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Abstract: Spectrum prediction is a promising technique to release spectrum resources and plays an
essential role in cognitive radio networks and spectrum situation generating. Traditional algorithms
normally focus on one-dimensional or predict spectrum values in a slot-by-slot manner and thus
cannot fully perceive the spectrum states in complex environments and lack timeliness. In this paper,
a deep learning-based prediction method with a simple structure is developed for temporal–spectral
and multi-slot spectrum prediction simultaneously. Specifically, we first analyze and construct
spectrum data suitable for the model to simultaneously achieve long-term and multi-dimensional
spectrum prediction. Then, a hierarchical spectrum prediction system is developed that takes
advantage of the advanced Bi-ConvLSTM and the seq2seq framework. The Bi-ConvLSTM captures
time–frequency characteristics of spectrum data, and the seq2seq framework is used for long-term
spectrum prediction. Furthermore, the attention mechanism is used to address the limitations of the
seq2seq framework that compresses all inputs into fixed-length vectors, resulting in information loss.
Finally, the experimental results have shown that the proposed model has a significant advantage
over the benchmark schemes. Especially, the proposed spectrum prediction model achieves 6.15%,
0.7749, 1.0978, and 0.9628 in MAPE, MAE, RMSE, and R2, respectively, which is better than all the
baseline deep learning models.

Keywords: spectrum prediction; long-term joint temporal–spectral network; Bi-ConvLSTM; deep
learning

1. Introduction

The electromagnetic spectrum, as a critical national strategic resource all over the
world, has drawn more and more attention [1,2]. With the development of information
technology, the spectrum demand also explodes, but spectrum utilization is low at the
same time. As pointed out by the Federal Communications Commission (FCC), numerous
allocated spectrum resources are idle to a large extent in time and space [3,4], and the
average utilization rate does not exceed 5% at any time and place [5]. In addition, as the
spectrum sensing capability of monitoring devices is limited, spectrum monitoring data are
very sparse or even scarce in multiple dimensions, such as time, space, and the frequency
domain. So, it is difficult to form a detailed and comprehensive spectrum situation, which
results in great challenges regarding the full use of the spectrum. Therefore, how to fully
grasp the spectrum situation and further improve spectrum utilization are essential to solve
the shortage of spectrum resources in the complex electromagnetic environment.

Cognitive radio networks (CRNs) are believed to be an important and promising
method to relieve the shortage, whose key technologies include spectrum sensing, spectrum
decision, spectrum sharing, spectrum prediction, and spectrum shifting. Figure 1 shows
the working process of CRNs; firstly, spectrum sensing, as a key technology of CRNs, can
obtain the spectrum state effectively [6,7] to improve spectrum utilization through a large
number of continuous detections.
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Figure 1. The working process of CRNs.

Secondly, the spectrum decision selects the best hole for access and realizes the spectrum
shifting according to hole characteristics by spectrum sensing. Then, the spectrum decision
provides channel capacity information for spectrum sharing. However, as users increase,
the time and energy consumed by spectrum detection increase sharply, which could cause
spectrum holes. To solve the above problem, spectrum prediction, as another key technology
of CRNs and spectrum situation generation [8], has abstracted increasing attention.

Spectrum prediction utilizes historical spectrum sensing information to mine the
occupancy pattern of each channel in the time domain and the potential correlation between
channel states and then makes a prediction of channel occupancy in the future time slots. It
can quickly find the spectrum holes, guide the spectrum sensing in the next moment and
the subsequent spectrum decisionmaking, reduce the amount of spectrum switching, and
improve spectrum utilization.

The research on spectrum prediction has made great progress during the past few
years. Several traditional spectrum prediction techniques [9], such as regression model [10],
Markov model [11], Bayesian inference [12], support vector machine [13], artificial neural
network [14], and matrix/tensor completion [15,16], have been proposed for spectrum
prediction. Although the traditional methods can improve spectrum utilization to some
extent, they are unable to meet the actual needs.

Recently, deep learning has shown its promising capability in spectrum prediction,
with high precision, strong robustness, and adaptability. Recurrent neural network (RNN)-
based methods (Long Short-Term Memory (LSTM) and gated recurrent unit network
(GRU)) [17] are capable of mining underlying temporal correlations among spectrum data.
In [18], LSTM was employed to simultaneously predict the Radio Spectrum State (RSS)
for two time slots, which requested a large amount of computing resources and suffers
from very long training time. To solve the above problems, Ling Yu et al. [19] introduced
the Taguchi method and LSTM for time domain spectrum prediction, effectively reducing
the time and computational power requirements. Xue Wang et al. [20] used the Back



Sensors 2024, 24, 1498 3 of 15

Propagation-LSTM (BP-LSTM) network model for spectrum prediction, which has better
prediction performance than BP, LSTM, and GRU. Nevertheless, the spectrum states are in-
terrelated in the time and frequency domains. MA Aygül et al. [21,22] exploited correlation
over time and frequency of spectrum data through a 2D-LSTM with better performance
than 1D-LSTM, but this method had a weak ability to extract frequency relationships.

To address the aforementioned issues, hybrid networks have good performance in
extracting temporal–spectral features of spectrum data by taking advantage of different
networks. Lixing Yu et al. [23] combined convolutional neural network (CNN) with the
GRU for temporal–spectral spectrum prediction with high prediction accuracy. In [24],
a scheme was formulated with CNN-LSTM for multi-dimensional spectrum prediction.
Xiaojin Ding et al. [25] combined CNN and bidirectional LSTM (BiLSTM) for predicting
the state of multi-channels with higher accuracy than LSTM, BiLSTM, and CNN-LSTM.
Graph convolution network (GCN) has a stronger ability to extract spatial features than
CNN. Han Zhang et al. [26] designed a graph network model combining GCN and LSTM
for multi-channel spectrum prediction that had better predictive performance compared
with other methods. To improve prediction accuracy, Xile Zhang et al. [27] proposed a
multi-band spectrum prediction method based on attention graph convolutional recurrent
neural networks (A-GCRNN), which applied temporal correlation and frequency band
correlation to spectrum prediction tasks. These methods have good performance for multi-
dimensional spectrum prediction but predict spectrum values in a slot-by-slot manner, thus
lacking timeliness.

Overall, simultaneously achieving multi-dimensional and long-term spectrum predic-
tion is a great challenge. Multi-dimensional and long-term studies on effective prediction
algorithms are relatively few. Ling Yu et al. [28] constructed a temporal–spectral residual
network for multi-slot high-frequency (HF) band prediction from an image inference, but
the structure of this method is complex, and selecting data with different time trends is
a major challenge. In this study, to solve the above challenging problems, we propose a
model with a simple structure for long-term and temporal–spectral spectrum prediction
simultaneously. Firstly, we propose a spectrum matrices construction method that contains
values of multiple channels at different time slots. Secondly, the seq2seq model is used for
long-term spectrum prediction. It performs better in multi-step prediction by considering
sequence dependencies between output labels. In addition, it also has a flexible framework.
Thirdly, we apply a Bi-ConvLSTM as an encoder to mine the correlations of spectrum
values across different channels and extract temporal features within a certain time window.
Bi-ConvLSTM is an improved network based on LSTM, which not only enables temporal
modeling but also characterizes spectral characteristics [29]. Although the decoder in
seq2seq is greatly affected by the length of the intermediate vector, it can be relieved by
introducing the attention mechanism. The attention mechanism can solve the limitation
of the seq2seq structure, which encodes the constructed spectrum data into a sequence of
vectors. In addition, we notice that the correlation between the spectrum states is not equal.
Thus, the attention mechanism is also used to assign weights for different spectrum points,
which improves the model prediction accuracy. Finally, we utilize Bi-ConvLSTM and dense
networks as a decoder, which can adaptively focus on certain parts of spectrum states.

Our main contributions in this paper are the following:

• We propose a spectrum data construction method with a simple structure to make
multi-dimensional and long-term spectrum predictions simultaneously. Different
from the existing spectrum prediction in a slot-by-slot manner, the proposed ap-
proach is more efficient and can predict multi-slot spectrum states ahead of multiple
spectrum points.

• We combine Bi-ConvLSTM and seq2seq to construct the proposed networks that can
achieve both temporal–spectral and long-term spectrum prediction.

• Validated on real-world datasets, the experimental results show that our proposed
spectrum prediction model achieves 6.15%, 0.7749, 1.0978, and 0.9628 in mean absolute
percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE),
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and R-squared (R2), respectively, which is better than all the baseline deep learning
models. Furthermore, the designed model is robust against missing spectrum data.

The remainder of this paper is organized as follows. Section 2 compares the differences
between the proposed prediction model and traditional prediction models. Section 3
presents the structure of the long-term joint temporal–spectral network. Section 4 shows
the experimental results of prediction on real-world spectrum datasets. The Section 5 draws
some conclusions.

2. Problem Formulation

As shown in Figure 2, most traditional prediction models learn the inherent relation-
ship (T − 1) consecutive column vectors {χ1, χ2, . . . , χT−1} to predict the spectrum values
χT at time T, and each column vector represents spectrum states of F points. Window with
fixed length moves forward slot by slot over time and spectrum values. Subsequently, states
and qualities of spectrum points in different time slots can be predicted. Considering the
actual demand and forecasting timeliness, the prediction model needs to simultaneously
predict the values with acceptable error within a relatively long period. Figure 3 shows
the principle of the proposed spectrum prediction model; the input and output of the
prediction model are {χt−n, χt−n+1, . . . , χt}, {χ̂t−n+1, χ̂t−n+2,. . . , χ̂t+1}, respectively.

Figure 2. The principle of traditional spectrum prediction models.

Spectrum data do not exist independently and have closely intrinsic relationships
in various dimensions. Therefore, our study utilizes the correlation of spectrum data in
the time–frequency domain to research spectrum prediction. The F− T grid diagram is
constructed with a spectrum value of m spectrum points to every time slot for the proposed
spectrum prediction model, as shown in Figure 4. The rows and columns of the grid
diagram represent spectrum point m and time slot t, respectively. There is a correlation
between rows and columns in the graph in terms of frequency and time, respectively, and
adjacent time slots and channels have a stronger correlation. The spectrum state of m
spectrum point in each T time slot is χ. The process of long-term joint temporal–spectral
spectrum prediction can be represented as follows:

⟨χt−n, χt−n+1, . . . , χt−2, χt−1, χt⟩ → ⟨χt+1⟩ (1)
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Figure 3. The principle of proposed spectrum prediction model.

Figure 4. The construction of spectrum data for the proposed prediction model.

3. Deep Long-Term Joint Temporal–Spectral Network

In this section, we first analyze the proposed model. To achieve time–frequency joint
prediction, the proposed model adopts Bi-ConvLSTM to bidirectionally extract temporal
and spectral features of historical spectrum data, which can improve accuracy. In addition,
the proposed model also adopts seq2seq framework so that the inputs and outputs are
matrices to achieve multi-step prediction. The attention mechanism in proposed model
assigns weights based on the correlations between different frequency points. Therefore,
the proposed model can achieve long-term and temporal–spectral spectrum prediction
simultaneously and improve the spectrum prediction performance. We conduct spectrum
prediction by developing a hierarchical deep learning framework that consists of an input
layer, an encoder layer, a decoder layer, and an output layer, as shown in Figure 5. The
specific processing and forecasting process is as follows.
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Figure 5. The construction of long-term joint temporal–spectral spectrum prediction models.

(1) Input layer: Spectrum prediction models can be roughly divided into binary pre-
diction and power level prediction [30]. Different spectrum prediction types have different
meanings in specific scenarios. In this study, power spectral density (PSD) is chosen to
predict. First, we construct the spectrum matrix for the proposed model. Specifically, de-
note by χt all spectrum points’ values of time length T. The current and previous spectrum
values are represented as {χt−n, χt−n+1, . . . , χt}.

(2) Encoder layer: Second, the constructed spectrum data of the input layer {χt−n,
χt−n+1, . . . , χt} are sent to the encoder layer. The encoder layer consists of a Bi-ConvLSTM
network and an attention mechanism, which encodes the input data into a vector sequence.
The Bi-ConvLSTM contains two convolutional layers and two max-pooling layers in our
proposed model. Different from other methods, bidirectional extracts regional temporal
and spectral correlation features simultaneously and improves the proposed model’s
performance. The structure of the Bi-ConvLSTM and its internal structure are shown in
Figures 6 and 7, respectively.
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Figure 6. The structure of Bi-ConvLSTM.

Figure 7. Internal structure of the ConvLSTM.

Bi-ConvLSTM: Bi-ConvLSTM achieves forward hidden layer state
−→
ht and backward

hidden layer state
←−
ht that are opposite along the time axis by forward convLSTM and

backward convLSTM. The forward convLSTM and backward convLSTM obtain informa-
tion about the spectrum data along the time axis in the past and future, respectively. The
key equations that define the Bi-ConvLSTM network for a given input χt are provided
as follows: −→

ht =
−−−−−−−→
ConvLSTM(ht−1, χt, ct−1) (2)

←−
ht =

←−−−−−−−
ConvLSTM(ht+1, χt, ct+1) (3)

ht = [
−→
ht ,
←−
ht ] (4)
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ft = σ
(

W f
χ ∗ χt + W f

h ∗ ht−1 + W f
c ⊙ ct−1 + B f

)
it = σ

(
Wi

χ ∗ χt + Wi
h ∗ ht−1 + Wi

c ⊙ ct−1 + Bi

)
c̃t = h

(
Wc

χ ∗ χt + Wc
h ∗ ht−1 + Bc

)
ct = it ⊙ c̃t + ft ⊙ ct−1

ot = σ
(

Wo
χ ∗ χt + Wo

h ∗ ht−1 + Wo
c ⊙ ct + Bo

)
ht = ot ⊙ h̄(ct)

(5)

where χt represents input spectrum data. W f
χ, Wi

χ, and Wo
χ are weight matrices of input,

hidden state cell, and memory cell in forgotten gate, respectively. W f
h , Wi

h, and W f
h are

weight matrices of input, hidden state cell, and memory cell in input gate, respectively. W f
c ,

Wi
c, and Wo

c are the weight matrices of input, hidden state cell, and a memory cell in the out-
put gate, respectively. B f , Bi, Bc, and B0 are bias of forgotten gate, input gate, current state,
and output gate, respectively. ct−1 and c̃t are long-term memory and current memory. ht is
hidden state, which contains

−→
ht and

←−
ht . ⊙ and ∗ are Hadamard products and convolutional

operators, respectively. σ, h are sigmoid and tanh activation functions, respectively.
Attention Mechanism: The relationships of each spectrum point are set equally in the

traditional seq2seq model. However, the degree of correlation between channels is different.
So, it is not appropriate to set an equal weight value for each set of input spectrum data.
Therefore, the attention mechanism is employed to solve the above drawbacks and reserves
more information of input spectrum data. The attention layer in this proposed structure
consists of two parts for each input, the outputs of all Bi-ConvLSTM units in the encoder
and the input state of a corresponding Bi-ConvLSTM in the decoder. In particular, the
internal structure of the attention layer is shown in Figure 8. The alignment model eij is
calculated by Dot. si is the hidden state of the neural network in the decoder at time i. hj is
the j-th corresponding hidden vector of the input sequence in the encoder.

Figure 8. The internal structure of the attention layer.

(3) Decoder layer: Then, the vectors generated by the encoder layer are sent to the
decoder layer. The decoder layer consists of a Bi-ConvLSTM network and a dense net-
work. It adaptively selects a subset of these vectors as the decoding result based on the
intermediate vectors obtained by the encoder and the historical parameters in the network.
Similarly, the Bi-ConvLSTM of the decoder layer contains two convolutional layers and
two max-pooling layers.



Sensors 2024, 24, 1498 9 of 15

A Dense Network: The dense network is employed to convert the vector dimension of
output from the Bi-ConvLSTM of the decoder layer to the dimension of the final predicted
value, which has several layers of fully connected neural nodes. Specifically, the dense
network consists of three full layers of fully connected neural nodes in our proposed model.

(4) Output layer: Finally, the output of the dense layer is sent to an activation function
to obtain a prediction result. The fina output is χt+1, which donates future values of all
spectrum points at multiple time slots.

Activation function and loss function: In particular, the prediction result at a time slot
T and the real spectrum states at its next slot are sent to a loss function to predict spectrum
values at the next time slot by updating the gradients calculated by the loss function. The
gradients are sent to the Bi-ConvLSTM network and dense network for updating their
weight matrices to decrease the distance between the predicted result and the ground
truth. To find a final prediction result, we choose a tanh function as the activation function
that takes the output of the dense network as the input that maps the prediction result
into a vector of elements between −1 and 1. In addition, we choose the mean squared
error (MSE) as the loss function of the proposed model, which is widely applied in deep
learning applications.

Training algorithm: The proposed spectrum prediction model is trained by minimizing
MSE between the true value and the predicted value as

L(w, b) =
∥∥χt+1 − χ̂t+1

∥∥2 (6)

where w, b are all learn-able parameters in the proposed spectrum prediction model.
Algorithm 1 outlines the proposed model training process. Firstly, training sequences

are constructed from the original spectrum data (lines 1–3). Then, forward propagation
and back-propagation are repeatedly applied to train the model (lines 4–14).

Algorithm 1 The proposed model training algorithm.

Input: Historical spectrum data sequence
Output: Trained long-term joint temporal–spectral network
//Construct the dataset
1: construct spectrum matrixχt−n, χt−n+1, . . . , χt−2, χt−1, χt from historical spectrum
data
2: D← ϕ
3: divide set D into train set Dtrain and test set Dtest
4: //Train the proposed prediction model
5: initialize all learn-able parameters in long-term joint temporal–spectral network
6: Repeat
7: randomly select a batch of instances from Dtrain
8: find w, b by minimizing the objective (6)
9: Until the training epochs are met
10: //Test the proposed prediction model
11: for each sample in Dtest do
12: fed into the trained proposed model
13: output the prediction results of that sample
14: end for

4. Experiments
4.1. Settings

Dataset Description: In this section, we design some comparative experiments to
evaluate the performance of the proposed spectrum prediction method. The datasets used
in our spectrum prediction experiments are gathered from RWTH Aachen University in
Germany [31]. These datasets are available at https://github.com/chengrunmeng/Aachen-
spectrum-data-part accessed on 2 July 2023. Specifically, the data are about spectrum states

https://github.com/chengrunmeng/Aachen-spectrum-data-part
https://github.com/chengrunmeng/Aachen-spectrum-data-part
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measured at the residential area in Maastricht. The datasets consist of two sub-bands
with 770 MHz and 3750 MHz central frequencies and are named dataset 1 and dataset 2,
respectively. Each sub-band has a bandwidth of 1500 MHz and a frequency resolution of
200 kHz.

Hyper-parameters: The settings of the proposed model are as follows. ConvLSTM2D
1 is composed of 5 identical convolution kernels with the size 5 × 5, while ConvLSTM2D 2
consists of 10 kernels with the size 3 × 3. Particularly, the convolution kernels slide over
full rows of the input data matrix to extract spectral correlation features at a multi-time
slot. The number of hidden units is 128. Adam is used as the optimizer. The number of
epochs and initial learning rate are set as 200 and 0.001, respectively. The batch size is
32. The length of time is 30, which is the most recent data that we consider as input to
predict the values of all the spectrum points at the 30 time slots. We conduct extensive
experiments to test the proposed model by varying the time length ranging from 10 to 50
and find that setting 30 can achieve the best performance. MSE is used as a loss function for
proposed model training and testing. The prediction time slots are 30. In addition, 90% of
the spectrum data are used to train the model and treat the remaining 10 % as the test set.

Baselines and Evaluation Metrics: For comparison, 10 prediction models based on
deep learning are considered as baselines, which are LSTM [18], GRU [32], BiLSTM [33],
CNN [34], CNN-LSTM [35], CNN-BiLSTM [25], CNN-BiLSTM-attention [36], seq2seq-
LSTM [37], seq2seq-LSTM-attention [38], and seq2seq-Bi-ConvLSTM [39]. In order to
fairly compare the performance of models, the input information and output information of
all prediction models are all the same and the baseline models use the multi-step principle
to output results. Moreover, to evaluate the performance of the designed model, MAPE,
MAE, RMSE, and R2 are used to evaluate the performance. Especially, the calculation
process is as follows:

MAPE =
100%

N

N

∑
k=1

∣∣∣∣ ŷk − yk
yk

∣∣∣∣ (7)

MAE =
1
N

N

∑
k=1
| yk − ŷk| (8)

RMSE =

√√√√ 1
N

N

∑
k=1

(yk − ŷk)2 (9)

R2 = 1− ∑N
k=1(yk − ŷk)

2

∑N
k=1(yk − ȳk)2

(10)

where yk is the ground truth, ŷk is the prediction value, and ȳk is the average value of the
ground truth.

4.2. Experimental Results and Discussion

Effect of The Time Length: Choosing the appropriate time length is crucial for improv-
ing model performance.

So, we first explore the effect of time length on the performance of the proposed model
and select the most appropriate values as parameters. Figure 9 shows the impact of the
time length on the performance of the proposed model. In this experiment example, we
vary the time length and measure the accuracy achieved by the designed model. The value
of the accuracy metric increases with the increase in the time length. When the time length
is 30, the accuracy is highest. Then, the value is decreasing when the time length grows.
This result shows that the best time length is about 30 for our designed model and the
used dataset.

Baseline Model Comparison: Figure 10 shows the performance of the designed model
regarding dataset 1 and dataset 2, respectively. From Figure 10, we can see that the designed
model can achieve better performance than CNN-BiLSTM-attention and seq2seq-LSTM-
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attention on two spectrum datasets. Furthermore, from the above result, it can also be seen
that the proposed model has good generalization ability. The reason for choosing the above
two models for comparison is as follows. According to the results of the literature [25], CNN-
BiLSTM-attention achieves better performance for time–frequency spectrum prediction
than LSTM, BiLSTM, GRU, and CNN-LSTM. In addition, seq2seq-LSTM-attention has
good performance on long-term time series prediction.

Figure 9. The effect of the time length of the designed model.

Figure 10. Performance comparison with the existing schemes.
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Table 1 demonstrates the performance improvement by comparing the designed model
with ten baseline models. Firstly, the spectral and temporal correlation features are hid-
den in the spectrum data. We observe that the learning models with the CNN are better
than that only considering the temporal correlations. Secondly, hybrid models (such as
CNN-LSTM) perform better than single models (such as LSTM, GRU, BiLSTM, and CNN),
which is because hybrid models take advantage of different networks. Then, the models
with bidirectional structures (such as BiLSTM and CNN-BiLSTM) perform better than
one-directional models (such as LSTM and CNN-LSTM), which is due to the fact that the
models with bidirectional structures can extract bidirectional features of spectrum data.
While these models perform better, they are more complex in structure and more difficult
to train. In addition, the models with an attention mechanism (such as CNN-BiLSTM-
attention and seq2seq-LSTM-attention) perform better than the models without an attention
mechanism (such as CNN-BiLSTM and seq2seq-LSTM ), which is because the attention
mechanism focuses on the correlation between spectrum values of different frequency
points at each moment in time to assign weights for the vector set. Finally, the proposed
model, advanced Bi-ConvLSTM and seq2seq structure, can achieve the best performance
regarding MAE, MAPE, RMSE, and R2. Take the MAE as an example: LSTM, GRU, BiLSTM,
CNN, CNN-LSTM, CNN-BiLSTM, CNN-BiLSTM-attention, seq2seq-LSTM, seq2seq-LSTM-
attention, seq2seq-Bi-ConvLSTM, and seq2seq-Bi-ConvLSTM-attention achieve MAE val-
ues of 0.8982, 0.8847, 0.8796, 0.8679, 0.8533, 0.8498, 0.8345, 0.8556, 0.8436, 0.8064, and
0.7749, respectively. So, the proposed model can effectively reduce the amount of spectrum
switching and improve the spectrum utilization through simultaneous multi-step and joint
time–frequency prediction.

Table 1. The comparison of performance on test set.

Methods MAE MAPE RMSE R2

LSTM 0.8982 8.23% 1.6512 0.8223
BiLSTM 0.8796 8.07% 1.5728 0.8473

GRU 0.8847 8.17% 1.5851 0.8398
CNN 0.8679 7.93% 1.5695 0.8491

CNN-LSTM 0.8533 7.67% 1.5588 0.8587
CNN-BiLSTM 0.8498 7.45% 1.5537 0.8619

CNN-BiLSTM-attention 0.8345 7.25% 1.4218 0.9065
Seq2seq-LSTM 0.8556 7.47% 1.5618 0.8578

Seq2seq-LSTM-attention 0.8436 7.36% 1.5465 0.8783
Seq2seq-Bi-ConvLSTM 0.8064 6.64% 1.2355 0.9362

Seq2seq-Bi-ConvLSTM-attention 0.7749 6.15% 1.0978 0.9628

The Stability of the Proposed Model: Figure 11 demonstrates the stability of the
designed model when using it in datasets with missing data. In particular, we use the spec-
trum data with different missing rates to evaluate the performance of the designed model.

Firstly, the performance of all the prediction models decreases as the rate of missing
data increases, which is because, the greater the rate of missing data, the more information
is lost. Secondly, we can find that the designed model can achieve the highest accuracy
when the spectrum datasets are incomplete with missing data. The proposed model,
CNN-BiLSTM-attention, and seq2seq-LSTM-attention can achieve MAE values of 0.7864,
0.8543, and 0.8876, respectively, when the missing ratio is 5% in dataset 1. Similarly, the
proposed model also performs best on dataset 2 with different missing rates. In particular,
the decreasing performance slope of the proposed model is the lowest when the missing
rate is increasing from 5% to 10% and 15%. This also shows the strong stability of the
designed model.
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Figure 11. The stability against missing data for spectrum prediction.

5. Conclusions

In this paper, we have investigated the problem of spectrum occupancy prediction and
proposed a deep learning prediction model achieving both long-term and time–frequency
spectrum prediction. To be more specific, we take advantage of advanced Bi-ConvLSTM to
extract temporal–spectral relationships in spectrum data and the seq2seq framework for
long-term spectrum prediction. Then, the attention mechanism is used to solve the seq2seq
limitation. Subsequently, we evaluate the prediction performance of the conventional LSTM,
GRU, BiLSTM, CNN, CNN-LSTM, CNN-BiLSTM, CNN-BiLSTM-attention, seq2seq-LSTM,
seq2seq-LSTM-attention, and seq2seq-Bi-ConvLSTM for comparison purposes. Moreover,
the experimental results demonstrate that the proposed model performs better and also
is robust to missing data in spectrum training data. Finally, the proposed model has been
applied to our program and will be adopted in real-world scenarios.
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