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Abstract: Cardiac auscultation is an essential part of physical examination and plays a key role in
the early diagnosis of many cardiovascular diseases. The analysis of phonocardiography (PCG)
recordings is generally based on the recognition of the main heart sounds, i.e., S1 and S2, which is
not a trivial task. This study proposes a method for an accurate recognition and localization of heart
sounds in Forcecardiography (FCG) recordings. FCG is a novel technique able to measure subsonic
vibrations and sounds via small force sensors placed onto a subject’s thorax, allowing continuous
cardio-respiratory monitoring. In this study, a template-matching technique based on normalized
cross-correlation was used to automatically recognize heart sounds in FCG signals recorded from
six healthy subjects at rest. Distinct templates were manually selected from each FCG recording and
used to separately localize S1 and S2 sounds, as well as S1–S2 pairs. A simultaneously recorded
electrocardiography (ECG) trace was used for performance evaluation. The results show that the
template matching approach proved capable of separately classifying S1 and S2 sounds in more
than 96% of all heartbeats. Linear regression, correlation, and Bland–Altman analyses showed that
inter-beat intervals were estimated with high accuracy. Indeed, the estimation error was confined
within 10 ms, with negligible impact on heart rate estimation. Heart rate variability (HRV) indices
were also computed and turned out to be almost comparable with those obtained from ECG. The
preliminary yet encouraging results of this study suggest that the template matching approach
based on normalized cross-correlation allows very accurate heart sounds localization and inter-beat
intervals estimation.

Keywords: heart sounds; forcecardiography; template matching; normalized cross-correlation; heart
rate variability

1. Introduction

Cardiac auscultation, i.e., listening to heart sounds via a stethoscope, has long been
practiced by physicians as an essential part of physical examination [1,2]. Several patholog-
ical conditions, such as valvular stenosis or regurgitation, abnormalities in heart rhythm, or
heart failure, may be detected via auscultation well before the appearance of any symptoms.
For this reason, the assessment of the heart sounds plays a key role in the early diagnosis
of many cardiovascular diseases (CVDs) [1–4].

The origin of the heart sounds has been identified in the motion of the heart valves, the
contraction and relaxation of the cardiac muscle, pressure variations in the heart cavities,
and the flow of blood through the heart and great vessels during the cardiac cycle. These
events cause mechanical vibrations that are transmitted to the chest surface, where they
can be heard. Generally, two physiological heart sounds can be auscultated from a healthy
adult. They mainly capture the high-frequency and high-amplitude vibrations produced
by the heart valves activity. Specifically, the first physiological heart sound, commonly
referred to as “S1”, is generated by the closure of the mitral and tricuspid valves and
the subsequent opening of the semilunar valves at the onset of ventricular systole, while
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the second physiological heart sound, commonly referred to as “S2”, is caused by the
closure of the aortic and pulmonary valves at the onset of ventricular diastole [1–6]. Most
of the information content of S1 and S2 is found at frequencies lower than 150 Hz [3].
Occasionally, additional heart sounds, due to low-pitch and low-intensity vibrations of
cardiac structures, can be heard. The third heart sound (S3) is attributed to vibrations of
the ventricular walls, which are produced by blood deceleration when the ventricles reach
their limit of distensibility at the end of rapid filling. S3 is commonly auscultated in young
people, but it could be a sign of different CVDs, such as heart failure, mitral stenosis, aortic
regurgitation and more, above the age of 40 years. The fourth heart sound (S4) is caused
by atrial contraction and blood flowing through the valvular orifice in late ventricular
diastole. The presence of S4 is usually associated with a severe pathological condition, such
as coronary artery disease, left ventricular hypertension, ischemic heart disease, etc. Apart
from S1, S2, S3 and S4, other acoustic phenomena originating from blood flow turbulences,
known as murmurs, can be auscultated. Pathological murmurs are very useful in detecting
valvular dysfunctions, like stenoses and regurgitations [1–6].

Despite its great diagnostic capability, cardiac auscultation is a qualitative examination,
which strongly depends on the hearing acuity and the expertise of the physician [1,3,4].
To overcome these limitations, some techniques have been proposed that apply frequency
shifts to heart sounds, in order to move their energy to a frequency band corresponding
to superior human ear sensitivity [7–9]. Phonocardiography (PCG) is the method of
recording the heart sounds by means of electronic stethoscopes. This technique retrieves
the diagnostic significance of cardiac auscultation while obviating the problem of the
subjectivity related to the human hearing sense. PCG enables not only the amplification,
digitization, storage, and visualization of the heart sounds, but also the recording of
vibrations that cannot be perceived by the human ear. A more effective discrimination
between physiological and pathological heart sounds, as well as between heart sounds and
murmurs, can be accomplished through the visual inspection of PCG signals, and different
types of murmurs can also be distinguished. In addition, information on the timing of the
heart sounds with respect to the cardiac cycle, as well as measurements of their intensity,
frequency, and duration, can be obtained from the analysis of PCG signals. The correlation
between variations of these parameters and different pathological conditions could be used
to provide a valuable aid in the diagnosis of many CVDs [2,3,6,10–16]. A challenging task
in PCG signals analysis is the localization of the heart sounds, especially S1 and S2. Because
stethoscopes are sensitive to environmental noises and other sounds from the human body
(e.g., respiratory sounds, lung sounds, rumbling of the stomach and intestine), denoising is
strongly required to improve the accuracy of heart sounds localization [10,17–21]. Several
techniques, such as short-time Fourier transform, fast Wavelet transform, tunable-Q Wavelet
transform, and S transform, have been used to accomplish this task [17–27]. Different
approaches have been proposed in the literature for heart sounds localization. Most of these
methods take advantage of simultaneous Electrocardiography (ECG) tracing as a reference
signal. However, in the last two decades, research has focused on the development of
automated algorithms that perform heart sounds localization without using any reference
signal. These tools can be essentially categorized into envelogram-based methods and
artificial intelligence-based methods [10,17–21]. Envelogram-based methods generally
extract an envelope from the PCG signal by using a Shannon energy operator [24,28,29], a
Hilbert transform [30–32], or a Teager–Kaiser energy operator [26], among others [33,34]. A
fixed or adaptive threshold is then applied to the envelope to locate the peaks, to therefore
identify the boundaries of the signal chunks corresponding to heart sounds. However, the
sole thresholding operation often fails to selectively detect peaks related to heart sounds.
Nevertheless, the great part of the envelogram-based methods is unable to discriminate S1
and S2 [23,26,29,32], or they need to consider additional criteria such as the typical duration
of systole and diastole, to distinguish them [22,24,28,31,33,34].
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On the other hand, the artificial intelligence-based methods extract many time-domain,
frequency-domain, or time-frequency-domain features from each PCG segment, which
are then used to train a classification model. Several machine learning or deep learning
algorithms, such as k-nearest neighbor, support vector machine, hidden Markov model,
decision tree, k-means clustering, logistic regression, and neural networks, have been im-
plemented to discriminate between S1, S2, S3, and S4 heart sounds, and also to distinguish
heart sounds from murmurs [25,27,35–43] and to recognize abnormal heart sounds [44,45].
Although they achieve high classification performance, artificial intelligence-based meth-
ods are far more complex than envelogram-based algorithms in terms of computational
burden and require the a priori knowledge of the heart sounds for labelling PCG segments
and training a classifier.

Recently, Forcecardiography (FCG) has been introduced as a novel, non-invasive
technique for cardio-respiratory monitoring [46–49]. FCG records the local forces induced
on the chest wall by the mechanical activity of the heart and lungs by means of piezoresistive
and piezoelectric force sensors, which have also been used to record sphygmic waves [50].
These sensors are equipped with dome-shaped mechanical couplers to ensure an efficient
transmission of the force from human tissues to the sensors active area [46,47]. The wide
bandwidth of FCG sensors allows them to monitor respiration [48], infrasonic cardiac
vibrations [46,49], and heart sounds, all simultaneously from a single contact point on the
chest [47]. This capability supports the accurate estimation of inter-breath and inter-beat
intervals [46–48], as well as cardiac time intervals, such as the pre-ejection period and
the left ventricular ejection time [51,52]. The infrasonic cardiac vibrations captured using
FCG can be divided in two components: a low-frequency component related to emptying
and filling of heart chambers, and a high-frequency component, related to the opening
and closure of heart valves, which also exhibits a very high similarity with accelerometric
Seismocardiography (SCG) signals [46,47]. The infrasonic FCG components have also
been shown to be affected by respiration, which causes both amplitude modulations and
morphology variations [48,52,53]. In [47], a morphological comparison was carried out that
confirmed the high similarity between PCG signals and the audible component of FCG
signals, both in terms of morphology and acoustic impression.

All measurements and analyses related to events of the cardiac cycle require a fun-
damental task, i.e., the localization of heartbeats. In cardio-mechanical signals, such as
PCG, SCG, and FCG, this task is usually performed with the support of a concurrent ECG
tracing, which, however, poses a limitation to the standalone application of these cardio-
mechanical monitoring techniques. To address this issue, a template matching algorithm
has been proposed for ECG-free heartbeat localization in cardio-mechanical signals [54,55].
A template is selected from the analyzed signal to capture the typical heartbeat morphology
and the algorithm evaluates the similarity between the template and the whole signal by
calculating the normalized cross-correlation (NCC) function. A high similarity between the
template and any signal chunk results in a local maximum of the NCC function, which is
assumed as heartbeat marker. The template matching algorithm has been tested on SCG
and Gyrocardiography signals from 29 healthy subjects and 100 patients with valvular
pathologies. The high accuracy achieved in heartbeat localization, as well as the high
correlation and negligible errors obtained in inter-beat intervals estimation, demonstrated
that the template matching approach is a very simple, effective, and robust solution for
continuous heart rate monitoring via a standalone cardio-mechanical approach. Moreover,
the feasibility of heart rate variability (HRV) analysis on the inter-beat intervals obtained
by using the ECG-free heartbeat localization method based on template matching was
investigated [56]. Many time-domain, frequency-domain, and non-linear HRV indices
were computed from the time series of these inter-beat intervals and resulted in very close
agreement with those provided by the reference ECG signals.
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In this study, the template matching algorithm described above was applied to the HS-
FCG signals of healthy subjects to investigate its suitability in localizing and discriminating
physiological S1 and S2 heart sounds without using any reference tracing. Then, the
temporal locations of S1 and S2 were considered for the estimation of inter-beat intervals.
Finally, an HRV analysis was carried out on these intervals. Both the inter-beat intervals
estimates and the HRV indices obtained using the proposed approach were compared with
those provided using simultaneous ECG recordings.

The article is organized as follows: Section 2 summarizes the measurement setup and
data collection procedure adopted for FCG signals acquisition in [47] and describes the
proposed template matching approach and the methodology for performance evaluation;
Section 3 describes the results of performance evaluation; Section 4 discusses the results
and highlights the limitations of the study; Section 5 presents the conclusions of the study
and suggests possible future developments.

2. Materials and Methods
2.1. Measurement Setup and Signal Acquisition

FCG signals acquired in a previous study [47] were considered in this work. Indeed,
no measurements were carried out in this study, but a retrospective analysis was conducted
instead. The FCG signals were acquired on six healthy subjects, during quiet breathing, by
means of an FCG sensor placed on their chest. The FCG sensor was placed approximately
on the point of maximal impulse [47,57] of each subject via medical adhesive tape and
secured by means of a belt fastened around the thorax. The point of maximal impulse was
localized by searching for the point where the FCG signal exhibited the highest amplitude
around the fifth intercostal space on the midclavicular line.

ECG lead II tracings have also been acquired concurrently, by means of a multiparam-
eter monitor (Welch-Allyn Propaq Encore model). In this study, such ECG signals were
considered as a ground truth for the estimation of inter-beat intervals and HRV indices. The
simultaneous acquisitions of FCG and ECG signals have been performed via a National
Instruments NI-USB4431 DAQ board (National Instruments Corp., 11500 N Mopac Expwy,
Austin, TX 78759-3504, USA) with 24-bit precision and a sampling rate of 10 kHz.

2.2. Signal Pre-Processing

As in [48,53,54], the respiratory component of the raw FCG sensor signal was first
extracted via a Savitzky-Golay filter [58] with frame length approximately corresponding
to a time interval of 1.5 s. The respiratory component was then subtracted from the raw
FCG sensor signal to obtain the actual FCG signal (cardiac component). The heart sounds
component was extracted via a fourth order zero-lag Butterworth band-pass filter with
cut-off frequencies of 30–200 Hz, as shown in Figure 1. On the other hand, the ECG signal
was first band-pass filtered in the 0.5–40 Hz frequency band via a fourth order zero-lag
Butterworth filter. Then, notch filters were used to remove powerline interference and its
higher harmonics. Finally, the well-known Pan and Tompkins algorithm [59] implemented
in the “BioSigKit” MATLAB® toolbox [60] was used to locate the R-peaks (see Figure 1).
MATLAB® R2018b (MathWorks, Inc., Natick, MA, USA) was used to perform all processing
operations described in this study.
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Figure 1. An excerpt of signals from subject #4: ECG (blue line) and heart sounds from FCG (black
line). Blue circles mark the locations of R-peaks in the ECG signal.

2.3. Template Matching Approach

A template-matching technique, previously applied on SCG [54] and Gyrocardiogra-
phy [55] signals, was applied in this study to separately localize S1 and S2 heart sounds in
FCG recordings. The template matching approach consists of three steps, namely template
selection, computation of the NCC function between the whole signal and the template
previously selected, and the localization of the NCC local maxima. Such local maxima
correspond to the temporal locations at which the signal exhibits the local highest similarity
with the selected template and are used as timings of the events to be localized. In this
study, the template matching approach was used for two purposes, i.e., separately locating
S1 and S2 heart sounds with two distinct templates and locating heartbeats by using a
single heartbeat template consisting of both heart sounds (S1–S2 pair). Further details on
the selection of such templates are provided in the following paragraph.

2.3.1. Templates Selection Criteria

First, templates were identified in each heart sounds recording to capture the typical
heart sounds waveforms, which were regarded as a morphological reference. Indeed, two
different templates were chosen to separately locate S1 and S2 sounds. In addition, a third
template was selected, which included the S1–S2 pair belonging to a single heartbeat.

The templates were selected manually, according to the following criteria. The S1 and
S2 templates enclosed all the oscillations of the sound and short tracts at the beginning and
at the end of the sound. The S1–S2 template enclosed the S1 and S2 sounds, the interval in
between, and short tracts at the beginning and at the end of the S1–S2 pair. Examples of
selected templates are shown in Figures 2 and 3.
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Figure 2. Examples of template selection. (a) The portion of the HS-FCG signal selected as a template
of S1 sound is enclosed within the light green box, while the green dashed line marks the position of
the absolute maximum within the S1 template; (b) the portion of the HS-FCG signal selected as a
template of S2 sound is enclosed within the light red box, while the red dashed line marks the position
of the absolute maximum within the S2 template; (c) the portion of the HS-FCG signal selected as a
template of S1–S2 pair is enclosed within the light blue box, while the blue dashed line marks the
position of the absolute maximum within the S1–S2 template. The positions of the absolute maxima
within the templates were used to re-align the corresponding NCC functions.
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2.3.2. Localization of Single Heart Sounds and Heartbeat Detection

The NCC function, as defined in [61–63], is considered as a similarity measure between
the selected template and signal chunks. Local maxima of the NCC function correspond
to signal chunks with the highest local similarity to the template and allow localizing
the patterns of interest. The NCC local maxima were detected via the Matlab® function
findpeaks. The S1 and S2 templates were used separately to locate the S1 and S2 heart
sounds, while the S1–S2 template was used to locate the whole heartbeats (i.e., S1–S2 pairs).
Examples of the results obtained by using the S1, S2, and S1–S2 templates are shown,
respectively, in Figure 4a–c. Three series of time markers were obtained, i.e., the timings of
S1, S2, and S1–S2 pairs.
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Figure 4. Examples of events localization via the template matching method in FCG signals of
subject #4: (a) S1 sounds localization: heart sounds signal (black line), NCC function computed
by using the S1 template (green line), NCC peaks indicating temporal locations of S1 sounds (red
points); (b) S2 sounds localization: heart sounds signal (black line), NCC function computed by
using the S2 template (orange line), NCC peaks indicating temporal locations of S2 sounds (violet
points); (c) S1–S2 pairs localization: heart sounds signal (black line), NCC function computed by
using the S1–S2 template (red line), NCC peaks indicating temporal locations of S1–S2 pairs (black
points). Please note that each NCC function was re-aligned according to the relative position of the
absolute maximum within the selected template. In the case of the S1–S2 template selected from the
HS-FCG signal of subject #4, the absolute maximum of the S1–S2 template coincided with the S1
peak, therefore, also the NCC peaks in panel (c) turned out to be aligned with the S1 peaks in the
HS-FCG signal.

2.4. Performance Analysis

The performances achieved by using the S1 and S2 templates were evaluated via
quantitative analyses of their ability to correctly recognize the related events of interest,
and to accurately provide the timings of such events. The performances obtained by using
the S1–S2 template were also evaluated, since in previous studies on Seismocardiography
and Gyrocardiography signals it had been observed that better results could be obtained in
heartbeat localization by using templates comprising both systolic and diastolic vibrations.

For the analysis of recognition accuracy, true events (true positives, TPs), missed
events (false negatives, FNs), and false events (false positives, FPs) were annotated for
each subject and for each template, as in [54,55]. Then, sensitivity and positive predictive
value (PPV) were eventually computed, according to the following equations, to provide
statistical evaluations of template matching performance:

Sensitivity =
TP

TP + FN
·100 (1)

PPV =
TP

TP + FP
·100 (2)

For the analysis of localization accuracy, inter-beat intervals were estimated separately
from the series of S1 timings, S2 timings, and S1–S2 timings, as they all mark the presence
of heartbeats. The higher the accuracy in estimation of inter-beat intervals, the higher the
accuracy in the localization of S1, S2, and S1–S2 events. Inter-beat intervals were computed
as time differences between couples of subsequent recognized events. Figure 5 shows some
examples of inter-beat intervals estimation from the timings of S1, S2, and S1–S2 pairs.
These results were compared with those obtained using ECG (considered as reference) via
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Passing–Bablok linear regression [64], correlation, and Bland–Altman analyses [65,66]. To
this end, the Matlab® functions “Passing-and-Bablok-regression” [67] and “bland-altman-
and-correlation-plot” [68] were used. The inter-beat intervals related to missed and false
events were removed from the analyses.
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Figure 5. Examples of inter-beat intervals estimation in signals of subject #4. Inter-beat intervals were
estimated in the ECG signal as the temporal difference between two consecutive R-peaks (double
black arrow), and in the heart sounds signals as the temporal difference between two consecutive
peaks in the NCC function obtained via: (a) S1 template (double purple arrow); (b) S2 template
(double red arrow); (c) S1–S2 template (double green arrow).
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2.5. Heart Rate Variability Analysis

The heartbeats localization accuracy was further assessed by comparing several HRV
indices estimated from the inter-beat intervals series (tachograms) computed from the
timings of the S1–S2 pairs and those estimated from ECG. The inter-beat intervals related
to missed and false events were included in this analysis. To this aim, the time-domain,
frequency-domain, and non-linear HRV indices listed in Table 1 were computed, for each
subject, via the well-known software “Kubios HRV Standard” [69–72]. As in [56], the
tachograms were analyzed to detect and correct possible artifacts by following the Kubios
HRV guidelines [73]. Linear regression, correlation, and Bland–Altman analyses were
carried out to compare the HRV indices obtained from the S1–S2 pairs with those obtained
from ECG.

Table 1. Time-domain, frequency-domain, and non-linear HRV indices considered in this study.

Time-Domain Indices Frequency-Domain Indices Non-Linear Indices

Mean RR (ms) LF absolute power (ms2) Poincaré SD1
SDNN (ms) HF absolute power (ms2) Poincaré SD2

Mean HR (bpm) LF relative power Poincaré SD2/SD1
SD HR (bpm) HF relative power Approximate entropy

Min HR (bpm) LF normalized power Sample entropy
Max HR (bpm) HF normalized power DFA α1

RMSSD (ms) Total power (ms2) DFA α2
NN50 (adim) LF/HF

pNN50 (adim)

3. Results
3.1. Recognition and Localization Accuracy

Tables 2–4 summarize the results obtained in the recognition of S1 and S2 sounds, and
S1–S2 pairs, respectively. In particular, each table outlines the number of events recognized
via the template matching method, as well as the number of TPs, FPs, and FNs, and the
number of inter-beat intervals considered. The number of inter-beat intervals included
depended on the distribution of the missed detections (FN), particularly if there were
isolated FNs or multiple subsequent FNs. A total of 1429 cardiac cycles were analyzed.
The template matching approach achieved a sensitivity and PPV of 97.9% and 97.6% for S1
recognition, 96.6% and 95.2% for S2 recognition, 87.0% and 91.2% for S1–S2 pairs.

The results of regression, correlation, and Bland–Altman analyses of inter-beat in-
tervals are reported in Tables 5 and 6 and depicted in Figures 6–8. The regression and
correlation analyses reported almost unitary slopes and intercepts of about 1 ms, with
Pearsons’s r in excess of 0.999. The Bland–Altman analyses reported negligible biases (zero
was comprised in the 95% confidence interval of the bias) for all templates, as well as limits
of agreement (LoA) of ±9.2 ms for S1, ±7.6 ms for S2, and ±4 ms for S1–S2 pairs.

Table 2. Result of S1 sounds detection for each subject. The numbers of TPs, FNs, and FPs are
reported. The numbers of inter-beat intervals considered in subsequent analyses are also reported.

Subject
ID TP FP FN Inter-Beat Intervals

Analyzed

1 378 0 0 377
2 188 2 3 183
3 158 13 8 150
4 185 20 19 172
5 336 0 0 335
6 154 0 0 153

Total 1399 35 30 1370
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Table 3. Result of S2 sounds detection for each subject. The numbers of TPs, FNs, and FPs are
reported. The numbers of inter-beat intervals considered in subsequent analyses are also reported.

Subject
ID # TP FP FN Inter-Beat Intervals

Analyzed

1 378 0 0 377
2 160 44 31 130
3 160 10 6 154
4 196 13 8 190
5 336 0 0 335
6 151 3 3 146

Total 1381 70 48 1332

Table 4. Result of S1–S2 pairs detection for each subject. The numbers of TPs, FNs, and FPs are
reported. The numbers of inter-beat intervals considered in subsequent analyses are also reported.

Subject
ID # TP FP FN Inter-Beat Intervals

Analyzed

1 377 1 1 374
2 163 28 28 133
3 95 37 71 76
4 152 52 52 130
5 303 2 33 272
6 154 0 0 153

Total 1244 120 185 1138

Table 5. Results of linear regression and correlation analyses on inter-beat intervals obtained from
heart sounds with S1, S2, and S1–S2 pairs, as compared to those obtained from ECG.

Template
Regression and Correlation Analysis

r CI r Slope CI slope Intercept (ms) CI intercept (ms)

S1 0.9991 [0.9990; 0.9992] 1.000 [0.999; 1.002] 0.100 [−1.209; 0.693]
S2 0.9993 [0.9992; 0.9994] 0.998 [0.997; 1.000] 1.442 [0.100; 2.929]

S1–S2 0.9998 [0.9998; 0.9998] 0.999 [0.998; 1.000] 0.851 [0.100; 1.853]

Table 6. Results of Bland–Altman analyses on inter-beat intervals obtained from heart sounds with
S1, S2, and S1–S2 pairs, as compared to those obtained from ECG.

Template
Bland–Altman Analysis

bias (ms) CI bias (ms) LoA (ms) CI LoAmin (ms) CI LoAmax (ms)

S1 −0.00666 [−0.242; 0.256] [−9.191; 9.205] [−9.62; −8.766] [8.779; 9.630]
S2 0.00970 [−0.219; 0.200] [−7.633; 7.614] [−7.991; −7.276] [7.256; 7.972]

S1–S2 0.0509 [−0.169; 0.0668] [−4.017; 3.916] [−4.219; −3.816] [3.714; 4.117]

3.2. HRV Indices Extraction

Tables 7 and 8 outline the results of linear regression, correlation, and Bland–Altman
analyses performed on HRV indices extracted from FCG and ECG signals. In particular,
the results of linear regression and correlation analyses reported no statistically significant
differences from unity for the slopes, no statistically significant differences from zero for the
intercepts, and Pearson’s correlation coefficients in excess of 0.8 for all HRV indices. The
Passing–Bablok cusum test also confirmed the linearity between all HRV indices extracted
from FCG and ECG signals (p > 0.1). The results of Bland–Altman analyses reported no
statically significant bias on any of the HRV indexes (all the confidence intervals include
zero). The HRV indices extracted from each subject are reported in Appendix A (Table A1).
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Figure 6. Results of statistical analyses on inter-beat intervals obtained from S1 sounds and from
ECG: (a) Regression and correlation plot (regression line is depicted in red); (b) Bland–Altman plot.
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Figure 7. Results of statistical analyses on inter-beat intervals obtained from S2 sounds and from
ECG: (a) Regression and correlation plot (regression line is depicted in red); (b) Bland–Altman plot.
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Figure 8. Results of statistical analyses on inter-beat intervals obtained from S1–S2 pairs and from
ECG: (a) Regression and correlation plot (regression line is depicted in red); (b) Bland–Altman plot.

Table 7. Results of regression and correlation analyses performed on HRV indices obtained from
heart sounds and ECG.

HRV Index r CI r Slope CI slope Intercept CI intercept

Mean RR * 0.999 [0.994; 0.999] 0.966 [0.928; 1.024] 29.2 ms [−20.7; 61.8] ms
SDNN * 0.869 [0.194; 0.986] 0.971 [−0.004; 3.476] 0.9 ms [−96.4; 38.3] ms
Mean HR * 0.999 [0.996; 1.000] 0.964 [0.922; 1.021] 2.54 bpm [−1.51; 5.47] bpm
SD HR * 0.962 [0.684; 0.996] 0.975 [0.477; 1.457] 0.07 bpm [−1.68; 1.70] bpm
Min HR * 0.992 [0.921; 0.999] 0.993 [0.791; 1.165] 0.45 bpm [−11.03; 13.31] bpm
Max HR * 0.999 [0.999; 1.000] 1.015 [0.979; 1.050] −1.30 bpm [−4.02; 1.48] bpm
RMSSD * 0.806 [−0.0168; 0.978] 1.111 [0.567; 6.135] −4.4 ms [−170.5; 14.5] ms
NN50 * 0.961 [0.678; 0.996] 1.035 [0.400; 4.556] −7.069 [−87.667; 18.800]
pNN50 * 0.886 [0.264; 0.987] 1.071 [0.211; 6.429] −0.188 [−76.119; 16.502]
LF absolute power * 0.858 [0.152; 0.984] 0.836 [0.105; 1.687] 127.50 ms2 [−412.46; 596.06] ms2

HF absolute power * 0.829 [0.0519; 0.981] 0.881 [0.119; 3.897] 29.49 ms2 [−1142.50; 497.97] ms2

LF relative power * 0.959 [0.664; 0.996] 0.942 [0.124; 1.914] 3.56 [−54.32; 44.30]
HF relative power * 0.957 [0.653; 0.996] 0.943 [−0.0033; 1.708] 2.14 [−24.53; 46.37]
LF normalized power * 0.957 [0.653; 0.996] 0.942 [0.0670; 1.745] 3.58 [−47.10; 48.64]
HF normalized power * 0.958 [0.658; 0.996] 0.943 [0.0632; 1.738] 2.17 [−27.00; 44.63]
Total power * 0.829 [0.0535; 0.981] 0.734 [−0.188; 2.065] 325.24 ms2 [−1444.80; 1375.40] ms2

LF/HF * 0.997 [0.975; 0.9997] 0.758 [0.0501; 1.847] 0.23 [−1.41; 1.04]
Poincaré SD1 * 0.805 [−0.0186; 0.978] 1.109 [0.565; 6.125] −3.1 ms [−120.6; 10.3] ms
Poincaré SD2 * 0.921 [0.434; 0.992] 0.849 [0.268; 1.952] 7.1 ms [−44.2; 33.2] ms
SD2/SD1 * 0.972 [0.760; 0.997] 0.987 [0.692; 2.500] 0.03 [−2.44; 0.49]
Approximate entropy * 0.968 [0.729; 0.997] 1.031 [0.285; 1.734] −0.062 [−0.713; 0.598]
Sample entropy * 0.830 [0.0565; 0.981] 0.739 [−0.639; 1.381] 0.409 [−0.678; 3.067]
DFA α1 * 0.900 [0.328; 0.989] 0.966 [0.288; 4.540] 0.037 [−3.608; 0.697]
DFA α2 * 0.996 [0.961; 0.9996] 0.997 [0.836; 1.509] −0.004 [−0.121; 0.029]

* cusum linearity test p-value > 0.1.
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Table 8. Results of Bland–Altman analyses performed on HRV indices obtained from heart sounds
and ECG. In cases of measurement differences with non-normal distribution, the bias was estimated
as the median of differences, and the limits of agreement as the 2.5th and 97.5th percentiles.

HRV Index bias CI bias LoA CI LoA min CI LoA max

Mean RR * (ms) 0.2 [−5.0; 4.0] [−10.0; 4.9] [−10.03; 0.02] [3.14; 4.90]
SDNN (ms) −0.2 [−5.6; 5.1] [−14.5; 14.0] [−26.51; −2.49] [2.01; 26.02]
Mean HR (bpm) −0.03 [−0.42; 0.35] [−1.05; 0.98] [−1.90; −0.19] [0.13; 1.83]
SD HR (bpm) < 0.01 [−0.31; 0.31] [−0.82; 0.83] [−1.51; −0.12] [0.13; 1.52]
Min HR (bpm) < 0.01 [−1.05; 1.04] [−2.76; 2.75] [−5.08; −0.44] [0.43; 5.07]
Max HR (bpm) −0.1 [−0.36; 0.15] [−0.79; 0.58] [−1.36; −0.21] [0.003; 1.155]
RMSSD * (ms) −0.2 [−2.2; 6.0] [−2.5; 12.0] [−2.50; −1.89] [0.08; 11.98]
NN50 −2.500 [−14.877; 9.877] [−35.247; 30.247] [−62.825; −7.669] [2.669; 57.825]
pNN50 0.227 [−5.590; 6.044] [−10.637; 11.091] [−21.212; −0.062] [0.517; 21.666]
LF absolute power * (ms2) 9.19 [−616.34; 91.13] [−1041.70; 151.53] [−1041.70; −190.96] [30.73; 151.53]
HF absolute power * (ms2) −21.06 [−83.34; 150.77] [−121.71; 296.36] [−121.71; −44.97] [5.18; 296.36]
LF relative power −1.24 [−6.99; 4.51] [−16.45; 13.97] [−29.25; −3.64] [1.16; 26.78]
HF relative power 1.11 [−4.87; 7.09] [−14.71; 16.93] [−28.03; −1.39] [3.61; 30.25]
LF normalized power −1.25 [−7.31; 4.82] [−17.30; 14.80] [−30.81; −3.78] [1.29; 28.32]
HF normalized power 1.21 [−4.79; 7.20] [−14.65; 17.07] [−28.01; −1.30] [3.71; 30.42]
Total power (ms2) −157.90 [−702.70; 386.90] [−1599.30; 1283.50] [−2813.20; −385.40] [69.59; 2497.40]
LF/HF * −0.05 [−2.41; 0.13] [−4.18; 0.23] [−4.18; −0.63] [0.03; 0.23]
Poincaré SD1 * (ms) −0.2 [−1.5; 4.3] [−1.8; 8.5] [−1.75; −1.34] [0.06; 8.49]
Poincaré SD2 * (ms) 0.1 [−6.1; 3.7] [−12.0; 7.0] [−12.00; −0.14] [0.30; 7.01]
SD2/SD1 −0.06 [−0.22; 0.10] [−0.49; 0.37] [−0.85; −0.13] [0.01; 0.74]
Approximate entropy −0.017 [−0.068; 0.034] [−0.153; 0.119] [−0.267; −0.038] [0.004; 0.233]
Sample entropy −0.004 [−0.223; 0.215] [−0.583; 0.575] [−1.071; −0.096] [0.087; 1.062]
DFA α1 * 0.004 [−0.177; 0.015] [−0.237; 0.020] [−0.237; −0.116] [0.011; 0.020]
DFA α2 −0.007 [−0.016; 0.002] [−0.031; 0.017] [−0.051; −0.011] [−0.004; 0.037]

* Non-normal distribution of differences.

4. Discussion

This study proposes the use of the template-matching technique for accurate recog-
nition of heart sounds. In particular, the effectiveness of this technique in separately
recognizing S1 and S2 heart sounds was investigated. The template-matching technique
has several advantages with respect to other approaches. The approaches based on energy
or envelope operators can easily recognize the presence of heart sounds but are usually
unable to distinguish between S1 and S2 sounds and are very sensitive to various sources
of noise. Instead, the template matching based on normalized cross-correlation is able
to recognize the waveform of a specific heart sound because it evaluates the morpho-
logical similarity, which also prevents other noises to be incorrectly recognized as heart
sounds, regardless of their amplitude. On the other hand, machine learning techniques
have a much higher computational load, as opposed to the template-matching technique,
which could easily be implemented in real time on microcontrollers, paving the way for
long-term patient monitoring applications. It is worth underlining that the proposed tech-
nique does not require a synchronously acquired ECG signal: it was only used here for
performance evaluation.

The results of this preliminary study are exceptionally encouraging. In fact, the
proposed approach proved capable of separately classifying S1 and S2 sounds in more than
96% of all heartbeats. Linear regression, correlation, and Bland–Altman analyses showed
that the template matching method allowed the estimation of inter-beat intervals with
high accuracy. Indeed, 95% of the estimation errors were confined within 10 ms, which
corresponds to relative errors lower than 2% by considering heart rates between 50 and 120
bpm. Further statistical analyses showed that HRV indices were estimated with reasonable
accuracy, by achieving mean absolute percentage errors within 8% for all time-domain and
non-linear indices, apart from NN50 and pNN50. Higher errors, within 32%, were found
for frequency-domain indices.
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It is interesting to note that the best results were obtained by considering only the first
sound S1. This can be explained by recalling that the second sound undergoes substantial
morphological changes in relation to respiration (the well-known physiologic splitting of S2).

Limitations of the Study

The heart sounds recording considered in this study had been acquired in a quiet
environment. The proposed algorithm needs to be further verified in the presence of
relevant external noises in order to be adopted as a sound recognizer in applications of
long monitoring of patients during the performance of their daily activities.

All the tests were carried out on a limited number of subjects sitting at rest. Studies
on a larger cohort of subjects are undoubtedly needed for a proper assessment of this
technique, also considering the circumstance that the subject may change posture and may
freely move. In such cases, morphological variations of heart sounds might occur, which
might make the template-matching technique less effective. However, a dynamic update of
the template might be considered to overcome such possible drawbacks.

The cardiac sound recordings considered in this study had been acquired only from
healthy subjects: it was not possible to verify the recognition of S1 and S2 sounds in
conjunction with other heart sounds (i.e., S3 and S4) or murmurs, which are generally
associated with pathologies. Therefore, further tests on pathological subjects are foreseen
to thoroughly assess the accuracy of heart sounds recognition via template matching.

5. Conclusions

The template matching approach proposed for accurate localization of first and second
heart sounds in FCG signals has shown great promise and it could be effective on heart
sounds recorded via common electronic stethoscopes. Future studies could evaluate its
performance on public databases of heart sounds. However, various electronic stethoscopes
are known to suffer from a noticeable sensitivity to external noises, while FCG sensors are,
in principle, less sensitive to external noises, being essentially contact microphones without
a chest piece bell.

FCG sensors are small, lightweight, nonobstructive, and wearable, therefore they are
particularly suitable for a long-term monitoring, which could lead to much more accurate
and early diagnosis of various heart diseases [74–77]. Furthermore, specific cardiac diseases
manifest with pronounced S3 and S4 sounds and murmurs. Indeed, murmurs have a higher
frequency content than S1 and S2 sounds, while S3 and S4 are low-pitched, low-intensity
sounds, which may be difficult to perceive via auscultation, so that chest palpation, i.e.,
perception of inaudible vibrations, is also recommended. The very large bandwidth of FCG
sensors make them very sensitive to both low (subsonic) and high frequency vibrations
and sounds, and could greatly help in the detection of S3 and S4 sounds and murmurs.
This could be the subject of future studies.
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Appendix A

Table A1. HRV indices estimated for each subject.

HRV Indices Unit Sub #1 Sub #2 Sub #3 Sub #4 Sub #5 Sub #6

ECG HS ECG HS ECG HS ECG HS ECG HS ECG HS

Mean RR ms 799.929 800.061 971.447 974.584 1022.094 1012.067 868.063 868.413 733.709 738.605 844.493 844.512
SDNN ms 38.991 39.091 29.420 37.001 46.792 38.163 49.056 49.136 38.733 38.194 21.746 21.693

Mean HR bpm 75.006 74.994 61.764 61.565 58.703 59.285 69.119 69.092 81.776 81.234 71.049 71.047
SD HR bpm 3.685 3.690 1.902 2.382 2.691 2.243 3.945 4.006 4.365 4.298 1.841 1.837

Min HR bpm 66.844 66.860 57.332 55.777 52.804 54.387 60.505 60.478 73.668 73.627 67.230 67.231
Max HR bpm 88.283 88.279 68.382 68.398 64.295 63.754 80.483 80.248 98.348 98.493 74.841 74.83
RMSSD ms 45.042 44.799 35.525 47.501 32.333 29.837 33.210 33.293 37.769 35.877 23.702 23.498
NN50 beats 119.000 110 30 49 21 8 20 20 61 50 1 0

pNN50 % 31.649 29.255 15.873 25.926 12.805 6.202 9.901 9.901 18.264 16.502 0.658 0
LF absolute power ms2 531.203 547.240 390.920 542.448 1935.732 894.022 2088.129 1897.168 737.441 768.170 173.786 176.123
HF absolute power ms2 551.371 556.553 236.603 532.964 118.777 73.803 611.976 577.538 762.765 641.054 236.525 228.844
LF relative power % 46.648 47.134 60.275 48.829 92.804 90.974 72.203 71.653 48.502 53.302 42.004 43.126
HF relative power % 48.419 47.936 36.482 47.975 5.695 7.510 21.161 21.813 50.167 44.481 57.168 56.036

LF normalized power adim 48.857 49.357 62.186 50.249 94.218 92.362 77.316 76.658 49.149 54.487 42.350 43.486
HF normalized power adim 50.712 50.197 37.638 49.371 5.781 7.625 22.659 23.336 50.837 45.471 57.639 56.504

Total power ms2 1138.755 1161.030 648.557 1110.912 2085.821 982.719 2892.033 2647.701 1520.451 1441.175 413.735 408.389
LF/HF adim 0.963 0.983 1.652 1.018 16.297 12.114 3.412 3.285 0.967 1.198 0.735 0.770

Poincaré SD1 ms 31.892 31.720 25.187 33.678 22.933 21.181 23.542 23.601 26.747 25.411 16.816 16.671
Poincaré SD2 ms 45.021 45.316 33.186 40.194 61.822 49.825 65.114 65.221 47.888 47.749 25.834 25.841

SD2/SD1 adim 1.412 1.429 1.318 1.194 2.696 2.352 2.766 2.764 1.790 1.879 1.536 1.550
Approximate entropy a.u. 1.158 1.132 0.863 0.828 0.683 0.625 0.940 0.872 1.076 1.109 0.754 0.807

Sample entropy a.u. 1.863 1.853 2.098 1.767 1.041 1.108 1.522 1.463 1.693 2.009 1.892 1.882
DFA α1 a.u. 0.925 0.931 0.985 0.869 1.358 1.121 1.430 1.450 1.021 1.024 0.863 0.874
DFA α2 a.u. 0.352 0.351 0.267 0.254 0.063 0.063 0.196 0.175 0.214 0.206 0.236 0.235
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