligence that is widely used in business,
medicine, industry and other fields [5]. Machine learning methods can be used to identify
complex relationships in existing data sets that cannot be captured by “handcrafted”
rules [6]. The machine learning algorithm used in this work is random forest (see, e.g., [7]).
In so-called supervised learning methods like random forest, a training data set is used
to model the relationship between attributes (also termed "features" or "variables") of
considered objects and a defined target variable. The resulting model can then be used to
determine the target value for new or unseen objects [5]. Random forests can be used for
both classification (i.e., discrete target variables) and for regression (i.e., continuous target
variables) [7].

Flow forming has been the subject of various studies, many of which have focused
on modeling the relationships between process input parameters and the geometry of
the finished workpieces (see Section 2.4). To the author’s knowledge, however, there is
no literature describing approaches to data-driven monitoring of flow-forming processes
to date. Furthermore, in the literature on the monitoring of other machine processing
operations, prediction of process input variables is a rarely considered topic and the time
series data used are mostly one-dimensional, which leaves possible potentials such as
monitoring the machine using multiple sensors unaddressed.

The work at hand addresses these research gaps and proposes an approach for the ac-
quisition and processing of sensor (and other) data as well as for the generation of machine
learning models that predict process input variables using this data. The contributions of
this work can be summarized as follows:

• Demonstration of the feasibility of utilizing machine learning and sensor data to
monitor flow-forming processes.

• Development of a practical approach to monitor flow-forming processes. The approach
includes an experimental design capable of providing the necessary data, as well
as a procedure for preprocessing the data and extracting features that capture the
information needed by the machine learning models to detect defects in the blank and
the machine.

• Development of a feature extraction algorithm for multivariate time series classi-
fication, derived from the state-of-the-art algorithm r-STSF (see [8]), incorporating
extensions for multivariate time series and metric target variables.

2. Related Work
2.1. Condition-Based Maintenance

Over time, machinery equipment suffers from wear and tear, which can lead to
failures [9]. In many cases, e.g., because of safety risks or reduced productivity, such failures
are unacceptable. Therefore, attempts are often made to prevent these failures through
preventive maintenance measures [9]. In addition to the comparatively uneconomical
approach of performing maintenance measures on the basis of a fixed schedule (calendar-
based maintenance), there is condition-based maintenance or CBM for this purpose [9]. The
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aim of CBM is to monitor the condition of a machine by collecting data about it (condition
monitoring or CM) and, based on this, to enable and carry out needs-oriented maintenance
measures [9].

A variety of machine learning algorithms have been used for condition monitoring
in manufacturing. Among others, commonly used are SVMs (see, e.g., [10–13]), artificial
neural networks (see, e.g., [10,11,14]) and random forests (see, e.g., [10,13,15]). Comparisons
of several of these algorithms in different condition monitoring applications are conducted
in [14] (detection of faulty cycles of a cutting machine), [10] (classification of defects in
ball bearings), [15] (detection of defects in robot arms) and [12] (classification of defects in
vehicle transmissions). They show that, in this field, the results obtained with different
learning algorithms usually differ only slightly, so that the choice of algorithm is not a
high priority.

2.2. Data Acquisition

To obtain data for the training of machine learning models, data from production
operations (see [15,16]) as well as from experiments conducted specifically for this purpose
can be used. When conducting experiments, the Design of Experiments (DoE) methodology
can be used to increase the effectiveness of individual experiments in order to reduce the
number of experiments required, thus saving time and reducing costs [17]. Consequently,
DoE is an integral part of the guideline for the development of monitoring systems for
machining processes described in [17]. However, in practice, instead of using DoE, in
practice, experiments are also often performed by testing the defects or unacceptable
conditions one at a time in one or more experiments (see, e.g., [12,18]) or by running
manufacturing processes until a defect occurs. The latter approach is used in cases such
as [19,20], where the aim is to detect different stages of wear, and also in cases such as [21,22],
where the run-to-failure data are used to predict the remaining time until a component
breaks (Remaining Useful Life, RUL).

2.3. Sensors

The sensors used to monitor manufacturing processes can be of various types. These
include, but are not limited to force, vibration, current and acoustic emission sensors [17].
Figure 5 shows an overview of the most common sensor technologies used in condition
monitoring of manufacturing tools (Tool Condition Monitoring). Force sensors are particu-
larly common [17,23]. The works [17] (machining), [24] (machining), and [23] (milling) deal
with the different types of sensors, their advantages and disadvantages and their respective
applications. In [13], a comparison is made of the accuracy achievable with different sensors
individually, as well as with sensor fusion (feature set assembled from the signals of all
sensors [13]), when classifying defects on the tools of an ultrasonic metal welder.

Figure 5. Commonly used sensor techniques in Tool Condition Monitoring. Sensor techniques used
in the common work are marked in green; sensor techniques used indirectly or in a similar way are
marked in yellow (Adapted from [24]).
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2.4. Monitoring Flow forming Processes

While the monitoring of other manufacturing processes has been extensively studied
in the literature, little work exists to date on the monitoring of flow-forming processes and,
more generally, incremental rotary forming processes. This is also noted in [2,4]. To the
author’s knowledge, there is currently no literature on data-driven process or condition
monitoring of flow-forming processes (including CBM, TCM and Predictive Maintenance),
particularly using machine learning-based methods.

Papers [2,4] lay some groundwork in this area by investigating correlations between
intentionally provoked process failures and changes in sensor data (acoustic, vibration,
ultrasonic) recorded during the processes. The goal here is to evaluate the potential of
different approaches to monitoring flow-forming processes and incremental rotary forming
processes [4], but not to implement data-driven condition monitoring.

Furthermore, there are several works that deal with predicting the geometry of the
finished workpiece based on the process input parameters such as the machine settings.
For instance, in [3], linear and quadratic models are used to predict ovality based on roller
feed, spindle speed, and radius of the roller. In [25,26], the researchers train artificial neural
networks to predict various geometry variables based on process inputs and compare
them with linear models, with the neural networks producing significantly better results in
both cases. Both [25,26] also attempt to optimize the process input parameters to induce
a desired geometry in the finished part. In [25], this is achieved using particle swarm
optimization and composite desirability, while in [26], the authors trained neural networks
to approximate the input parameters necessary for a desired geometry. An approach
developed in [27] allows for manipulation of the forming process during its execution to
achieve a desired geometry. For this purpose, physical models, a laser to measure wall
thickness, and a sensor for indirect estimation of material properties are used. Analyses
of the relationships between the process input parameters and the forces acting during
flow-forming processes can be found in [28–30].

3. Materials and Methods
3.1. Experimental Setup

The data for the training and evaluation of the machine learning models are generated
in experiments, which are carried out on the VSTR 400-3S (see Figure 6). The VSTR
400-3S is a machine that was built and specially modified for these experiments by WF
Maschinenbau. It uses a rotating spindle and three mechanically guided rollers to form
gear components with up to 400 mm in diameter. This process is called a flow-forming
process [3] and is controlled by a CNC (Computerized Numerical Control) program, which
contains the commands to operate the machine. The same CNC program is executed in
all the experiments. Thus, the CNC program defines the example flow-forming process
under study.

Multiple sensors installed in the machine collect several types of data during the
forming process, such as pressure, vibration and temperature data. Figure 7 shows an
example of a pressure sensor that measures the pressure on one side of a hydraulic oil
cylinder. A complete list of all relevant sensors and signals can be found in Appendix A.
Process monitoring using sensors is particularly challenging in flow-forming processes,
mainly because both the workpiece and the processing tools, i.e., the rollers, rotate, making
it impossible to place, for example, a vibration sensor directly at the site of deformation
impossible. This is different to most other Tool Condition Monitoring applications, which
typically involve a tool and a workpiece with one of them moving while the other is
stationary and can be used to mount these sensors on. Additionally, in flow-forming
processes, the area of contact between the tool and the workpiece is constantly moving
and can change shape during the process, exacerbating the problem [4]. Because of these
constraints, setups, like those, for example, in [31], who placed a vibration sensor directly
on the tool to monitor turning operations, or in [32], who integrated a force sensor into a
shear-cutting tool, cannot be implemented. The same applies to the approach of mounting
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the workpiece on the force sensor, as is carried out, for example, in [33] on a milling machine.
Instead, to monitor flow-forming processes, sensors such as vibration sensors need to be
placed further away from the source of the signal, which is a detrimental because this way,
the system suffers more from noise introduced by vibrating components as well as loss
of signal strength between components, both of which increase as the distance between
the site of deformation and the sensor increases [4]. On the VSTR 400-3S, the tailstock
traverse (common support beam for all three rollers) and the spindle bearing were chosen
as locations for the vibration sensors with reasonable proximity to the deformation site,
but without the need for significant modifications to the machine. The in-process forces
applied to the workpieces are approximated using the pressures measured at the hydraulic
oil cylinders and the physical model of the machine. A total of ten pressure sensors are
used, one on each of the two sides of the hydraulic oil cylinders for the three mechanically
guided rollers and the spindle, as well as one each for the hydraulic oil cylinders of the
tailstock traverse and the ejector.

Figure 6. Front side of the VSTR 400-3S.

The sensor data are supplemented by the programmable logic controller (PLC), i.e., the
control unit of the machine, with additional values such as position data of the rollers. The
PLC, a Simatic S7 from Siemens, on the one hand, controls the movements of the machine
by translating the CNC program into precise machine commands and sending them to
the machine. On the other hand, it monitors the sensors and stores their signals at regular
intervals. Since not all signals are recorded at the same sampling rate, interpolation of
intermediate values is required for the signals with slower sampling rates. For this purpose,
Akima splines are used, which is a mathematical method for fitting a “soft” and “natural”
curve through a given set of data points [34].
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Figure 7. Sensor for measuring the pressure on one side of a hydraulic oil cylinder. A total of ten
sensors of this type are installed in the machine. These are distributed on each of the two sides of the
hydraulic oil cylinders of the three mechanically guided rollers and the spindle as well as one each
for the hydraulic oil cylinders of the tailstock traverse and the ejector.

3.2. Experiments

Two series of experiments are carried out, both designed using DoE. These experimen-
tal designs determine the variation of influencing factors, such as a defect in the machine
or a changed geometry of the blank for the individual experiments. In this way, changes in
the forming process are provoked that the machine learning models will later be supposed
to detect in the sensor data.

In the course of the experimental series, a total of ten factors (influencing variables) of
the forming process, selected by the process experts at WF Maschinenbau, are varied. These
include eight blank parameters, which are set by preparing the blanks, and two machine
parameters, which can be set by making changes to the machine. The following parameters
are investigated in the experiments:

1. Diameter of the blank;
2. Thickness of the blank;
3. Irregular diameter reduction in the blank by grinding (see Figure 8);
4. Local thickness reduction in the blank by grinding (see Figure 9);
5. Alloy from which the blank is made;
6. Deviation of the center of the hole from the center of the blank (see Figure 10);
7. A defined deformation of the blank where the blank is not completely flat (see

Figure 11);
8. Straight piece milled from the blank (see Figure 12);
9. Flow rate of the cooling liquid;
10. Damage to one of the processing rollers by grinding (see Figure 13).

For all factors (except the alloy of the blank, where two different alloys were tested,
which have different properties, while both being feasible for the process), there is an ideal
or nominal value defined by the process experts. The deviations from these nominal values
generated by preparation or configuration simulate causes for suboptimal process results
occurring in practice.
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Figure 8. Metal blank with by grinding irregularly reduced diameter (change in influencing factor 3).

Figure 9. Metal blank with by grinding locally reduced thickness (change in influencing factor 4).

Figure 10. Metal blank with a hole of which the center deviates from the center of the blank (change
in influencing factor 6).
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Figure 11. Metal blank with a defined deformation where the blank is not completely flat (change in
influencing factor 7).

Figure 12. Metal blank with straight piece milled from it (change in influencing factor 8).
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Figure 13. Roller that was damaged by grinding (change in influencing factor 10).

3.3. Experimental Design I

The plan for the first series of experiments is based on a two-level experimental design,
i.e., each factor is tested on two settings or levels, with 16 experiments. The plan is con-
structed according to the method of Plackett and Burman and extended to 32 experiments
by a foldover. This foldover, which is a plain copy of the original experimental design with
simultaneous inversion, increases the resolution of the experimental design from level III
to level IV [35]. This means that the main effects are much less aliased and the design is
suitable for determining main effects reliably [35]. The primary purpose of this experimen-
tal design is to screen the factors. It provides a basis for the pre-selection of factors for the
second series of experiments, in which these factors are examined with a higher number of
experiments. The two levels examined per factor correspond to the respective minimum
and maximum values for the numerical factors. This results in large distances between the
tested levels, which is particularly advantageous in early investigation phases [35]. The
factor of the alloy of the blank is set to two alloys common for the produced component.
The remaining factors are binary and each has a defective and a non-defective setting.

Additionally, the experimental design includes six so-called reference points, resulting
in a total of 39 experiments for this experimental design. Reference points are experiments
that have identical factor settings corresponding to the nominal values and thus represent
the reference process. Due to the identical factor settings, these experiments allow the ex-
perimental system to be monitored for changes over time [35] and to estimate experimental
dispersion [35].

The order of the experiments is generally randomized to avoid systematic errors
(see [35]). Deviating from this, the sequence contains later adjustments that minimize the
setting changes of the two factors which are concerned with the condition of the machine,
i.e., factors no. 9 and 10. These adjustments are necessary due to the high effort of the
setting changes of these factors.

3.4. Experimental Design II

The second experimental design contains six of the original ten factors, no. 1, 2, 6, 7, 9
and 10. The main criteria for this selection decision, made in consultation with the process
experts, are the expected practical relevance of the individual factors and their influence on
the forming process observed in the first series of experiments.

Experimental design II is composed of a single-factor foldover (copy of the experimen-
tal design with inversion of one of the factors [36]) of experimental design I (32 experiments),
an adapted face-centered central-composite design (22 experiments), “single-defect experi-
ments” (13 experiments), additional random experiments (16 experiments), and reference
experiments (10 experiments). A total of 93 experiments are performed in the second series
of experiments.
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With the help of the single-factor foldover, the alias chains between two-factor in-
teractions remaining after the first foldover in experimental design I are eliminated. The
Central-Composite-Design contains eleven experiments and includes the factors 1, 2 and
6, while the remaining factors remain in the nominal state. This decision is based on
the screening of the factors in the first series of experiments. The blank for the central
point experiment is prepared to a diameter of 200 mm (for practical reasons this slightly
different value is used instead of the correct mean value for the diameter, 199 mm), a
thickness of 7.25 mm and a displacement of the hole of 2.5 mm. Since the two-levelled
part of the experimental design already exhausts the minimum and maximum limits of
the factors, a face-centered central composite design is used. In addition, for the two
factors diameter and thickness, further points are added between the respective star points
and the central point, so that the factor space is sampled even more tightly in these two
dimensions using five levels each. All experiments of the face-centered central composite
design are repeated twice each. Ten additional experiments serve as reference points.
Furthermore, there are 13 single-defect experiments, i.e., experiments that deviate from the
nominal values in only a single factor, thus posing a special challenge for models for target
variable-independent detection of deviations from the nominal process. The remaining
16 experiments are randomized experiments in which the factor settings are generated
entirely by a pseudorandom number generator. Experimental design II is also randomized
as far as possible.

3.5. Training Pipeline and Test Pipeline

The individual steps of preprocessing and model training are embedded in two
pipelines, i.e., defined processing sequences—one for training the models and one for
evaluating new data or test data. Each data point represents a single experiment. To avoid
data leaks, training and test data are separated as early as possible and all processing
steps are performed separately on the partial data sets. The evaluation method used in the
present work is repeated k-fold cross-validation, so that the training pipeline is used for
the k training data sets and the test pipeline is used for the k evaluation data sets created in
each repetition of the cross-validation. However, the pipelines are designed to be agnostic
to the sampling method, so other methods such as hold-out sampling or cross-validation
could also be used with these pipelines.

The training pipeline consists of the steps initial data preparation, generation of
additional “hand crafted” time series variables, a feature extraction for multivariate time
series, feature selection, and model generation and model selection. In the first step of the
training, the data are cleaned and transformations of time series variables are performed
(see Section 3.5.1). This is followed by the construction of additional time series variables
that are assumed to be able to support the predictions of the models (see Section 3.5.2). After
this, interval features are generated on all time series variables using the feature extraction
algorithm developed later in Section 3.5.3 for multivariate time series, STSFG. The set of
interval features is then reduced using Recursive Feature Elimination (see Section 3.5.4).
Lastly, a grid search is performed on the resulting feature set, in which the hyperparameters
of the random forest algorithm are optimized. The left side of Figure 14 illustrates the flow
of this pipeline.

The test pipeline flows in a generally similar way as the training pipeline. First, the
data are cleaned and transformed. Then, the defined time series variables are generated and
added to the data set. In contrast to the training pipeline, where STSFG feature extraction
followed by feature selection is performed next, the next step here is generating interval
features, but only considering those features selected during the training pipeline’s feature
selection. The final step is to evaluate the final random forest model on the test data. The
final model is trained on the complete training data set and its hyperparameter settings
correspond to the result of the grid search of the training pipeline. The right side of
Figure 14 visualizes the flow of the test pipeline.
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Figure 14. Training pipeline (left) and test pipeline (right). The training pipeline is used for the k
training data sets and the test pipeline is used for the k evaluation data sets created in each repetition
of the cross-validation. The different coloured dots represent the different features passing through
the pipeline.

3.5.1. Data Cleaning and Transformations of Time Series Variables

In order to improve the data quality and to prepare the data for the machine learning
algorithms, several data cleaning and transformation operations are performed on the time
series variables:

• Extraction of in-process data: The raw data set of each experimental series consists of
the continuous time series of all the time series variables over the complete course of
the experimental series, including the time between experiments. Using the position
data of the rollers, the data recorded during the actual forming processes are separated
from the data recorded while the machine is idle. The latter are discarded.

• Removal of empty runs: If the CNC program is executed without a blank being
inserted (which sometimes needs to be carried out for different reasons), the corre-
sponding data are discarded.

• Removal of not useful time series variables: Some of the time series variables supplied
by the PLC are redundant. These are discarded.

• One hot encoding: Some of the time series variables supplied by the PLC are nominal
scaled. These are transformed using one-hot encoding.

• Imputation of missing data points: Missing data points are imputed using LASSO
(Least Absolute Shrinkage and Selection Operator, see [37]) regression.

• Merging the data from the PLC with the DoE data: The time series data supplied by the
PLC are merged with the corresponding influencing variables from the experimental
design. For this purpose, a consecutive process counter from the PLC data and the
experiment number from the experimental design are used. The assignment between
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the process counter and the associated experiment number is documented while the
experiments are carried out.

3.5.2. Engineering of Additional Time Series Variables

Several quotient features, i.e., features that are constructed as the quotient of other
features, are constructed manually and added to the data set. This is particularly useful
because the machine learning algorithm used in this work, random forest, is known to
show bad performance at modeling these types of features [38].

QuotientPressureAxisX1 =
PressureAxisX1SideA
PressureAxisX1SideB

(1)

QuotientPressureAxisX2 =
PressureAxisX2SideA
PressureAxisX2SideB

(2)

QuotientPressureAxisX3 =
PressureAxisX3SideA
PressureAxisX3SideB

(3)

QuotientPressureAxisZ1 =
PressureAxisZ1SideA
PressureAxisZ1SideB

(4)

3.5.3. Feature Extraction Using the Methodology of the Randomized-Supervised Time
Series Forest

Due to the multisensor approach and the various variables added by the machine’s
PLC as well as the engineered time series variables, each forming process is represented
by a multivariate time series. The direct use of such a data set for machine learning
is not reasonable due to the high dimensionality (in the present application, there are
over 30,000 dimensions when using each measurement point of each time series variable
as a single dimension) and the strong correlations between dimensions [17]. Moreover,
such a view of the data ignores its time series nature, i.e., the fact that the data points
have a defined temporal sequence. To reduce this high number of dimensions and to
capture the temporal characteristics of the data, a feature extraction algorithm based on the
randomized-Supervised Time Series Forest (r-STSF) is implemented.

The r-STSF is a machine learning algorithm for time series data described in [8] as an
advanced successor of the Time Series Forest [39] and the Supervised Time Series Forest [40].
In the area of time series classification, the r-STSF achieves the state-of-the-art performance
of complex and computationally expensive algorithms such as HIVE-COTE (Hierarchical
Vote Collective of Transformation-Based Ensembles, see [41]) while being several orders of
magnitude faster [8]. A feature extraction algorithm, which generates a pool of interval
features from a set of time series data, is a key aspect of r-STSF.

The features generated by this feature extraction algorithm are interval features, i.e.,
features which are calculated by applying an aggregation function, such as the mean or the
standard deviation on a consecutive subset of the values of a time series. Interval features
are robust to shifts of the time series on the time axis and are able to capture the temporal
characteristics of the data. Also, they are quick to calculate and intuitively interpretable.
Intervall features can be calculated on the raw time series data as it is, but just as well on
other time series representations, i.e., transformed versions of the time series. The feature
extraction algorithm of r-STSF uses four time series representations, the raw time series,
the frequency domain representation (calculated with discrete Fourier transformation), a
derivative representation (first order difference of the time series) and an autoregressive
representation (autoregression coefficients).

Algorithmically, the feature extraction is based on a recursive search for suitable
interval features on successively restricted intervals within the time axis of the data set.
The time series of the training data set are first divided into a left subset and a right subset
at a randomly chosen point. Both subsets are then recursively subdivided randomly again
and again until no further subdivision is possible. In each iteration of this recursion, a
selected aggregation function, such as the arithmetic mean or the standard deviation, is
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applied to both subsets created during the subdivision, and the resulting interval feature is
rated. As an estimation of the usefulness of each given interval feature for the classification
task, the Fisher score (see [42]) is used as the metric for this rating. Of two interval features
created at one devision, only the feature with the better score is included in the feature
pool, and the recursion is continued only for the interval whose feature has the better score.
This procedure is repeated for the chosen sets of aggregation functions and time series
representations.

Due to the promising quality of the features for the reasons mentioned above as well
as the speed of computation, this method is used as a basis for the feature extraction
algorithm implemented in the present work, hereafter called Supervised Time Series
Feature Generation or STSFG. Speed is an important criterion especially because of the
large number of time series variables. By implementing the feature extraction functionality
autonomously (instead of using the complete r-STSF algorithm), the following advantages
are achieved:

• A feature selection can be incorporated between the feature extraction and the training
of models on the generated features (see Figure 14).

• The Extra Tree algorithm is an integral part of the r-STSF as defined by [8]. By detaching
the feature extraction functionality from the rest of r-STSF, it becomes possible to train
arbitrary other machine learning algorithms on the generated features.

• In addition to the choice of learning algorithm, the choice of libraries and implementa-
tions used for it is also open (Cabello et al. [8] use the Python library sklearn). In the
present work, the machine learning platform H2O is used to train the models.

Furthermore, the implemented STSFG algorithm integrates modifications and exten-
sions to handle multivariate time series and metric target variables. Multivariate time series
are not considered in [39,40], or [8], although such extensions are held out in prospect for
future work in the latter two cases. The algorithm implemented here handles multivariate
time series by using an additional loop over all time series variables and accumulating all
the resulting features in the feature pool.

Due to the fact that some of the target variables to be predicted in the given application
are metrically scaled, there is a need to be able to perform feature extraction for such
target variables as well. Since the Fisher score proposed in [8,40] is only defined for
classifications, Kendall’s tau is used instead. As a rank correlation coefficient, Kendall’s
Tau is nonparametric, robust to outliers [43], and can also detect nonlinear correlations
as long as they are monotonic [35]. Compared to Spearman’s Rho, it is more robust and
efficient [43].

The STSFG algorithm is implemented entirely in R. The pseudocode in Algorithms 1
and 2 describes the implementation, omitting certain implementation details for clarity, but
without changing the logic of the algorithm.

In addition to the raw time series data, the derivative representation and the frequency
domain representation are used. The autoregressive representation is not included yet but
could be added without further modifications to the algorithm. Figure 15 illustrates
different time series representations of the variable VibrationS1, which represents the
strength of vibration at the spindle of the machine during the forming process. The
aggregation functions used are the maximum and sum for binary features and the arithmetic
mean, standard deviation, maximum, and root mean square (RMS) for metric features. The
standard deviation is extended according to [39] so that it is also defined for intervals with
only one element, in which case it is set to zero.

The STSFG algorithm has only one parameter, stsfgr, which is the number of repetitions
performed. Cabello et al. [8] investigate this parameter’s influence in the r-STSF (called
d there) and ultimately recommend setting it to 50 by default [8]. However, since in the
STSFG the whole algorithm is additionally repeated for all time series variables, a parameter
setting of stsfgr = 50 leads to extremely long run times and feature sets that are no longer
manageable due to their size. Therefore, the value stsfgr = 5 is used here instead.
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Algorithm 1: Supervised Time Series Feature Generation: Repeated iteration
over all time series variables and time series representations.

Input: X: Set of |I| time series with |P|measuring points und |V| variables; y:
Vector of labels of the |I| time series; A: Set of aggregation functions; fr:
Rating function for features; nrepeats: Number of repetitions (d in [8])

F ← ∅ ;
foreach time_series_representation do

Ψ← ConvertRepresentation(X; time_series_representation) ;
foreach i = 1, . . . , nrepeats do

foreach a ∈ A do
foreach v ∈ V do

u← CreateSeparationPoint(|P|) ;
ΨL ← Ψ(I; v; 1, . . . , u− 1) ;
ΨR ← Ψ(I; v; u, . . . , |P|) ;
IntervalSearch(ΨL; y; A; fr; F) ;
IntervalSearch(ΨR; y; A; fr; F) ;

end
end

end
end
return F ;

Algorithm 2: IntervalSearch : Generation of interval features on a time series
variable in a time series representation.

Input: Ψv: Set of |I| time series of a variable v in an arbitrary time series
representation with |P′| values; y: Vector of labels of the |I| time series; a:
Aggregation function; fr: Rating function for features; F: List of already
added features

s← 1 ;
e← |P′| ;
while s < e do

u← CreateSeparationPoint(|P|) ;
ΨL ← Ψ(I; s, . . . , u− 1) ;
ΨR ← Ψ(I; u, . . . , e) ;
fL ← a(ΨL) ;
fR ← a(ΨR) ;
scoreL ← fr( fL; y; F) ;
scoreR ← fr( fR; y; F) ;
if scoreL ≥ scoreR then

F ← F ∪ fL ;
e← u− 1 ;

else
F ← F ∪ fR ;
s← u ;

end
end
return F ;
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Figure 15. Vibrations of the spindle on three different time series representations. For a subset of the
experiments, the figures show the strength of the vibration at the spindle (without unit) over time as
raw time series data (a), in the time series representation of the derivatives (b) and at the frequency
level (c). Each line represents a single experiment and the color of a time series depicts the diameter
of the blank used. The sensor outputs values on a sensor-specific unitless scale, hence no labels are
given on the y-axis.

3.5.4. Feature Selection Using Recursive Feature Elimination

The feature sets obtained from feature extraction are very large, usually several thou-
sand features, and also suboptimal in terms of redundancy and relevance. This is primarily
due to the fact that the time series variables on which the feature extraction is based al-
ready contain redundancy and many are only slightly relevant or not relevant at all for
the individual target variables. Therefore, the next step in the preprocessing procedure is
feature selection. In this step, the previously extracted set of features is reduced to a subset
with as little redundancy and as high relevance as possible. This is intended to achieve:
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• Improvement of the predictive ability of machine learning models trained on the
resulting feature set. The experiments of [7] suggest that this is also possible for
random forests, which are generally considered to be robust against irrelevant features.

• Minimization of the required sensors.
• Simplification of the models and thus improvement of their interpretability.
• Reduction in the time required to train the machine learning models.
• Reduction in the time required for the evaluation of new observations. This is particu-

larly relevant for a possible live monitoring of the forming processes, where the time
available for an evaluation of new data is limited.

For feature selection, a Recursive Feature Elimination (RFE) algorithm is implemented,
which recursively trains random forest models and computes the permutation importance
of the features to drop the least relevant ones. The comparison of the feature sets and the
final selection of the best feature set is carried out using the out-of-bag errors of the random
forests. The programming language used is R. For the model training and the calculation
of permutation importances, functions of the software H2O are called.

RFE algorithms can be used effectively against both redundant and irrelevant features
within a data set. Moreover, as, for example [44,45] show, they are also suitable for cases
where the number of features is in the four-digit range or above and far exceeds the number
of observations. However, the results of [45,46] also suggest that not too many features
should be removed at once. In this way, the computational effort for the RFE increases, but
this is less significant due to the rather small number of observations in the present use
case—especially since the subsequent generation of the machine learning models (including
the hyperparameter optimizations) is, in turn, considerably accelerated by the reduced
number of features.

The parameter rferperc
determines how many features are to be removed per iteration

of the RFE. For this parameter, the settings used in the literature differ widely. While
in [47], only a single feature is removed per iteration (the simultaneous removal of multiple
features is, however, mentioned as a possible option, see [47]), in other cases, up to 50 %
of features are removed from the data set per RFE iteration (see, e.g., [44,46]). To keep the
aforementioned risks of simultaneously eliminating too many features, a rather low value
of rferperc

= 5% is used here.
The parameters of the random forests only have small influence on the RFE [44,46]

and care should only be taken that rfentree
is large enough for the metrics considered to

stabilize sufficiently [46]. Therefore, these parameters are assigned default values from the
literature.

3.5.5. Model Generation and Selection

In order to monitor the forming processes and the condition of the machine, machine
learning models are trained that take all data gathered during a forming process as input
to predict the influencing factors of this process. In principle, arbitrary machine learning
models can be trained on the feature sets generated with STSFG and RFE. However, as,
e.g., shown by the experiments in [47], the selection of the machine learning algorithm
has far less impact on the predictive ability of the trained models than the quality of the
features. Various works in the field of data-driven condition monitoring also suggest that
the selection of the learning algorithm has a comparatively low relevance in the present
use case (see Section 2.1). Therefore, only random forests are used here for the prediction of
the influence variables. The main reasons for choosing the random forest algorithm are
as follows:
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• Random forests usually have a good predictive ability, which depends only little on
the settings of the hyperparameters.

• Due to the small size of the training data set and the high number of dimensions, there
is a high risk of generating overfitted models. Random forests are largely immune
to this.

• The RFE algorithm used also employs random forests. Thus, the selected feature set is
to some extent tuned for random forests.

According to the recommendation of [8], the trees of the random forests are trained
with the Extra Tree algorithm. To optimize the parameter mtry, a grid search is employed in
each run of the training pipeline (following the recommendation of [7], five values between
2 and the number of features are tested at even intervals). The number of trees ntree is set to
2000 for all of the random forests. To generate the random forest models, functions of H2O
are called.

4. Results
4.1. Evaluation Method

The methodology presented on Figure 14 is evaluated for all six of the factors present
in experimental design II. In order to obtain estimators for the respective generalization
errors that are as unbiased as possible, repeated k-fold cross-validation is used as the
validation method. k is set to k = 10, following the recommendation of [48]. The number of
repetitions is set to 5, which is comparatively small, to keep the total running time within
acceptable limits. This is necessary because both feature extraction and feature selection
are extremely computationally expensive and the entire procedure is to be evaluated for
the six target variables. To avoid bias in the error estimates obtained with cross-validation,
the whole process from initial preprocessing of time series variables to model generation
and selection is repeated in its entirety for each partitioning within the cross-validation
procedure. Without this, the supervised feature extraction, STSFG, as well as the feature
selection with RFE would introduce a selection bias to the error estimation [46].

The parameters of RFE and STSFG are not optimized here, but are given default values
(see Sections 3.5.3 and 3.5.4). Table 1 summarizes the parameter settings used for the RFE,
STSFG and the not optimized parameters of the random forests.

Table 1. Parameters of the STSFG, the RFE and the random forests.

Parameter Description Value

stsfgr Repetitions of the STSFG 5

rfeperc Proportion of features removed in each RFE iteration 10%
rfentree

Number of trees of the random forests trained in the RFE 1000

rfemtry

Number of randomly selected features at each node of the
random forests built in the RFE

√
m, m

3

ntree Number of trees of the random forests 2000

4.2. Evaluation of Regression Models

For the regression models, the metrics RMSE, MAE, and q2 are given. According
to [49], q2 is calculated from the MSE of the prediction and “SS, the sum of squares of the
differences between observed values [. . . ] and their mean [. . . ]” in the validation data with

q2 = 1− MSE
SS

= 1− ∑N
i=1(ŷi − yi)

2

∑N
i=1(yi − ȳ)2

(5)

Here, y is the vector of target variable values from the validation data, ȳ is their mean,
and ŷ is the vector of predictions for y. q2, unlike RMSE and MAE, does not have a unit,
which is why it is useful as a metric to compare the results for different target variables.
According to Equation (5), q2 = 0 corresponds to a model that always predicts the target
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variable’s mean from the validation data, and q2 = 1 corresponds to a model that makes
perfect predictions and therefore has an MSE of 0.

For each of the metric target variables, Table 2 contains the estimate of the generaliza-
tion error determined by cross-validation. In addition to the metrics RMSE, MAE and q2,
the standard deviation of each metric is given as a comparison value.

The cross-validation RMSE is substantially below the respective standard deviation
for all metric variables. Especially for factor 1 (diameter of the blank), a very low RMSE is
achieved in relation to the standard deviation, which also is reflected in the high q2-value
of 0.96. The models for factors 2 (thickness of the blank) and 6 (displaced hole in the blank)
have average q2 values of 0.85 and 0.61, respectively.

Table 2. For each target variable, the average RMSE, MAE, and q2 on the validation sets of the 10-fold
cross-validation with 3 replicates are given. Also given are the standard deviations of the variables,
which serve as reference values.

Target Variable Ø RMSE Ø MAE Ø
q2 Standard Deviation

influencing factor 1 (diameter of the
blank) 2.74 mm 1.57 mm 0.96 14.88 mm

influencing factor 2 (thickness of the
blank) 0.21 mm 0.13 mm 0.85 0.66 mm

influencing factor 6 (displaced hole in
the blank) 1.20 mm 0.86 mm 0.61 2.20 mm

4.3. Validation of Classification Models

For each of the binary target variables, Table 3 contains estimates of the generalization
error obtained by cross-validation. In particular, the metrics MCC (Matthews Correlation
Coefficient), F1, precision, recall and accuracy are shown in this table. Advantages of
the MCC are that it provides reliable results even in the presence of unbalanced class
distributions and that it is symmetric with respect to a swap of class definitions [50].

Among the classification models, a substantially higher accuracy is achieved for
factors 7 (defined deformation) and 10 (damaged roller) than for factor 9 (flow rate of
cooling liquid) in all metrics considered. The average MCC is 0.81 for factor 10, 0.76 for
factor 7 and 0.45 for factor 9.

Table 3. Evaluation of the models for the binary target variables. The average MCC, F1, precision,
recall and accuracy values on the validation sets of the 10-fold cross-validation with 3 repetitions
are given.

Target Variable Ø MCC Ø F1 Ø Precision Ø Recall Ø Accuracy

influencing factor 7
(defined deformation) 0.76 0.89 0.81 0.92 0.91

influencing factor 10
(damaged roller) 0.81 0.87 0.82 0.94 0.93

influencing factor 9 (flow
rate of cooling liquid) 0.45 0.72 0.66 0.82 0.72

4.4. Dimensionality Reduction

Over 16,000 of features are generated by the STSFG per target variable. Using the RFE,
these large feature sets are reduced to less than 40 features on average. Table 4 shows, for
each of the target variables, the average number of features before and after the RFE, as
well as the percentages by which the feature sets are reduced on average.
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Table 4. Evaluation of the dimensionality reduction by the RFE.

Target Variable Ø Feature Count
after STSFG

Ø Feature Count
after RFE Reduction

Influencing factor 1
(diameter of the blank) 16, 719.7 21.1 99.87%

Influencing factor 2
(thickness of the blank) 17, 113.3 33.0 99.81%

Influencing factor 6
(displaced hole in the blank) 16, 787.8 18.6 99.89%

Influencingfactor 7 (defined
deformation) 16, 541.4 37.2 99.78%

Influencing factor 9 (flow
rate of cooling liquid) 9294.3 30.0 99.68%

Influencing factor 10
(damaged roller) 16, 329.6 12.7 99.92%

5. Discussion

The analysis of the state of research has shown that the data-driven monitoring of
flow-forming processes has so far been a research gap. While similar manufacturing
processes have been already well researched in this respect, it has not been clear whether
such monitoring can be implemented for flow-forming processes, which are considered
to be very complex. Therefore, one of the key findings of this work is that it is possible
to detect unacceptable conditions in flow-forming processes using data-driven condition
monitoring based on sensor data. Another finding is that the methodology used in the
present work, including the data acquisition with DoE and the data preprocessing, is a
promising way to approach such problems.

For companies using flow forming machines, this opens up the potential to optimise
production through the implementation of automated process monitoring systems. By
providing timely warnings, recommendations, or even halting the machine when necessary,
these systems can significantly reduce the risk of financial losses associated with defective
output and wasted material. Consequently, companies that manufacture these machines
can gain a competitive advantage by equipping their machines with data-driven automatic
monitoring capabilities, thereby providing their customers additional value.

The feature extraction method STSFG, which was derived from the r-STSF algorithm,
has proved to be a promising means for generating features from multidimensional time
series data in the present use case. Furthermore, it has been shown that a subsequent RFE
can massively reduce the number of features needed for a prediction, which, among other
things, reduces the training time and enables faster predictions. The latter is particularly
relevant in the context of live monitoring of the forming processes. Also, the combination
of STSFG and RFE may not only be useful for monitoring flow-forming processes. It stands
to reason that this approach for generating and selecting features from time series data may
also be an option to consider for monitoring other machines and processes.

Even apart from applications in the context of any kind of condition monitoring, to the
author’s knowledge, no work has yet been carried out that uses the still-very-young r-STSF
algorithm in any practical application. The present work contributes to filling this gap and
demonstrates the potential of this algorithm. The adaptation to multivariate time series
and regression problems also expands the possible application areas. The implementation
as a stand-alone feature extraction simplifies the integration into existing structures.

Nonetheless, the research conducted in the present work has several limitations
that warrant acknowledgment. Firstly, the methodology used is rather complex, which
may hinder reproducibility. Simplifying the methods could enhance accessibility and
facilitate broader application. Secondly, only one example flow-forming process was
examined, potentially limiting the generalizability of the findings to other instances of this
manufacturing technique. Additionally, the accuracy of the models may not be sufficient
depending on the specific application, highlighting the need for further validation in
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different contexts. Furthermore, as only specific defects were studied, it remains unclear
how other defects may influence model predictions or whether general fault detection is
feasible. Moreover, no satisfactory results were obtained for the influencing factors that
were dropped after the first series of experiments, and the results for influencing factor 9,
the flow rate of the cooling liquid, were less conclusive and require additional confirmation.

6. Future Work

While the present work fills research gaps, new research needs arise at the same time.
Flow-forming processes have opened up a new area of application for data-driven process
and machine monitoring. This offers various opportunities for further research. These
include, in particular, the investigation of other, possibly more complex, flow-forming
processes in order to examine to what extent the knowledge gained from the example
flow-forming process can be transferred to other processes. Furthermore, ways to improve
the prediction accuracy should be explored, e.g., by using a larger training data set or by
implementing and comparing it with other methodologies and algorithms. For example,
Cabello et al. [8] have already announced their own extension of r-STSF for multivari-
ate time series (see [8,40]), the accuracy and computational efficiency of which could be
compared to the approach used in the present work. Another approach to improve the
prediction accuracy could be the utilization of additional sensors. For example, in [4], an
ultrasonic monitoring system was demonstrated to be able to "to record changes in the
tool-workpiece contact area, detect internal fractures in the part, and measure the thickness
of parts spun in free air", although it had some limitations that may limit its practical
applicability.

In the present work, the parameters of the used feature extraction and feature selection
like stsfgr and rfeperc were assigned default settings and not investigated in more detail.
Optimization of these parameters as well as a sensitivity analysis may provide further
insight into the influence of the parameters here and further improve the predictive ability
of the models. A possible improvement of the prediction accuracy with the help of learning
algorithms other than Extra Trees should also be investigated. The same applies to the use
of the autoregressive time series representation and other aggregation functions not yet
adopted here from the r-STSF.

Beyond the mere monitoring of the current state, research into the prediction of
defects of the machine is also conceivable, e.g., to determine the time until a machine
component fails (“Remaining Useful Life” [21]). Such systems, which belong to the research
area “Predictive Maintenance”, require a more comprehensive data acquisition, since the
algorithms must be enabled to detect the development of a defect before it manifests
itself [51].

Lastly, further research is also needed with respect to the r-STSF and the STSFG
method derived from it in the present work. Future work can test these algorithms in other
application areas and further investigate their potential for different production processes
and for time series classification in general.
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The following abbreviations are used in this manuscript:

CBM Condition-based Maintenance
CM Condition Monitoring
CNC Computerized Numerical Control
DoE Design of Experiments
FEA Finite Element Analysis
HIVE-COTE Hierarchical Vote Collective of Transformation-Based Ensembles
LASSO Least Absolute Shrinkage and Selection Operator
MAE Mean Absolute Error
MCC Matthews Correlation Coefficient
PLC Programmable Logic Controller
r-STSF Randomized-Supervised Time Series Forest
RFE Recursive Feature Elimination
RMS Root Mean Square
RMSE Root Mean Square Error
RUL Remaining Useful Life
STSF Supervised Time Series Forest
STSFG Supervised Time Series Feature Generation
SVM Support Vector Machine
TCM Tool Condition Monitoring
TSF Time Series Forest

Appendix A

Table A1. List of relevant measured variables.

Component Measured Variable

spindle revolutions per minute
active current
active torque

active motor temperature
vibration

feed of spindle position
position error

pressure side A
pressure side B

feed of roller 1 position position error
pressure side A
pressure side b

force side A
force side B

bearing temperature
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Table A1. Cont.

Component Measured Variable

feed of roller 2 position
position error

pressure side A
pressure side b

force side A
force side B

bearing temperature

feed of roller 3 position
position error

pressure side A
pressure side b

force side A
force side B

bearing temperature

tailstock traverse pressure
temperature traverse bearing

force
vibration

ejector pressure
force

hydraulic power unit fill level
temperature

pressure

bearing lubrication spindle fill level
temperature

bearing lubrication tailstock traverse fill level
temperature
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